84
BOSTON UNIVERSITY COLLEGE OF ENGINEERING DISSERTATION MODELING AND SIMULATION OF TRANSIENT ENHANCED DIFFUSION BASED ON INTERACTIONS OF POINT AND EXTENDED DEFECTS by ALP H. GENCER B.S., Bo˘ gazic ¸i University, 1993 M.S., Boston University, 1995 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1999

MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

BOSTON UNIVERSITYCOLLEGEOFENGINEERING

DISSERTATION

MODELING AND SIMULA TION OF TRANSIENT ENHANCEDDIFFUSION BASED ON INTERA CTIONS OF POINT AND EXTENDED

DEFECTS

by

ALP H. GENCERB.S.,Bogazici University, 1993M.S.,BostonUniversity, 1995

Submittedin partialfulfillment of therequirementsfor thedegreeof

Doctorof Philosophy1999

Page 2: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

ACKNOWLEDGEMENTS

FirstandforemostI would like to expressmy thanksto my professor, Prof.ScottDunham,whoseknowledgemadethis thesispossiblein the first place. His deepknowledgein the field of processanddevicemodeling,andhiscuriosityto learnmorehasalwayskepthim andmeat thecuttingedge.Without his forwardlooking vision andstrive for perfectionthis pieceof work would not beasgoodasI liked it to be. I am alsograteful to him to allow me to spendtime with my family andworkremotelywhenmy life tooka turnwith thebirth of my daughter.

I amalsothankful to Prof.TheodoreMoustakasfor passingon his deepknowledgeon semicon-ductorphysicsto me,for encouragingmeto join BU, andsupportingmewith ateachingassistantshipin my first year, for giving valuablesuggestionsasa memberof my proposalanddissertationcom-mittee. I alsowould like to expressmy thanksto Prof. DanielCole, for servingon my dissertationcommitteeandproviding a long list of suggestionsandcorrections.Finally, I am alsothankful toProf.Karl Ludwig for bringingaphysicist’saspectto this work.

During theyearsI spentat BU’s ProcessModelingLab, I metseveralpeople.It wasa greatfunworkingwith all of them.In particular, I would like to thankAnu Agarwal for herencouragingmetojoin thegroup,SoumyaBanerjeeandMitra Navi for beinggreatfriends,andSrinivasanChakravarthiandBrendonMurphy for working with meall the time. I alsowant to expressmy specialthankstoFredWittel, who not only thoughtmehow to bea greatscientistandhelpedmein surviving my firstyearwith thegroup,but alsoshowedmehow to beagooddad.

I alsowould like to expressmy thanksto my parentsfor providing me theeducationthatmadethis thesisa reality. I ammorethanthankful to my parents-in-law, who providedconstantsupportinevery mannerthey couldandput methroughthis work. Without their support,I would not find thecourage,powerandopportunityto completemy Ph.D.work.

Finally, I would like to expressmy love to my wife Aysenandmy daughterAylin. Without them,I certainlywouldn’t bethepersonwho I amtoday.

ii

Page 3: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

MODELING AND SIMULA TION OF TRANSIENT ENHANCEDDIFFUSION BASED ON INTERA CTIONS OF POINT AND EXTENDED

DEFECTS

(OrderNo. )ALP H. GENCER

BostonUniversity, CollegeOf Engineering,1999Major Professor:ScottT. Dunham,Professorof ElectricalEngineering

ABSTRACT

As device sizesin VLSI technologyget smaller, the importanceof predictive processmodelingincreases.Oneof the biggestchallengesin predictive processmodelingtoday lies in modelingofTransientEnhancedDiffusion (TED). TED is the greatlyenhanceddiffusion of dopantsin siliconseenduringannealingof thedamagecreatedby theion implantationof thedopants.As onemovestosmallerthermalbudgets,TED is often theprimarysourceof diffusionandthusdeterminesthefinaljunctiondepth.

It is known that TED is causedby the excessinterstitial concentrationthat persistsdue to ionimplantation.But how thisexcessinterstitialconcentrationevolvesovertimeandaffectsthediffusionof dopantsremainsunclear. Ourwork attemptsto understandthephysicalprocessesoccurringduringion implant annealing,expressthemin a mathematicalmodel,integratethis model into a diffusionequationsolverandquantitatively matchtheexperimentalobservations.

To this end, we have developeda solid physicalmodel (KPM) for the evolution of extendeddefects(

�311� defectsanddislocationloops)which areobserved underTED conditions. We have

alsodevelopeddifferentversionsof KPM thathave applicabilityunderdifferentcircumstances,andhavedifferentlevelsof computationalefficiency. We believe thattherangeof modelsdevelopedwillgive theusertheability to makea compromisebetweenaccuracy andcomputationaltime.

We have appliedKPM to�311� defectsthat areobserved undernon-amorphizingimplant con-

ditions andwe wereable to get a goodagreement.We have thenusedthis model to predictTEDbehavior basedon marker layer experimentsandwe found a goodmatch. To extendthe model todislocationloops,weassumedthatdislocationloopsform by unfaultingof

�311� defectsasobserved

experimentally. Weaccountedfor this transformationin ourmodelandwewereableto obtainagoodmatchto theexperimentaldatawithoutany modificationsin the

�311� defectmodel.

Our work alsoinvolvedin developinga computersoftwarethat is capableof solving themodelsthatwehavepostulated.To thisend,wehavedevelopedDOPDEES,aone-dimensionalmulti purposepartial differentialequationinitial valuesolver. To enablefastertechnologytransfer, we have alsodevelopedProcessModeling Modules(PMM) which consistsa set of scriptsthat encapsulatethemodelsthatwehavedevelopedin a readyto useform.

iii

Page 4: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Contents

1 UnderstandingTED 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Experimentaldataon TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Earlywork onTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Separatingtheenhancementfrom thedamagedose . . . . . . . . . . . . . . 4

1.2.3 Thesourceof theinterstitials. . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Interactionsinvolving dislocationloopsandboron-interstitialclusters . . . . 6

2 Modelsof Importance for TED 7

2.1 Coupleddiffusionof dopantsandpoint defects . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Fermidiffusionmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Pair diffusionwith asinglepointdefect . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Pair diffusionwith bothpointdefects . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Pair diffusionwith asinglepointdefect,includingFermilevel effects . . . . 10

2.1.5 Pair diffusionwith bothpointdefects,includingFermilevel effects . . . . . 12

2.1.6 Fivestreammodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Initial conditions:Damagecreatedby ion implantation . . . . . . . . . . . . . . . . 15

2.2.1 Non-amorphizingimplants . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Amorphizingimplants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Otherparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Pointdefectproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Surfacerecombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Modeling ExtendedDefectswith Kinetic Precipitation Model 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Full Kinetic PrecipitationModel (FKPM) . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 ReducedKinetic PrecipitationModels(RKPM) . . . . . . . . . . . . . . . . . . . . 23

iv

Page 5: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

3.3.1 3-momentmodel(3KPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 2-momentmodel(2KPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 AnalyticalKinetic PrecipitationModel (AKPM) . . . . . . . . . . . . . . . . . . . . 26

3.5 Simplesolid-solubilitymodel(SSS) . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Modeling�311� Defectsand TED 32

4.1 Evolutionof�311� DefectProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Predictionof TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Comparisonof models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Effectof “ � n” factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Models for DislocationLoops 45

5.1 ExtendingKPM to dislocationloops . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Analytical loopmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 SimulatingTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Modelingheterogeneousnucleation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 SoftwareDevelopmentEfforts 54

6.1 DOPDEES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 ProcessModelingModules(PMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Simulationof dopantdiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Summary and Future Dir ections 62

7.1 Modelingandexperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Softwaredevelopment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Calculation of the Kinetic Precipitation Rate 64

