10
Mobile Software Application for Water Consumption Awareness (Sawacae) Adel Khelifi 1 , Mohammed Ghazal 2 , Hussain Mohammad Albloushi 1 and Mohamed Toubar 1 1 Software Engineering Department, ALHOSN University, Abu Dhabi, UAE 2 Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE, Abstract. With scarce water resources in the region, the importance of conserving water and reducing electricity usage is more apparent than ever. Water scarcity, for example, continues to drive a multi-billion dollar investment across the Middle East region; driest region in the world with an average freshwater availability of third below the level needed for water security. Nevertheless, the general public’s awareness of the problem has not yet risen to the necessary level to induce improved water and electricity utilization. For example, UAE water scarcity grows more acute with increasing population and large economic development plans. The aim of this project is to develop a mobile communication platform between water and electrical distribution companies and their customers. Through this platform, companies push content to the mobile devices of their customers to raise awareness, deliver water and electricity consumption information and provide water and electricity saving tips. To motivate customers to consider those tips, the platform through usage information creates a feedback channel to allow customers to observe firsthand the effect of applying these tips. This feedback channel proves crucial to the automatic and early detection and elimination of leaks. Keywords: Mobile application, water consumption, awareness 1. Introduction The water consumption awareness software aim is to aid public or private water company to track and control water consumption of every individual within every area in the city. By monitoring water usage, government can save water resources in an effective way. More specifically, this system is designed to allow water companies to manage and communicate with customers their water usage as well as allowing the customer to view water consumption data. The software allows employees and external customer to spatially and temporally track and analyze resource management data. The software will facilitate communication between customers, and the water company in many ways such as SMS. The system also contains a relational database containing customers and their history of water usage. One major problem is no formal or consistent system exists in the Arab region to comprehensively track and analyze actual water usage within an area with a framework for pushing awareness content to the users. Currently, the actual water usage tracking is done using manual and semi-automated methodologies by companies in the region. The contributions of this work are as follows: 1) investigation of the water resource deficiency problem in the world and region; 2) developing a communication platform between water distribution companies and consumers using mobile application towards the end goal of conserving water; 3) an algorithm for leak detection and localization for early response by municipilities, water companies, and consumers; and 4) developing a low-cost social mobile application to increase the public awareness and response of water scarcity. This paper includes the system’s requirements, design, and implementation. The rest of the paper is organized as follows. In Section 2, we bring into context our proposed system. Section 3 gives a general description of our proposed methodology. In Section 4, we discuss the functional and non-functional 2012 International Conference on Information and Computer Applications (ICICA 2012) IPCSIT vol. 24 (2012) © (2012) IACSIT Press, Singapore 52

Mobile Software Application for Water Consumption ...ipcsit.com/vol24/12-ICICA2012-A0036.pdf · Mobile Software Application for Water Consumption Awareness ... consumers using mobile

  • Upload
    vandat

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Mobile Software Application for Water Consumption Awareness (Sawacae)

Adel Khelifi1, Mohammed Ghazal2, Hussain Mohammad Albloushi1 and Mohamed Toubar1 1Software Engineering Department, ALHOSN University, Abu Dhabi, UAE

2 Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE,

Abstract. With scarce water resources in the region, the importance of conserving water and reducing electricity usage is more apparent than ever. Water scarcity, for example, continues to drive a multi-billion dollar investment across the Middle East region; driest region in the world with an average freshwater availability of third below the level needed for water security. Nevertheless, the general public’s awareness of the problem has not yet risen to the necessary level to induce improved water and electricity utilization. For example, UAE water scarcity grows more acute with increasing population and large economic development plans. The aim of this project is to develop a mobile communication platform between water and electrical distribution companies and their customers. Through this platform, companies push content to the mobile devices of their customers to raise awareness, deliver water and electricity consumption information and provide water and electricity saving tips. To motivate customers to consider those tips, the platform through usage information creates a feedback channel to allow customers to observe firsthand the effect of applying these tips. This feedback channel proves crucial to the automatic and early detection and elimination of leaks.

