3
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY  6.436J/15.085J  Fall 2008 Problem Set 1 due 9/8/2008 Readings:  (a) Notes from Lecture 1 (b) Handout on background material on sets and real analysis (Recitation 1). Supplementary readings:  [GS], Sections 1.1-1.3. [W], Sections 1.0-1.5, 1.9.  Exercise 1. (a) Show that the un ion of countably many countable sets is countable. (b) A real number  x is rational if  x =  m/n , where  m  is an integer and  n  is a nonzero integer. Show that the set of rational numbers Q is countable. Exercise 2. Let {  x n } and {  y n } be real sequences that converge to  x and  y , respectively. Provide a formal proof of the fact that  x n  y n  converges to  xy . Exercise 3. We are given a function  f  :  A  × B , where  A  and B are nonempty sets. (a)  Assuming that the sets  A  and B are finite, show that   max min f(x, y)   min max f(x, y).  x  y  y  x  (b) For general nonempty sets (not necessarily finite), show that  inf f(x, y) inf sup f(x, y).  sup y  B y  B x A x A Exercise 4. Let {  A n } be a sequen ce of sets. Show that lim n →∞   A n  =  A  if and only lim n →∞  I  An  (ω) = I  A (ω) for all ω. Exercise 5. (The union bound) Let (Ω, F) be a measurable space, and consider a sequence {  A i } of F-measurable sets, not necessarily disjoint. Show that     P  A i   P(A i ). i=1 i=1 Hint: Express i=1  A i  as a countable union of disjoint sets.  1 

Mit Tutorial

Embed Size (px)

Citation preview

Page 1: Mit Tutorial

8/11/2019 Mit Tutorial

http://slidepdf.com/reader/full/mit-tutorial 1/3

 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J  Fall 2008 

Problem Set 1  due 9/8/2008 

Readings: 

(a) Notes from Lecture 1(b) Handout on background material on sets and real analysis (Recitation 1).

Supplementary readings: [GS], Sections 1.1-1.3.

[W], Sections 1.0-1.5, 1.9. 

Exercise 1. 

(a) Show that the union of countably many countable sets is countable.

(b) A real number  x  is rational if  x  =  m/n , where  m   is an integer and  n   is anonzero integer. Show that the set of rational numbers Q is countable.

Exercise 2. Let { xn} and { y n} be real sequences that converge to  x and  y ,

respectively. Provide a formal proof of the fact that  xn y n converges to  xy . 

Exercise 3. We are given a function  f  :  A  × B →�, where  A  and B are

nonempty sets. 

(a)  Assuming that the sets  A  and B are finite, show that 

 max min f(x, y)   min max f(x, y). x ∈ 

y ∈ 

≤ y 

∈ 

x ∈ 

(b) 

For general nonempty sets (not necessarily finite), show that 

inf f(x, y)  inf sup f(x, y). sup y 

∈ 

B  ≤ y 

∈ 

x∈ A 

x∈ A 

Exercise 4. Let { A n} be a sequence of sets. Show that limn→∞  A n =  A  if

and only lim n→∞ I An (ω) = I A(ω) for all ω. 

Exercise 5. (The union bound) Let (Ω, F) be a measurable space, and consider

a sequence { A i} of F-measurable sets, not necessarily disjoint. Show that 

∞  ∞ 

� � 

� 

 A i  ≤  P(A i). i=1  i=1 

Hint: Express ∪∞

i=1 A i as a countable union of disjoint sets. 

Page 2: Mit Tutorial

8/11/2019 Mit Tutorial

http://slidepdf.com/reader/full/mit-tutorial 2/3

 

Exercise 6. Let Ω = N (the positive integers), and let F0 be the collection of

subsets of Ω  that either have finite cardinality or their complement has

finite cardinality. For any  A  ∈ F0, let P(A) = 0 if  A  is finite, and P(A) = 1 if  A c is

finite. 

(a) Show that F0 is a field but not a σ -field.

(b) Show that P is finitely additive on F0; that is, if  A, B ∈ F0, and  A, B are

disjoint, then P(A  ∪ B) = P(A) + P(B).

(c) Show that P is not countably additive on F0; that is, construct a sequence of

disjoint sets  A i ∈ F0 such that ∪∞

i=1 A i ∈ F0 and P(∪∞

i=1 A i) �= �∞

i=1 P(A i).

(d) Construct a decreasing sequence of sets  A i ∈ F0 such that ∩∞

i=1 A i = Ø

for which lim n→∞ P(A i) �= 0.

Page 3: Mit Tutorial

8/11/2019 Mit Tutorial

http://slidepdf.com/reader/full/mit-tutorial 3/3

MIT OpenCourseWare 

http://ocw.mit.edu 

6.436J / 15.085J Fundamentals of Probability 

Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.