A.1 Sphericaldefects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 Disc-shapeddefects: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3�311� defects:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B BU Parameter Set 68

v

Page 6: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

List of Figures

1.1 Time dependenceof TED. Implantationof 5 � 1013 – 2 � 1014cm� 2 Si at 200keV,anddiffusionat 800� C. Datafrom Packan[39]. . . . . . . . . . . . . . . . . . . . . 3

1.2 Temperaturedependenceof TED. Implantationof 1 � 1014cm� 2 Si at 200keV, anddiffusionat 800� Cand850� C. Datafrom Packan[39]. . . . . . . . . . . . . . . . . . 3

1.3 Energy dependenceof TED. Implantationof 1 � 1012cm� 2 Si at 10–200keV, anddiffusionat 800–1000� C. Datafrom Packan[39]. . . . . . . . . . . . . . . . . . . . 4

1.4 Dosedependenceof TED. Implantationof 1 � 1012 – 1 � 1014cm� 2 Si at 200keV,anddiffusionat 800–1000� C. Datafrom Packan[39]. . . . . . . . . . . . . . . . . . 5

2.1 Comparisonof UT-Marlowe andTRIMCSR simulationsof a 40keV 5 � 1013cm� 2

Si implantat 7o tilt and45o rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Total andnet damagecreatedby a 40keV 5 � 1013cm� 2 Si implant. Monte Carlosimulationswith TRIMCSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Damagecreatedby a 40keV 5 � 1013cm� 2 Si implant beforeandafter very shortannealing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Net damage(I � V) dosedivided by implant dose(plus factor) for a seriesof non-amorphizing40keV Si implants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 TRIMCSRsimulationof totalandnetimplantdamagefor a50keV 1 � 1015cm� 2 Siimplant.Amorphizationthresholdhasbeenassumedto be10%. . . . . . . . . . . . 19

3.1 Growth anddissolutionof precipitatesby attachmentandemissionof soluteatoms. . 22

3.2 Distribution of�311� defectdensitiesover defectsizesand bestfit to log-normal

distribution. z2 � 0 � 8 hasbeenusedin all fits. Datafrom PanandTu [41]. . . . . . . 25

3.3 Changeof λn versusdefectsizefor�311� defectsanddislocationloops. Thecalcu-

lationcanbefoundin AppendixA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Thecorrespondingγi asa functionof m1 for a0 � 3 � 855,a1 � 15� 9, a2 � � 1 � 4. Theparametersfor γi areK0 � 3, K1 � 14� 5 andK2 � 366. . . . . . . . . . . . . . . . . 29

3.5 Thecorrespondingγi asafunctionof m1 for a0 � 1, a1 � 4 � 7, a2 � 0. Theparametersfor γi areK0 � 8, K1 � 0 � 14andK2 � 8. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Exampleof γi asdefinedby Eq.3.27.In thisparticularplot K0 � 4, K1 � 2 andK2 � 7havebeenused. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi

Page 7: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

3.7 Comparisonof 2KPM andAKPM underidenticalconditionsandequivalentparame-tersasgivenin Fig. 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Evolution of densityof interstitialsin�311� defects(m1) andcomparisonto model.

Datafor 5 � 1013cm� 2 Si implantat 40keV with annealat 815� C. . . . . . . . . . . 33

4.2 Evolution of theaveragelengthof�311� defectsandcomparisonto model.Datafor

5 � 1013cm� 2 Si implantat 40keV with annealat 815� C. . . . . . . . . . . . . . . . 33

4.3 Evolution of density of�311� defects(m0) and comparisonto model. Data for

5 � 1013cm� 2 Si implantat 40keV with annealat 815� C. . . . . . . . . . . . . . . . 34

4.4 The�311� defectprofile for variousannealingtimesat 815� C. . . . . . . . . . . . . 34

4.5 C n andCss versus�311� defectsizefor annealsat815� C. . . . . . . . . . . . . . . . 35

4.6 Normalizeddistributionof�311� defectsizesfor varioustimesfor annealsat 815� C.

Theverticalline representstheminimumobservabledefectsize(20A). . . . . . . . 36

4.7 Evolution of densityof interstitialsin�311� defects(m1) andcomparisonto model.

Datafor 5 � 1013cm� 2 Si implantsat 40keV with annealsat 815� C and670� C. . . . 36

4.8 Predictionof dosedependenceof interstitialsin�311� defectsduringinitial stagesof

TED. Datafrom Poateet al. [46] for 40keV Si implantsand1hr annealat 670� C. . . 37

4.9 Energy dependenceof TED. Total broadeningof a deepB marker profile due toimplantationof 1 � 1014cm� 2 29Si with annealingat800� C for 60min. . . . . . . . 38

4.10 Timedependenceof TED. Totalbroadeningof aB markerprofiledueto implantationof 1 � 1014cm� 2 29Si at 80and200keV with annealingat 800� C. . . . . . . . . . . 38

4.11 Dosedependenceof TED. Totalbroadeningof aB markerprofiledueto 29Si implan-tationat200keV with annealingat800� C for 45min. . . . . . . . . . . . . . . . . 39

4.12 Comparisonof 1, 2 and3-momentmodelsfor evolutionof�311� defects.Both2 and

3-momentmodelscapturetheexponentialdecayof interstitialsin�311� defects. . . 40

4.13 Evolutionof densityof interstitialsin�311� defects(m1) andcomparisonto analytical

model(AKPM) and3-momentmodel(3KPM). . . . . . . . . . . . . . . . . . . . . 40

4.14 Evolutionof theaveragelengthof�311� defectsandcomparisonto analyticalmodel

(AKPM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.15 Comparisonof 1, 2 and3-momentmodelsfor TED predictions.The modelsdiffersignificantlyonly at shorttimebehavior, which this datacannotdistinguish. . . . . . 42

4.16 Comparisonof 1 and2-momentmodelsfor shorttimediffusivity enhancements.Datafrom Chao[6] for a5 � 1013cm� 2 50keV implantwith annealsat 750� C. . . . . . . 42

4.17 Comparisonof predictionsfor the dosedependenceof TED using“ � 1” and“ � n”models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1�311� defectanddislocationloop energy asa functionof defectsize. Theloopsare

morestableat largersizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2�311� defectanddislocationloopC n asa functionof defectsize. . . . . . . . . . . . 46

vii

Page 8: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

5.3 Evolutionof densityof interstitialsin extendeddefects(m1) andcomparisonto model.Datafrom Panet al. [42] for 1 � 1016cm� 2 Si implantat 50keV. . . . . . . . . . . . 47

5.4 Evolutionof averagedefectsize(m1 m0) for 1 � 1016cm� 2 Si implantsat50keV andcomparisonto datafrom Panet al. [42] . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Evolutionof densityof interstitialsin dislocationloops(m1) andcomparisontomodel.Datafor 1 � 1015cm� 2 Si implantat 50keV. . . . . . . . . . . . . . . . . . . . . . . 48

5.6 The γ1 function for dislocationloopsat asderived from ∆Gexcn for dislocationloops

anda log-normalclosureassumption. . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 The γ1 function for dislocationloopsat 1000� Cfor the AKPM. For m1 � ncrit, γ1 isidenticalto that for

�311� defects,exceptfor a multiplier to accountfor differences

in solid solubility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.8 Evolutionof totalnumberof interstitialsstoredin dislocationloopsand�311� defects

for theAKPM. Datafor 1 � 1016cm� 2 Si implantat 50keV with annealat850� C. . . 50

5.9 Evolutionof averagedefectsizefor 1 � 1016cm� 2 Si implantsat 50keV from AKPM. 51

5.10 Predictionof TEDusingFKPM for amorphizingandnon-amorphizingimplants.Datafor 50keV Si implantswith annealingat 750� C. . . . . . . . . . . . . . . . . . . . . 52