Keywords: Mobile application, water consumption, awareness

1. Introduction The water consumption awareness software aim is to aid public or private water company to track and

control water consumption of every individual within every area in the city. By monitoring water usage, government can save water resources in an effective way. More specifically, this system is designed to allow water companies to manage and communicate with customers their water usage as well as allowing the customer to view water consumption data. The software allows employees and external customer to spatially and temporally track and analyze resource management data. The software will facilitate communication between customers, and the water company in many ways such as SMS. The system also contains a relational database containing customers and their history of water usage. One major problem is no formal or consistent system exists in the Arab region to comprehensively track and analyze actual water usage within an area with a framework for pushing awareness content to the users. Currently, the actual water usage tracking is done using manual and semi-automated methodologies by companies in the region.

The contributions of this work are as follows: 1) investigation of the water resource deficiency problem in the world and region; 2) developing a communication platform between water distribution companies and consumers using mobile application towards the end goal of conserving water; 3) an algorithm for leak detection and localization for early response by municipilities, water companies, and consumers; and 4) developing a low-cost social mobile application to increase the public awareness and response of water scarcity.

This paper includes the system’s requirements, design, and implementation. The rest of the paper is organized as follows. In Section 2, we bring into context our proposed system. Section 3 gives a general description of our proposed methodology. In Section 4, we discuss the functional and non-functional

2012 International Conference on Information and Computer Applications (ICICA 2012)IPCSIT vol. 24 (2012) © (2012) IACSIT Press, Singapore

52

requirements of SAWACAE system. The implementation is presented in Section 5. In Section 6, we conclude and discuss future system’s enhancements.

2. The application context

2.1. Problem Statement Before addressing the water problem in the MENA (Middle East and Africa) region, it is important to

highlight the importance of water. With two thirds of the earth's surface covered by water and the human body consisting of 75 percent of it, it is evidently clear that water is one of the prime elements responsible for life on earth. Water circulates through the land just as it does through the human body, transporting, dissolving, and refilling nutrients and organic matter, while carrying away waste material. Further in the body, it regulates the activities of fluids, tissues, cells, lymph, blood and glandular secretions. An average adult body contains 42 liters of water and with just a small loss of 2.7 liters he or she can suffer from dehydration, displaying symptoms of irritability, fatigue, nervousness, dizziness, weakness, headaches and consequently reach a state of pathology. Not only water benefits our health or body, but also we use water in many aspects of our life such as irrigation, having shower or washing cars. Furthermore, in cities, the pavements are designed in a way that the rainwater will not infiltrate to the earth but instead, it goes to sewage and after that to the ocean. On the other hand, if you look to rural areas, you will find that rainwater infiltrate into the earth and recharge groundwater. However, the infiltrated water is often contaminated with pesticides.

2.2. Water Scarcity As experts anticipate the number of Arab countries suffering from water scarcity to climb up to 18 by

2025 from 11 at present, ministers of many countries called for regional unity to ensure water security [1]. • 76% of water in the UAE is used for irrigation • 3.5m Abu Dhabi's estimated population by 2030 • 30% freshwater availability, which is below needed levels for security • 2.5% GDP (Gross Domestic Product) wasted due to poor water management • 18 Arab countries expected to suffer from water scarcity by 2025 • Driest region in the world — Average freshwater availability in the region is around 30 per cent

below the level needed for water security. Per capita water share is projected to fall by half by 2050. Today, 11 Arab countries suffer from water scarcity and this number is anticipated to reach 18 by 2025.

• Fast growing population — The Arab region has one of the highest population growth rates in the world. For 2005 - 2020 the Arab population is projected to grow at nearly twice the global average.

• Growth and diversification driving demand - As Arab economies diversify beyond traditional sectors, new actors will demand water. Greater demand from increasingly affluent citizens is also likely.

• Complex connections between water, food security and climate change - The Arab region is vulnerable to the effects of climate change. The International Panel on Climate Change anticipates declining rainfall, soil moisture, and increasing evaporation in the region. Without changes in policy and technology, water scarcity will reduce agricultural production and threaten regional food security" [1].

So, if we look to UAE water scarcity, we will find that it is growing more acute with increasing population and large economic development plans. UAE faces growing challenges with water usage, 24 times larger than the total annual renewable water resources of the emirates. "Irrigation accounts for 76 per cent of the water use in the country. With growing population demands estimated to be about 3.5 million by 2030 and large economic development plans, our water scarcity problem may grow more acute" [1].

53

Figure 1: Water withdrawal as a percentage of available water [2]

2.3. Water Leak Dilemma High water costs are often a result of problems with inefficient water consumption and leakage problems.