5.11 Distributionof C n for heterogeneousnucleation.NotethatC n will bedifferentfor thepureloopdistributionbasedonspatiallocation. . . . . . . . . . . . . . . . . . . . . 53

6.1 A structurein DOPDEESconsistsof regions,which eachhave a numberof fields(solutionvariables)anda grid structure.Eachfield is associatedwith anequationofthetype∂ f ∂t � ∑opi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 DOPDEEShandlesPDEsby discretizingthemusingfinite differencesandfeedingtheminto astandardODE solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Modelsimplementedin PMM andtheir interdependencies.Modulescaninherit pa-rametersfrom lower level modulesanddo consistency checks. . . . . . . . . . . . . 58

6.4 DOPDEESinput script for thesolvingtheequationsystemfor co-diffusionof boronandarsenic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 DOPDEESinput script for thesolvingthesameequationsystem,but with theFermimodelimplementedusingaPMM script. . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Theinitial dopantprofilesandfinal profilesaftera30min annealat 900� C accordingto simulationusingtheFermimodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.1 Divisionof thecapturecross-sectionof a�311� defectinto spheresof equalarea. . . 66

viii

Page 9: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 1

UnderstandingTED

1.1 Intr oduction

Oneof the most importantchallengesin VLSI technologytoday is to shrink device sizesto theirlimits, sinceboth the speedandthe yield (fraction of deviceswhich work) increaseasdevicesgetsmaller. However, as devices get smallerand junctionsget shallower, somephenomenabegin toget moreandmoreimportantandthe validity of currentprocesssimulatorsbecomesquestionable.Predictive processsimulationplaysa major rolesin today’s TechnologyCAD (TCAD), andhence,weneedimprovementsin currentprocesssimulators.

As onetries to fabricateshallower junctions,onemovesto smallerthermalbudgetsduring pro-cessingwith thehopeof having lessdiffusionof dopants.But, onecomponentof thediffusion,calledTransientEnhancedDiffusion(TED), remains.TED is thegreatlyenhanceddiffusionof dopantsinsiliconseenduringannealingof thedamagecreatedby theion implantationof thedopants.It is oftenthecasethat for today’s processingparametersTED is theonly significantcomponentof diffusion.Thus,theneedfor accuratemodelsthatcanaccountfor thebehavior seenduringTED emerges.

Ourwork aimsatobtainingaphysicalmodelthatcanbeappliedto thebehavior of dopantsunderTED conditions.AlthoughtherearenumerousarticlesonexperimentalobservationsconcerningTEDin theliterature[2, 9, 29, 30,31,36,40], little fundamentalmodelinghasbeendone[13, 19,34,45].Our work hasthefollowing uniquefeatures:� Our work relieson a physicalmodelof diffusion and interactionof dopantatomsandpoint

defects,ratherthanonanempiricalapproach.� Thework is basedon theevolutionof thesizedistributionof extendeddefectsduringTED.� It alsoincludesdeactivationof dopantsandincorporationof point defectsin dopantclustersorprecipitates.

Having accountedfor theprimaryphysicalprocessesthatareoccurringduringTED, ourgoalwasto arrive at a meaningful,andyet computationallyefficient model that can be incorporatedinto adiffusionequationsolver. It is noteworthy to mentionthata physicalmodelcanbeincorporatedintoany diffusionequationsolver, sinceit is independentof thepropertiesof thesolver, like thenumberof dimensions.

1

Page 10: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

1.2 Experimental data on TED

1.2.1 Early work on TED

Early work on TED concentratedon experimentalobservations,measuringtheextentof TED. Afterthe inventionof rapid thermalannealing(RTA), first observationsof TED werereported:even forveryshorttimesof annealingtherewasaconsiderableamountof dopantdiffusion.

Mostof theearlypapers[2, 36, 49] dealwith dopantimplantsinto silicon. A (high)doseof boron,phosphorusor arsenicwasimplantedinto silicon,andafteranRTA stepthefinal profilewasmeasuredto determinetheextentof TED. Angeluccietal. observedthatboronandphosphorusshow TED to alargeextent,but arsenicshows little TED, andantimony shows almostno TED [3, 2]. To show this,Angelucciformeduniform layersof thedopants,patternedthesample,createda damageby siliconimplantationandannealedat varioustimesandtemperatures.For B andP, theSi-implantedregionsshoweda largeincreasein junctiondepth,whereasfor As andSb,thedifferencewasminimal.

The enhancement/retardationof diffusion during oxidation,nitridation andoxynitridation indi-catesthatboronandphosphorusdiffuseprimarily via pairingwith interstitialsandantimony andar-senicdiffuseprimarily via pairingwith vacancies[18]. It hasbeenobservedthatboronandphospho-rus show enhanceddiffusion during oxidation,andduring oxidationinterstitial-typestackingfaultsgrow. Therefore,oxidationmustbe injecting interstitialsandboronandphosphorusmusthave aninterstitialdominateddiffusionmechanism.Similarly, antimony diffusionis enhancedduringnitrida-tion, but retardedduringoxidation.Thereforeantimony mustbediffusingprimarily via vacancies.

Combiningthe knowledgeon primary diffusionmechanismsof individual dopantswith the ob-servationson TED for differentdopants,we mayconcludethatTED is relatedto interstitialassisteddiffusion. Indeed,afteranion implantation,thereis a high super-saturationof interstitialsdueto thedamageof theimplant,andthus,this resultis quitelogical.

If welookatthetimebehavior of TED,wecanobservethattheenhancementis nearlyindependentof the ion-implantdamagefor initial times(Fig. 1.1); andafter someperiod(durationof TED) theenhancementgoesaway [2, 39], suchthatwe areleft with normaldiffusionwhich is many ordersofmagnitudesmaller. This meansthat for early stagesof TED the excessinterstitial concentrationisapproximatelyfixed,andaftersometime it dropsto its equilibriumvalue.

Anotherseeminglyanomalousobservationis that theamountof TED is largerat lower tempera-tures[36, 39], asdemonstratedin Fig. 1.2. This canbeexplainedin thefollowing fashion:Althoughthediffusionof dopantsis fasterat highertemperatures,thedurationof TED lastsshorterat highertemperatures,sothattheoverall junctionmovementgetssmallerasthetemperatureis increased.

Hence,thefollowing conclusionsarein order:� TED is causedby excessinterstitialconcentrationthatpersistsafterion implantation.� Theexcessinterstitial concentrationremainsapproximatelyfixedduringTED, andthendropsto its equilibriumvalue.� At higher temperaturesthe excessinterstitial concentrationdisappearsmore rapidly, i.e. thedurationof TED is shorter.

All of theabovequalitativeobservationswill helpusto build ourmodel.

2

Page 11: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

��|�0� |�

20|�

40|�

60|�

80|�

100� |�120

|�140

|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110

|�120 |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |� |�

Time (min)

5x1013cm-2

1x1014cm-2

2x1014cm-2

(D

t)1/

2 (n

m)

� � � � �

� � � � � � �

�� � �

Figure1.1: Time dependenceof TED. Implantationof 5 � 1013 – 2 � 1014cm� 2 Si at 200keV, anddiffusionat 800� C. Datafrom Packan[39].

��|�0� |�

10|�

20|�

30|�

40|�

50|�

60

|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70|�80

|�90

|�100

|�110 |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |�

Time (min)

800oC 850oC

(D

t)1/

2 (n

m)

� � � �

� � � � �

Figure1.2: Temperaturedependenceof TED. Implantationof 1 � 1014cm� 2 Si at 200keV, anddif-fusionat 800� Cand850� C. Datafrom Packan[39].

3

Page 12: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200� |�

220�|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110 |� |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |�

Energy (keV)

(D

t)1/

2 (n

m)

! !! ! !

" "" " "

# ## # #

Figure1.3: Energy dependenceof TED. Implantationof 1 � 1012cm� 2 Si at 10–200keV, anddiffu-sionat 800–1000� C. Datafrom Packan[39].

1.2.2 Separatingthe enhancementfr om the damagedose

In orderto gainmoreinsightinto themechanismof TED,experimentsdevotedto this topichavebeendone[30, 31,40, 44]. Sincein theexperimentsdiscussedin theprevioussectionit wasimpossibletoseparatetheenhancementfrom thedamagedose,researchersdesignedexperimentsfor this purpose.They put a tracerdoseof the dopant(usuallyboronor phosphorus)deepinto silicon. The damageis usuallycreatedby implantingsilicon into thesamesample.Thus,thedamagedoseis controlledindependentlyfrom the dopantdose. This enablesus to investigateregionswherethe materialisintrinsic,andthedopantis far from its solidsolubility limit.

Sinceamorphizationandsolid phaseepitaxialregrowth is a complex processitself, experimentsaimedat avoiding additionalunknownsusedimplantdosesbelow theamorphizationthreshold.Theamorphizationof silicon with silicon implantsoccursusuallyat dosesabove 2 � 1014cm� 2, whichalsodependson theimplantenergy.

Theexperimentsconfirmtheresultsmentionedin theabovesubsectionsandaddsomemoreinter-estingaspectsto thepicture.Firstof all, theamountof TED increaseswith increasingsilicon implantenergy [39] (Fig. 1.3. This is a bit surprising,since,althoughthe amountof total damagegener-atedincreaseswith implantenergy, thenet interstitialexcessis nearlyindependentfrom theimplantenergy, only the positionof thepeakof damagedependingon implantenergy. Looking at the timebehavior atdifferentimplantenergies,wecanconcludethattheinitial enhancementis aboutthesamein all cases,only thedurationof TED is longerfor deeperimplants[39].

Thereasonbehindthis observationis very simpleif oneassumestheprimarysink for theexcess

4

Page 13: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

$%&

|' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110 |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |� |� |� |� |� |� |� 800oC 900oC 1000oC

1012 1013 1014

Dose (cm) -2)

(D

t)1/

2 (n

m)

* * * * * *

+ + + + +, , , , ,

Figure1.4: Dosedependenceof TED. Implantationof 1 � 1012 – 1 � 1014cm� 2 Si at 200keV, anddiffusionat 800–1000� C. Datafrom Packan[39].

interstitialsto bethesurface:Thefartherawaythedamagefrom thesurfaceis, theharderit will betoget rid of it. Although interstitial-vacancy (I/V) recombinationmight play a role in beinga sink forinterstitials,otherexperimentsindicatethatit is fast,suchthatproductof concentrationof interstitialsandconcentrationof vacancies(CICV) dropsto its equilibriumvaluein theveryearlystagesof TED,which leavesusthesurfaceastheprimarysink.

Oneother interestingobservation is that the dependenceof TED on the silicon implant doseisnon-linear[40] (Fig. 1.4). Evenfor silicon implantdosesaslow as1 � 1012cm� 2 substantialdopantmovementis observed. This behavior is one of the biggestchallengesin TED and still no fullysatisfactoryexplanationhasbeenfound.

Anotherobservation is the fact that increasingthe dopantimplant dosedecreasesTED [31]. Itmight be expectedthat the dopants,too, are “using up” interstitials. It hasbeenobserved that aconstantratio of the marker layer doseto the damagedosegivesan almostconstantdiffusion en-hancement.

Hence,thefollowing conclusionsarein order:� Higherenergy damageimplantsresultin moreprofilemovement.� Surfaceis theprimarysink for excessinterstitials.� TED increasessub-linearlywith increasingdamagedose.� TED decreaseswith increasingdopantmaker layerdose.

5

Page 14: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

1.2.3 The sourceof the interstitials

As mentionedin section1.2.1,theexcessinterstitialconcentrationremainsapproximatelyfixeddur-ing TED, andthendropsto its equilibriumvalue. This tells us that theremustbea mechanismthatstoresthe interstitialscreatedby the implantdamageandthenreleasesthemduringTED, actingasa “source”of interstitials. In fact, if sucha meta-stablestatefor interstitialsdidn’t exist, they wouldrapidlydiffuseto thesurfaceandTED wouldbeover in averyshorttime.

Recentexperimentsrevealedthe actualsourceof the interstitialsduring TED [10, 17]. Eagle-shamet al. createdthe damageby implantingSi into Si andthenannealedthe samplesat varioustemperatures.They thenperformedplan-view andcrosssectionalTransmissionElectronMicroscopy(TEM) on thesamples.They clearlysaw thedefectsthatstoreexcessinterstitials.

Thesedefectsare the so-called“rod-like” or “�311� ” defects. The atomic structureof

�311�

defectshasbeenonly recentlyresolved[50]. It is believedthatinterstitialsform chainsalong � 110-directionandthesechainscometogetherto form a

�311� plane.Thisdefectcangetvery long(about

1µm) in the � 110- direction,henceis giventhename“rod-like” defects.

Thefactthatthetimeneededfor dissolutionof�311� defectsis equalto thedurationof TED [17]

is anexcellentindicatorthat�311� defectsarethesourceof theinterstitialsduringTED.

1.2.4 Interactions involving dislocation loopsand boron-interstitial clusters

Studiesconcentratingon formationandevolution of dislocationloopsgeneratedby Si implantationhave beenpublished[7, 35, 52]. It hasbeenobserved that the growth rateof dislocationloops isconstantin time, as it would be predictedby a bulk-diffusion mechanism.A quantitative model,which predictstheloopevolutioncorrectly, hasalsobeendeveloped[7].

Experimentsby the samegroupalsoreport interactionsbetween�311� defectsanddislocation

loops[33]. Resultsclearlyshow thatthedistributionof trappedinterstitialsbetween�311� defectsand

dislocationloopsis dependenton the implantdose.Interestingly, theamountof trappedinterstitialsin�311� defectsseemsto saturatearound2 � 1013cm� 2 at 700� C.

Implantationof boroninto silicon at very low dosesandenergiesproducesno visible�311� de-

fects,but substantialTED is observed [57]. The thresholdfor�311� formation is estimatedto be

5 � 1012cm� 2 for silicon implantsand1 � 1014cm� 2 for boronimplants.Thequestionwhetherbe-low thesedosestiny interstitialclustersexist or not remainsunanswered.

Recentobservationsby Cowernet al. [9, 10], suggestthat in systemswhereB is presentin largedoses,excessinterstitialshelp boronatomsto form boronclustersandarethemselvesincorporatedinto theseclusters(so-calledboroninterstitialclusters,BICs),therebyreducingthenumberof mobileboronatoms.AlthoughtheBICsarenotvisibleevenwith highresolutionTEM, thediffusionprofilesindicatethatboronis becomingimmobilewhereit is presentat highdoses.

6

Page 15: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 2

Modelsof Importance for TED

2.1 Coupleddiffusion of dopantsand point defects

SinceTED is animmediateresultof enhancementof dopantdiffusiondueto presenceof pointdefects(mainly interstitials) in excessof their equilibrium values(i.e. existenceof a point defectsuper-saturation),thefirst thingwewill investigateis theeffectof point defectsondopantdiffusion. In thissection,we presentvariousdiffusionmodelsanddiscusstheir applicabilityto TED. In thefollowingequations,B representsour dopant,I representsinterstitialsandV representsvacancies.C denotestheconcentrationandD denotesthediffusivity of a certainspeciesindicatedby thesubscript.