So, of the many options available for conserving water, leak detection is a logical first step. The primary cause of excessive unaccounted for water is often leaks. Unaccounted-for water is the

difference between water produced (metered at the treatment facility) and metered use (i.e., sales plus non-revenue producing metered water). Unaccounted-for water can be expressed in millions of gallons per day (mgd) but is usually discussed as a percentage of water production [3]: Unaccounted-for water (%) = ((Production - metered use) x 100%)/(Production)

Large leaks do not necessarily contribute to a greater volume of lost water, particularly if water reaches the surface; they are usually found quickly, isolated, and repaired. Undetected leaks, even small ones, can lead to large quantities of lost water since these leaks might exist for long periods of time. Besides, according to Orange Water and Sewer Authority [4], the water leak cost is estimated as follows (Tab 1):

Tab.1 gallon and dollar costs of leaks

size of

leak

gallons

wasted per DAY (if

water pressure is 60

lbs./sq. in.)

water/

sewer cost per

DAY at 1.2¢ per

gallon

gallons

wasted per

WEEK

water/

sewer cost per

WEEK at 1.2¢

per gallon

gallons

wasted per

MONTH

water/

sewer cost per

MONTH at 1.2¢

per gallon

1/16" 360 $4.32 2,520 $30.24 10,800 $129.60

1/8" 3,096 $37.15 21,672 $260.06 92,880 $1,114.56

3/16" 8,424 $101.09 58,968 $707.62 252,720 $3,032.64

1/4" 14,952 $179.42 104,664 $1,255.97 448,560 $5,382.72

We need solutions now as water security is disappearing. It is high time that we stop assessing the problem and start resolving it [1]. Water conservation in business is not only an important factor environmentally, but can also mean huge monetary savings. According to Maddaus, water conservation initiatives are more likely to succeed if they are socially acceptable. Comparisons to previous bills and tips on water conservation can help consumers make informed choices about water use. Systems can include inserts in their customers’ water bills that provide information on water use and costs or tips for home water conservation.

3. The Proposed Methodology

3.1. Methodology of the application development

54

“A software development methodology is a framework that is used to structure, plan, and control the process of developing a software product which includes the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application” [5].

A thorough research using the web has been conducted to test the novelty of this idea. The results revealed that there was no mobile application for water consumption awareness.

3.2. System Deployment Environment SAWACAE system is developed using the Android Software Development Kit. The Android software

development kit (SDK) includes a comprehensive set of development tools. These include a debugger, libraries, a handset emulator, documentation, sample code, and tutorials. Android applications are packaged in .apk format and stored under /data/app folder on the Android OS (the folder is accessible only to root user for security reasons). APK package contains .dex files (compiled byte code files called Dalvik executables), resource files, etc.

3.3. Technologies and Tools Used in the Project • This section provides the list of technologies and tools used in this project. • Microsoft Office Project 2007 provides enhanced tools to help in tracking and controlling

project work, schedules, and finances. This software was chosen to lead the process of developing SAWACAE system. Its’ easy formatting helped in presenting project data in form of reports, charts, PDF documents, and one-page printable schedules. It has been used to generate a Gantt chart showing the project’s time/plan schedule.

• Android software stack for mobile devices that includes an operating system, middleware and key applications. The Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.

• Eclipse 3.6 is an integrated development environment (IDE) using the Android Development Tools (ADT) Plugin, though developers used text editor to edit Java and XML files then used command line tools (Java Development Kit and Apache Ant are used) to create, build and debug Android applications as well as control attached Android devices (e.g., triggering a reboot, installing software package(s) remotely).

• SmartDraw provides useful tools for generating different types of charts, such as Flow and Gantt charts. It also helps in generating Unified Modeling Language (UML) diagrams, such as class diagrams and sequence diagrams. It helps also in creating Entity Relationship Diagrams (ERD). It was used to create ERD and sequence diagrams [6].

• Microsoft Office Visio 2007: “Microsoft Office Visio 2007 drawing and diagramming software makes it easy for IT and business professionals to visualize, explore, and communicate complex information” [7]. It provides various easy-to-use tools that assist in the process of creating diagrams. Microsoft Visio was used for creating the data Model (Database Schema) for SAWACAE system.