2.1.1 Fermi diffusion model

In the mostsimplistic view, dopantdiffusion canbe describedby the “Fermi” diffusion model, inwhich theeffectof point defectson dopantdiffusionis completelyignored:

∂CB

∂t �/.∇ 0 DB .∇CB (2.1)

whereDB is a functionof theFermilevel:

DB � D0B � D 1B 2 p ni 3 � D �B 2 n ni 3 (2.2)

This model is only valid underequilibrium conditionswhenboth interstitialsandvacanciesattheir equilibrium levels. Obviously, TED is a total deviation from this assumption,sowe can’t usethis modelunderTED conditions.However, diffusivity of dopantsis determinedusingthe“Fermi”model,so theparametersin themoresophisticateddiffusionmodelsshouldrelateto DB asdefinedabove.

2.1.2 Pair diffusion with a singlepoint defect

Dopantsareknown to bediffusingvia pairingwith pointdefects[18]. Wewantto build up thetheorythat leadsto thepair diffusionof dopants.For this purposewe startby assumingthedopantdiffuses

7

Page 16: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

only via pair formationwith interstitials:

B � I 4 BI (2.3)

In thischemicalreaction,theforwardratewill beproportionalto theCBCI product,andthereverseratewill beproportionalto CBI . Thenetforwardreactionratecanbewrittenas:

kBI 2 KBICBCI � CBI 3 (2.4)

whereKBI is theequilibriumconstantandhasunitsof cm3 (inverseconcentration).In equilibrium,CBI will beequalto KBICBCI. Thesystemresultsin thefollowing continuityequations:

∂CB

∂t � � kBI 2 KBICBCI � CBI 3∂CI

∂t � .∇ 0 DI .∇CI � kBI 2 KBICBCI � CBI 3 (2.5)

∂CBI

∂t � .∇ 0 DBI .∇CBI � kBI 2 KBICBCI � CBI 3If weassumethatpairingis fast(thatis kBI is very large),thenthepairingreactionwill alwaysbe

in equilibrium,andwecanreducethecontinuityequationsto two by eliminatingthetermsassociatedwith this reaction:

∂ 2 CB � CBI 3∂t � .∇ 0 DBI .∇CBI (2.6)

∂ 2 CI � CBI 3∂t � .∇ 0 DI .∇CI � .∇ 0 DBI .∇CBI

with CBI � KBICBCI. NotethatCB � CBI � CTB , thetotal concentrationof our dopantin silicon. This

is thevaluereportedby SecondaryIon MassSpectrometry(SIMS).SimilarlyCI � CBI � CTI , thetotal

interstitialconcentration.If weassumethatCBI 5 CB andCBI 5 CI, thenCB 6 CTB andCI 6 CT

I . Thisapproximationswill bevalid underequilibriumandoxidationenhanceddiffusion(OED) conditions.WecantheneliminateCBI from theaboveequations:

∂CB

∂t � .∇ 0 DBI .∇ 2 KBICBCI 3 (2.7)

∂CI

∂t � .∇ 0 DI .∇CI � .∇ 0 DBI .∇ 2 KBICBCI 3which canbemodifiedinto:

∂CB

∂t � .∇ 0 DBIKBIC I .∇ 2 CBCI

C I 3 (2.8)

∂CI

∂t � .∇ 0 DI .∇CI � .∇ 0 DBIKBIC I .∇ 2 CBCI

C I 3If CI � C I , thenthediffusivity of thedopantshouldbeequalto DB in the“Fermi” model. Thus

wecansaythatDB � DBIKBIC I .

∂CB

∂t � .∇ 0 DB

C I .∇ 2 CBCI 3 (2.9)

∂CI

∂t � .∇ 0 DI .∇CI � .∇ 0 DB

C I .∇ 2 CBCI 38

Page 17: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

It is evidentthatthedopantwill diffusenotonly becausethereis agradientin CB, but alsobecausethereis agradientin CI andviceversa.

2.1.3 Pair diffusion with both point defects

If weassumethatthedopantcanpair bothwith vacanciesandinterstitials,wecanwrite two possiblegroupsof reactions.In eachcasethe rightmostcolumngivesthe net forward rateof the reactions.First,wehavedopant/pointdefectpairingreactions:

B � I 4 BI kBI 2 KBICBCI � CBI 3B � V 4 BV kBV 2 KBVCBCV � CBV 3 (2.10)

And thenwehave thedirectandindirectrecombinationreactions:

I � V 4 /0 kR 2 CICV � C I C V 3BI � V 4 B kR 2 CBICV � KBICBC I C V 3BV � I 4 B kR 2 CBVCI � KBVCBC I C V 3

BI � BV 4 2B kR 2 CBICBV � KBIKBVC2BC I C V 3 (2.11)

Note that the rateconstantfor eachof the recombinationreactionsis assumedto be kR, whichis a simplification. In fact, if we assumediffusion limited processes,the reactionratesfor the fourreactionsshouldbe4πa 2 DI � DV 3 , 4πa 2 DBI � DV 3 , 4πa 2 DI � DBV 3 and4πa 2 DBI � DBV 3 , respectively.For thepurposesof this reactionset,we canassumethatDBI � DI andDBV � DV . This is not a badassumptionsincebothpoint defectsandpairsarefastdiffusers.This assumptionmakesall the fourratesequal.

If we assumethatpairing is fast,sothatCBI � KBICBCI andCBV � KBVCBCV, we maycombinetherecombinationreactionsinto asingle,effectiveone.Notethatnoneof therecombinationreactionswill effect total dopantconcentration(CT

B ):

kR 2 CICV � C I C V 37� kR 2 CICV � C I C V 3kR 2 CBICV � KBICBC I C V 37� kRKBICB 2 CICV � C I C V 3

kR 2 CBVCI � KBVCBC I C V 37� kRKBVCB 2 CICV � C I C V 3kR 2 CBICBV � KBIKBVC2

BC I C V 37� kRKBIKBVC2B 2 CICV � C I C V 3 (2.12)

which gives:keff

R � kR 2 1 � KBICB 3 2 1 � KBVCB 3 (2.13)

Thecontinuityequationsreduceto:

∂ 2 CB � CBI � CBV 3∂t � .∇ 0 DBI .∇CBI � .∇ 0 DBV .∇CBV

∂ 2 CI � CBI 3∂t � .∇ 0 DI .∇CI � .∇ 0 DBI .∇CBI � keff

R 2 CICV � C I C V 3 (2.14)

∂ 2 CV � CBV 3∂t � .∇ 0 DV .∇CV � .∇ 0 DBV .∇CBV � keff

R 2 CICV � C I C V 3with CBI � KBICBCI andCBV � KBVCBCV. Wecandenotethediffusivity of thedopantatomdueto theinterstitialcy mechanismunderequilibriumconditions(CI � C I ) by DI

B. Similarly, diffusivity of the

9

Page 18: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

dopantdueto thevacancy mechanismwhenCV � CV 8 canbedenotedby DVB. NotethatDI

B � DVB �

DB, the total diffusivity of thedopantunderequilibriumconditions.This givesthe following setofcontinuityequations:

∂CTB

∂t � .∇ 0 DIB .∇ 9

CBCI

C I : � .∇ 0 DVB .∇ 9

CBCV

C V :∂CT

I

∂t � .∇ 0 DI .∇CI � .∇ 0 DIB .∇ 9

CBCI

C I : � keffR 2 CICV � C I C V 3 (2.15)

∂CTV

∂t � .∇ 0 DV .∇CV � .∇ 0 DVB .∇ 9

CBCV

C V : � keffR 2 CICV � C I C V 3

2.1.4 Pair diffusion with a singlepoint defect,including Fermi level effects

Theprecedingsetof of equationsignoredthedependenceof dopantdiffusivity on Fermi level. Thisdependencestemsfrom thefactthatthenumberof point defectsavailablefor diffusionchangeswiththe Fermi level. We assumethat interstitialscanbe neutral,positively or negatively charged. Weassumethat the charging reactionsaremuchfasterthanpairing reactions,sincethey areelectronicreactionsandthe mobility of electronsis muchlarger thanthe mobility of dopants.Therefore,theelectronicreactionsarealwayscloseto equilibrium:

e�;� e1 4 /0 np � n2i

I0 � e� 4 I � CI < � KI < CI0 2 n ni 3I0 � e1 4 I 1 CI = � KI = CI0 2 p ni 3 (2.16)

Eachof thesecharged interstitialscanpair with dopants. Again, we assumethat pairing is inequilibrium:

B � � I0 4 BI0 CBI0 � KBI0CBCI0

B � � I 1 4 BI 1 CBI = � KBI = CB 2 KI = CI0 2 p ni 3>3B � � I � 4 BI � CBI < � KBI < CB 2 KI < CI0 2 n ni 3>3 (2.17)

Thenotationabove maybeconfusing,but is laid out asfollows: CBI0 is theconcentrationof theresultingpair from thereactionof anionizeddopantandI0. If thedopantis anacceptor, it will carrya netnegativecharge in its ionizedstate,makingBI0 negatively charged. If thedopantis a donor, itwill carryanetpositivechargein its ionizedstate,makingBI0 positively charged.

Notethedopantis anacceptor(carryinganegativecharge)it is veryunlikely thatit will pairwitha negatively chargedinterstitial dueto repulsion,makingCBI < � 0. A similar statementis true fordonors.But we keeptheCBI < termto make theanalysismoregeneralandassumethatKBI < � 0 foracceptorsandthatKBI = � 0 for donors.

Notethatdueto thechargeof ions,thecontinuityequationwill notonly haveadiffusioncompo-nent( .Jdiff), but alsoa drift component( .Jdrift). Thedrift termsarisebecausethechargedspeciescanalsomovebecauseof forcesof theelectricfield, createdby thegradientof electronconcentrationinthesubstrate.Thetotalflux of pointdefectsandpairswill beequalto thesumof fluxesof eachchargestate:

10

Page 19: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

∂CTB

∂t � � .∇ 0 1 1

∑i ? � 1

2 .JdiffBIi � .Jdrift

BI i 3 (2.18)

∂CTI

∂t � � .∇ 0 1 1

∑i ? � 1

2 .JdiffI i � .Jdrift

I i 3 � .∇ 0 1 1

∑i ? � 1

2 .JdiffBIi � .Jdrift

BI i 3Next wedothegenericderivationof .Jdiff

BI i� .Jdrift

BI i. Assumethatthedopantis anacceptor, andhence

carriesa chargeof � q. If thedopantwasa donor, it would carrya chargeof � q. This will make thecharge on a BIi pair 2 i � z3 q, wherez � � 1 if thedopantis a donorandz � � 1 if thedopantis anacceptor. Then,we canwrite thediffusiontermas:.Jdiff

BI i � � DBI i .∇CBIi� � DBI i .∇ 2 KBIiCB 2 KI iCI0 2 p ni 3 i 3>3� � DBI i KBI i KI i .∇ 2 CBCI0 2 p ni 3 i 3� � DiB C I0 @ 2 p ni 3 i .∇ 2 CBCI0 3 � CBCI0 .∇ 2 p ni 3 i A� � DiB C I0 @ 2 p ni 3 i .∇ 2 CBCI0 3 � CBCI0i 2 p ni 3 i � 1 .∇ 2 p ni 3 A (2.19)

And thedrift termbecomes: .JdriftBI i � µBI i 2 i � z3 q .B CBI i� DBI i 2 q kT 3 2 i � z3 .B CBIi (2.20)

whereµ � D kT is the mobility accordingto the Einsteinrelationshipand .B is the electric fieldvector. The electricfield canbe calculatedfrom the gradientof the potential,which in turn canbefoundfrom thelocalcarrierconcentration,givenby aBoltzmanndistribution(Ψ denotestheintrinsicpotential):

n � ni exp

kT q : (2.21).B � � .∇Ψ� � .∇ 2 kT qln 2 n ni 3>3� .∇ 2 kT qln 2 p ni 3>3 (2.22).JdriftBIi � DBIi 2 i � 13 CBIi .∇ ln 2 p ni 3� DBIi 2 i � 13 2 KBIiCB 2 KI iCI0 2 p ni 3 i 3 2 ni DCE3F.∇ 2 CE ni 3� DBIi KBI i KI i 2 i � 13 CBCI0 2 p ni 3 i � 1 .∇ 2 p ni 3� Di

B C I0 2 i � 13 CBCI0 2 p ni 3 i � 1 .∇ 2 p ni 3 (2.23)

11

Page 20: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Adding thediffusionanddrift termsweget:.JBIi � � DiB C I0 @ 2 p ni 3 i .∇ 2 CBCI0 3 � CBCI0 2 p ni 3 i � 1 .∇ 2 p ni 3 A� � DiB C I0 2 p ni 3 i @ .∇ 2 CBCI0 3 � CBCI0 .∇ ln 2 p ni 3 A (2.24)

Summingoverall thechargestates,wewill get:.JBI � 1 1

∑i ? � 1

.JBI i � � 2 D0B � D 1B 2 p ni 3 � D �B 2 n ni 3G3

C I0 @ .∇ 2 CBCI0 3 � CBCI0 .∇ ln 2 p ni 3 A (2.25)

For donors,weneedto replaceln 2 p ni 3 with ln 2 n ni 3 . It mayreadilybeobservedthatunderequilib-rium conditions(CI0 � C I0), this reducesto “Fermi model” (Eq.2.1).

If we carry out a similar analysisfor .JI i we canseethat the term with the gradientof 2 p ni 3 isbeingcanceledby thedrift term:.Jdiff

I i � � DI i .∇CI i� � DI i .∇ 2 KI iCI0 2 p ni 3 i 3� � DI i KI i .∇ 2 CI0 2 p ni 3 i 3� � DI i KI i @ 2 p ni 3 i .∇CI0 � CI0 .∇ 2 p ni 3 i A� � DI i KI i @ 2 p ni 3 i .∇CI0 � CI0i 2 p ni 3 i � 1 .∇ 2 p ni 3 A (2.26).JdriftI i � DI i 2 q kT 3 i .B CI i� DI i iCI i .∇ ln 2 p ni 3� DI i i 2 KI iCI0 2 p ni 3 i 3 2 ni p3 .∇ 2 p ni 3� DI i KI i iCI0 2 p ni 3 i � 1 .∇ 2 p ni 3 (2.27).JI i � .Jdiff

I i � .JdriftI i � � DI i KI i 2 p ni 3 i .∇CI0 (2.28).JI � 1 1

∑i ? � 1

.JI i � � DI0 2 1 � KI = 2 p ni 3 � K �I 2 n ni 3>3 .∇CI0 (2.29)

Thelastequationwasobtainedby thesimplifying assumptionthatinterstitialsat differentchargestatesdiffuseequallyfast,that is DI0 � DI = � DI < . Thereis no experimentalevidenceto show thatthey diffuseat differentspeeds.