4. Requirements Analysis

4.1. Software Requirements Specification “A requirements engineering process is a structured set of activities which are followed to derive,

validate and maintain a systems requirements document” [8]. This process is best described by the software engineer and computer scientist “Fred Brooks” who is also known as “the father of the IBM System/360 computer family” when he said “The hardest part of building a software system is deciding what to build. No part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later.” This Software Requirements Specification (SRS) specifies the requirements and functions of SAWACAE system. It aims to fully explain the system features, performance and constraints. It will also explain the way the system will respond to users’ needs regarding event organizing, how it will react under different

55

circumstances and the way it will manage content. The SRS is intended for both stake holders and developers of the system.

4.2. Functional Requirements “Functional requirements specify the functions of the system, how it records, computes, transforms, and

transmits data” [9]. They are intended to describe the inputs, outputs and behavior of a system. The following figures 2, 3 and 4 outline the use cases for each of the active actor separately. The customer, the administrator, the data entry operator, the account manager, and the researcher are the main actors of the system.

Figure 2: Use Case Diagram Part 1 (Customer)

56

Figure 3: Use Case Diagram Part 2 (Administrator and Account Manager)

Figure 4: Use Case Diagram Part 3 (Researcher, Data entry operator and Web Agent)

57

4.3. Class Diagram Class diagrams are widely used to describe the types of objects in a system and their relationships. Class

diagrams model using design elements such as classes, packages and objects. Class diagrams describe three different perspectives when designing a system, conceptual, specification, and implementation. These perspectives become obvious as the diagram is created and help solidify the design. The following figure 5 presents SAWACAE class diagram.

Figure 5: SAWACAE Class Diagram

4.4. Sequence Diagram “A sequence diagram is a time-oriented interaction diagram showing the chronological sequence of

messages between objects. Each sequence diagram corresponds to one use case” [10]. Many sequence diagrams were developed in order to provide a proper system’s design and implementation. The following sequence diagram (figure 6) illustrates the Create User function of SAWACAE system. The Admin opens his homepage creates and assign privileges to a specific user.

Figure 6: Create User Sequence Diagram

58

5. ImpleIn the i

based on thof this phafunctionalitaddition of

5.1. Clie“An arc

contains a connectors, architecture[10]. The cand implemsystem’s dmaintenanc

The pro1. The F

2. The tasked with

Finally,issues a not

5.2. SAWThe foll

ementatiomplementati

he requiremenase is the fties of the syadvanced fea

nt-Server Achitectural sset of rules,even if it

e must be “ophoice of a s

mentation. Anevelopment e [11].

oposed MobiFront End: a Water usageusage for boWater usagawareness ccontent: savBack-end se: Recording uServing usaPushing awDetecting anBuilding a personnel tobelow illust

, there is hidification, wh

WACAE Uselowing figur

on ion phase thents addressedfirst versionystem. Later atures.

Architecturtyle or patte constraints,might not bptimal” and oftware arch

n architecturatime, the a

le Applicatioclient-side ae statistics inoth electricity

ge statistics icontent, whiving tips. It iserver or a se

usage informage informati

wareness contnd alerting u

leak map o call and altrates SAWA

dden service henever need

Fi

er Interface re 8 presents

e system desd and define

n of SAWAversions inc

re ern abstracts, and patternbe the mostnot necessar

hitectural styal style selecapplication’s

on has two mapplication thn short-term y and water in long-termich is invokes implementeet of servers

mation receivion to the custent to the cuusers to suspe

with integrert those cus

ACE high levpart. It starte

ded, for imme

igure 7: SAW

the SAWAC

sign is conved at the begiACAE systemclude enhanc

s the commons of how tot elegant, thrily focus onyle has tremection that is is response

modules: hat is runningmode: virtua

m mode: a baed by a butted using RSS, which is ru

ed from smastomer’s mo

ustomer's appected leaks;rated customstomers in cavel of architeed on first apediate user a

WACAE Client

CAE Graphic

erted to codinning by them, which imcements to t

on propertieo structure a

he fastest, orn one particuendous effecnaccurate mitime, and t

g on mobile al meters sho

ar chart of thon that dispS technologyunning at th

art meters at tbile applicat

plication;

mer informaase of an extecture. pplication laction.