2.1.5 Pair diffusion with both point defects,including Fermi level effects

We will merelystatethe resultshere. Derivation is analogousto the previous sections. The onlypoint to payattentionhereis thatthefractionalinterstitialcy componentof diffusionmaychangewithFermi level. For exampleit is known that phosphorusdiffusesprimarily via interstitialswhenit isintrinsic, but it diffusesprimarily via vacancieswhenpresentin large concentrations[11]. We canhandlethis situationby having separatecomponentslike DI =

B , which standfor “dif fusivity of borondueto thepositively chargedinterstitials.” Wemaywrite:

12

Page 21: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

DI0B � DV0

B � D0B

DI =B � DV =

B � D 1B (2.30)

DI0B � DI =

B

D0B � D 1B � f intr

I

where f intrI is the fractionalinterstitialcy componentof diffusionfor intrinsic boron. That is, f intr

I isthe fraction of diffusivity causedby the interstitialsfor intrinsic conditions. Of course,thesethreeequationsarenot enoughto determinethe four unknowns DI0

B , DV0

B , DI =B andDV =

B , so, anotheras-sumptionmustbemadebasedon theexperimentaldatafor thedopant.For example,we canassumethatborondiffusesalwaysthroughinterstitialcy mechanismat all Fermilevels.Wecanthendefine:

DIB � DI0

B � DI =B

9pni : � DI <

B

9nni :

DVB � DV0

B � DV =B

9pni : � DV <

B

9nni : (2.31)

This resultsin thefollowing systemof equations:

∂CTB

∂t � � .∇ .JBI � .∇ .JBV

∂CTI

∂t � � .∇ .JI � .∇ .JBI � keffR 2 CI0CV0 � C I0C V0 3 (2.32)

∂CTV

∂t � � .∇ .JV � .∇ .JBV � keffR 2 CI0CV0 � C I0C V0 3

where .JBI � � DIB C I0 @ .∇ 2 CBCI0 3 � CBCI0 .∇ ln 2 p ni 3 A.JBV � � DVB C V0 @ .∇ 2 CBCV0 3 � CBCV0 .∇ ln 2 p ni 3 A.JI � � DI0χI .∇CI0 (2.33).JV � � DV0χV .∇CV0

keffR � kR 2 χI � πICB 3 2 χV � πVCB 3

with

χI � 1 � KI = 9 pni : � KI < 9 n

ni :χV � 1 � KV = 9 p

ni : � KV < 9 nni : (2.34)

πI � KBI0 � KBI = KI = 9 pni : � KBI < KI < 9 n

ni :πV � KBV0 � KBV = KV = 9 p

ni : � KBV < KV < 9 nni :

13

Page 22: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

If CBI 5 CB andCBV 5 CB, onecanassumethatCTB � CB andwrite:

CTI � 2 χI � πICB 3 CI0

CTV � 2 χV � πVCB 3 CV0 (2.35)

A noteabouttherecombinationratekeffR : Actually therateis toohighasgivenhere,becauseit also

includesrecombinationtermsthatactuallywould not bepresent.For example,anV � andI � wouldbe very unwilling to recombinebecausethey would repeleachother. If the dopantis an acceptor,we would have 4 suchpairs: I � andV � ; I 1 andV 1 , BI0 andV � ; BV0 and I � (Note that BI0 isactuallynegatively charged). For anacceptor, BI � andBV � areunlikely to exists,sowe don’t haveto considerthem.

Thus we have only 4 extra pairs out of the 25 pairs that can recombinewith eachother. Theerrorof includingthese4 pairsin theexpressionfor recombinationis oftennegligible, andmakestheequationsmuchsimpler. If moreaccuracy is desired,thefollowing mustbesubtractedfrom thekeff

Rabove:

kR CKI � KV � 2 n ni 3 2 � KI = KV = 2 p ni 3 2 � KBI0KV � 2 n ni 3 � KBV0KI � 2 n ni 3IH (2.36)

2.1.6 Fivestreammodel

If we don’t make theassumptionthatpairingis fast,we shouldkeepall five variables.We cancarryouta similaranalysisto eliminatethecharging reactions.Theresultingsystemcanbeexpressedas:

∂CB

∂t � � RBI � RBV � RBI 1 V � RBV 1 I � 2RBI 1 BV

∂CBI

∂t � � .∇ .JBI � RBI � RBI 1 V � RBI 1 BV

∂CBV

∂t � � .∇ .JBV � RBV � RBV 1 I � RBI 1 BV (2.37)

∂CTI

∂t � � .∇ .JI � RBI � RI 1 V

∂CTV

∂t � � .∇ .JV � RBV � RI 1 V

where .JBI � � DIB

C I0 J .∇ 9CBI

πI : � CBI

πI.∇ ln

9pni :LK.JBV � � DV

B

C V0 J .∇ 9CBV

πV : � CBV

πV.∇ ln

9pni :LK

RBI � kBI CCBCI � χI

πICBI H

RBV � kBV CCBCV � χI

πICBV H (2.38)

RBI 1 V � kR 2 CBICV � C I0C V0πIχVCB 314

Page 23: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

RBV 1 I � kR 2 CBVCI � C I0C V0πVχICB 3RBV 1 BI � kR 2 CBVCBI � C I0C V0πIπVC2

B 3andothervariableshavesamemeaningsasin theprevioussection.

2.2 Initial conditions: Damagecreatedby ion implantation

To developmodelsfor TED,weneedto haveagoodunderstandingof thedamagetheion implantationprocesscreates.Sincethereis no accurateway of measuringthedamageprofile experimentally, wehaveto rely onMonte-Carlosimulationsfor calculationof theimplantdamage.In thiswork, weusedtheMonte-Carloion implantsimulatorsTRIMCSR[4, 53] andUT-Marlowe[51].

Thedamagecreationprocesscanbesummarizedasfollows: As anion with high kinetic energyentersthe silicon substrate,it undergoesa seriesof collisionswith a numberof silicon atoms. Thekinetic energy of the ion is high enoughto displacetheseatomsfrom their original sites,leaving avacancy behind.Thesesecondaryionsalsocollide with othersilicon atoms,etc.,creatinga collisioncascade.Oneimplantedion caneasilycreatethousandsof Frenkel pairs(interstitial-vacancy pairs),dependingon the energy andmassof the implantedion. If the createddamageis high enough,thesubstratewill becomeamorphous.

2.2.1 Non-amorphizing implants

We first want to investigatenon-amorphizingimplants. In thesetypesof implants,the doseof theimplantedion is small enoughthat the createddamagedoesn’t reachthe amorphizationthreshold.Thus,thesubstratemaintainsit crystallinenature,althoughthereis extensive damagein thecrystalstructure.

TRIMCSRassumesthatthestructureis amorphousto begin with. Therefore,it ignoresany chan-nelingthatmayoccurdueto thecrystallinenatureof thesubstrate.On theotherhand,UT-Marlowetakesthe crystalstructureof the substrateinto accountandcanpredict the tilt androtationdepen-denceof thetail of theprofile. Thedifferencebetweenthetwo simulatorsis obviousasrepresentedinFigure2.1.Eventhoughtheimplanthasbeenperformedat7o tilt and45o rotationto minimizechan-neling,still substantialchannelingoccurs.Therefore,UT-Marlowewill beourchoiceof simulatorfornon-amorphizingimplants.

Looking at the damagecreatedby the ion implantationprocess,we canseethat the numberofFrenkel pairsgeneratedis muchhigher than the numberof implantedions (Fig. 2.2). In fact, theinterstitial andvacancy curvesarealmostindistinguishablefrom eachother, but thereis a vacancy-rich regionnearthesurfaceandaninterstitial-richregiondeeperin thesubstrate.Thisstemsfrom thefactthattheimplantationdrivessomesiliconatomsdeeperinto thesubstrate.

We know that even during the implantationprocessthe Frenkel pairswill recombine.After anextremelysmallthermalbudget(1msat600� C), wewouldexpectthatmostFrenkel pairswouldhaverecombinedbecausethesystemis sofarawayfrom equilibrium.Thiswould leaveuswith anet“ � 1”damage,whereeachincomingion displacesonesilicon atom,suchthatthenetI � V doseis equaltotheimplantdose.

15

Page 24: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

TRIMCSR UT-Marlowe

|�0� |�

500� |�1000

|�1500

|�2000

|�2500

|�3000

|�3500

|� |M |M |M |M |M

|M |M |M |� |M |M |M

|M |M |M |M |M |� |M |M

|M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |� |� |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Depth (A)O1015

1016

1017

1018

1019

Con

cent

ratio

n (c

mP -3 )

Figure2.1: Comparisonof UT-Marlowe andTRIMCSR simulationsof a 40keV 5 � 1013cm� 2 Siimplantat7o tilt and45o rotation.