t Server Archi

c User Interfa

e, that genere stakeholdemplements the current f

s of a famila system intor the most

ular aspect ofcts on all aspight have a nthe system’s

phones. Maiowing the av

he last weeklays pushed y. he distributio

the customertion;

ation for thetended unres

aunch, check

itecture

face.

rates a compers. The mainall the core

functionalitie

ly of similaro a set of eeconomical, f the system pects of softnegative influs future fle

inly, it presenverage of the

k of usage, acontent E.g

on companie

r site in a dat

e distributiosolved leak. T

ks regularly f

plete system,n deliverablee and basices as well as

r designs. Itlements andthe chosen

constraints”tware designuence on the

exibility and

nts: e last hour of

and displaysg., of pushed

s’ side. It is

tabase;

on companyThe figure 7

for leaks and

, e c s

t d n ” n e d

f

s d

s

y 7

d

59

Figure 8: SAWACAE Graphic User Interface

6. Conclusion and Future Enhancements The water scarcity problem goes largely unnoticed by the public. UAE faces growing challenges with

water usage which is 24 times larger than the annual renewable water resources. According to Sarah Woodbridge, Group Director of the Exhibitions at IIR Middle East, ''UAE currently consumes more water per person than any other country in the world with the exception of the United States and Canada”. Our application helps raise the public awareness of the problem to induce positive cultural changes. Our mobile application combines both the problem awareness and the solution using a feedback loop in one convenient and mobile location. SAWACAE can be developed further to include a lot of modules because the proposed system is developed on the view of future, for example we can use satellite images, or geographic information systems (GIS) that will help us in providing data on ground and surface water levels, water quality, stream flows, and climatologically trends will be used in this system. The proposed system could be integrated with GIS, or other databases that has information about water. Data in these systems could be logically linked, thus the information will be moving between different servers in different locations.

7. References [1]. Incorporated, D. M. (2011, March 22). UAE, Kuwait, Oman face acute water scarcity. Retrieved 11

09, 2011, from Emirates 24/7: 1. http://gulfnews.com/news/gulf/uae/environment/experts-warn-of-looming-acute-water-scarcity-1.653114

[2]. World Meteorological Organisation (WMO), Geneva, 1996; Global Environment Outlook 2000 (GEO), UNEP, Earthscan, London, 1999. http://maps.grida.no/go/graphic/freshwater-stress-1995-and-2025

[3]. Lahlou, Z. M. (2001). Leak Detection and Water Loss Control. Tech Brief , 04. http://www.nesc.wvu.edu/ndwc/pdf/ot/tb/tb_leakdetection.pdf

[4]. Authority, O. W. (2011). What is the cost of a water leak? Carrboro: OWASA. http://www.owasa.org/client_resources/conservation/what%20is%20the%20cost%20of%20a%20water%20leak%20oct%202010.pdf

[5]. Software development methodology. (2011, March 18). Retrieved March 25, 2011, from Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Software_development_methodology

[6]. Introduction to UML-Unified Modeling Language UML- SmartDraw Tutorials. (n.d.). Retrieved December 25, 2010, from SmartDraw Communicate Visually: http://www.smartdraw.com/resources/tutorials/uml-diagrams/

WWaatteerr UUssaaggee IInnddiiccaattoo

NNoottiiffiiccaattiioo

AAwwaarreenneessss CCoonntteenntt

60

[7]. Microsoft Office Visio 2007 Top 10 Benefits. (2011). Retrieved April 27, 2011, from Microsoft Office: http://office.microsoft.com/en-us/visio/microsoft-office-visio-2007-top-10-benefits-HA010165031.aspx

[8]. Kotonya, G., & Sommerville, I. (1998). Requirements engineering processes and techniques. New York: John Wiley & Sons.

[9]. Lauesen, S. (2002). Software requirements styles and techniques. London: Addison-Wesley. [10]. Qian, K., Fu, X., Tao, L., Xu, C.-W., & Diaz-herrera, J. L. (2010). Software architecture and design

illuminated. Sudbury,Massachusetts: Jones and Barlett publishers. [11]. Gallaugher, J., & Ramanathan, S. (1995, July 28). The Critical Choice of Client Server Architecture:

A Comparison of Two and Three Tier Systems. Retrieved April 24, 2011, from BOSTON COLLEGE personal web server: https://www2.bc.edu/~gallaugh/research

61