Total Interstitials Total Vacancies Net Interstitials Net Vacancies

|�0.00� |�

0.02� |�0.04� |�

0.06� |�0.08� |�

0.10|�

0.12

|� |M |M |M |M |M |M |M |M |�|M |M |M |M |M |M |M |M |� |M |M

|M |M |M |M |M |M |� |M |M |M |M |M |M|M |M |� |M |M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M |� |� |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

1016

1017

1018

1019

1020

1021

1022

Depth (Q µm)

Con

cent

ratio

n (c

mP -3 )

Figure2.2: Total andnetdamagecreatedby a 40keV 5 � 1013cm� 2 Si implant. MonteCarlosimu-lationswith TRIMCSR.

16

Page 25: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Implanted ions Total interstitials Total vacancies Recombined I-V

|�0� |�

500� |�1000

|�1500

|�2000

|�2500

|�3000

|�3500

|� |M |M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |M |M |M

|M |M |M |M |M |� |M |M |M |M |M |M

|M |M |� |M |M |M |� |� |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N

Depth (A)O1016

1017

1018

1019

1020

1021

Con

cent

ratio

n (c

mP -3 )

Figure2.3: Damagecreatedby a40keV 5 � 1013cm� 2 Si implantbeforeandafterveryshortanneal-ing.

However, I/V recombinationis not the only processoccurringduring the post implant phase.Interstitialsandandvacanciescanalsodiffuseandrecombineat thesurface. Ab-initio calculationsshow thatthediffusivity of vacanciesis higherthanthediffusivity of interstitials,particularlyat lowertemperatures.Thuswe would expect the vacanciesin the vacancy-rich region nearthe surfacetorecombineat thesurfacemorereadilythanthey wouldrecombinewith aninterstitial.To demonstratethis effect, we have performedsimulationsassumingthatDV R DI andbothsurfacerecombinationandI/V recombinationarediffusionlimited processes.Figure2.3shows thatwe indeedgeta regionnearthesurfacewherethenet I � V concentrationis higherthanpredictedby a “ � 1” approach,andthenetI � V doseis largerthan“ � 1”.

This effect is, however, dosedependent.If we have a relatively high dose,thereis a higherprob-ability thata vacancy will first find aninterstitialandrecombinewith it. If we have a relatively lowdose,thereis a higherchancethat thevacancy will hit thesurfacebeforefinding anotherinterstitial.Therefore,we would expectthenet I � V doseafter recombinationto be increasingwith decreasingimplantdose.We have run a seriesof simulationsto affirm this perception,andindeedwe seethatthe“plus factor” canbeashighas10 (Fig. 2.4).

Notethattherearealsootherphenomenaoccurringduringtheimplantationprocess,suchasamor-phouspocket formation,whichmight increasethemagnitudeof the“ � n” effect. Formationof amor-phouspocketsconfinestheinterstitialsandvacanciesto arelativelysmallregionin space.If avacancymanagesto escapetheamorphouspocket, it hasa fairly highchanceof hitting thesurfaceratherthananotheramorphouspocket. We believe that we have taken this effect into accountto someextendby assumingDI � 0 in our simulations,but clearly atomisticsimulationsarerequiredto accurately

17

Page 26: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0

|�1

|�2

|�3

|�4

|�5

|�6

|�7

|�8

|�9

|�10

|�11 |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |� |� |� |� |� |� |� P

lus

fact

or S

1012 1013 10� 14

Dose (cm) -3)

TT

T T T T TFigure 2.4: Net damage(I � V) dosedivided by implant dose(plus factor) for a seriesof non-amorphizing40keV Si implants.

estimatetheseeffects.

2.2.2 Amorphizing implants

Thepictureis slightlydifferentfor amorphizingimplants.If thesubstrateis amorphizedupto acertaindepth(theamorphous/crystallineinterface),this portionwill regrow epitaxially, giving a defectfreeregion aroundthepeakof the implant,andleaving anexcessinterstitial profile only nearthe tail oftheprofile (Fig. 2.5).This interstitialrich region is alsocalledtheendof range(EOR)regionandthisis wherethedislocationloopsform.

Note that the net damagedoseis much lessthan the implant dose,sincemuchof the damagegoesaway duringsolid phaseepitaxialregrowth. Therefore,TED from anamorphizingimplantcanactuallybe lessthanfrom a non-amorphizingimplant. However, dislocationloops,which areverystable,have a negative impacton thedevice characteristics:They arein themiddleof thedepletionregion,andthereforeincreasetheleakagecurrentof thejunction.

Anotherimportantdifferencefromthenon-amorphizingimplantsis thattheamorphizationthresh-old hasnouniquevalue.Amorphizationthresholdis thetotal vacancy concentrationabovewhich thesubstrateis assumedto beamorphized.It is usuallyexpressedasapercentageof thesiliconatomcon-centration(5 � 1022cm� 3). Studieshave shown that this thresholddependson implant temperatureandimplantdoserate,sincebothof thesefactorsaffect thedamageaccumulationprocess[47].

Moreover, thenetI � V doseis averystrongfunctionof theamorphous/crystalline(a/c)interface.

18

Page 27: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Total interstitials Total vacancies

Net I-V

|�0� |�

200� |�400� |�

600� |�800� |�

1000|�

1200|�

1400|�

1600|�

1800

|� |M |M |M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |M |M |M |M |M

|M |M |M |� |M |M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M |� |M |M |M

|M |M |M |M |M |� |M |� |� |� |� |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N

Depth (A)O

amorphous crystalline

1017

1018

1019

1020

1021

1022

1023

Con

cent

ratio

n (c

mP -3 )

Figure2.5: TRIMCSR simulationof total andnet implant damagefor a 50keV 1 � 1015cm� 2 Siimplant.Amorphizationthresholdhasbeenassumedto be10%.

Under conditionsof Fig. 2.5, a 30A changein the a/c interfacewould changethe net I � V doseby 25%. Even if thea/c interfaceis measuredexperimentally, theendof rangedamagestill cannotbe determinedaccuratelybecauseof the sensitivity of the net I � V doseon the locationof the a/cinterface. Therefore,it is important to have anothermeasure,suchas the numberof interstitialstrappedin dislocationloops,to modelthenetdamageunderamorphizingconditions.

2.3 Other parameters

2.3.1 Point defectproperties

Oneof themostimportantparametersfor TED is point defectproperties,especiallythoseof intersti-tials. We tried to useasaccuratevaluesaspossible,but sinceno directmeasurementof point defectpropertiescanbeperformed,all parametervaluesweobtainin oursimulationshaveto bere-calibratedwhena differentsetof point defectpropertiesis used.In this section,we investigatetherelationshipbetweenpoint defectpropertiesandmodelingresults.

The most importantparameteris the self diffusion coefficient via interstitials (DIC I product).The value of this productdirectly effects simulationresults. More precisely, DIC I and U Dt (thejunctionmovementduring TED) areinverselyproportionalto eachother. Luckily, theDIC I canberelatively well determinedfrom experiments.However, themostreliableexperimentsfor determiningDIC I aremetaldiffusionexperiments,whichareusuallyperformedat highertemperaturesthanTED

19

Page 28: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

conditions.Therefore,a smallerror in theactivationenergy of DIC I mayleadto a big error in TEDpredictions.

The valuesof diffusivity of interstitials(DI) andequilibrium concentrationof interstitials(C I )individually don’t affect TED resultsdirectly, aslong astheir productis constant.The durationofTED is controlledby theflux of interstitialstowardsthesurface,which is directlyproportionalto theratio of solid solubility of interstitial (Css) to C I . Thus,aslong astheDIC I productandCss C I ratiois constant,theresultswill remainunchanged.

The vacancy parametersdon’t affect the simulationresultsboth for TED and extendeddefectevolution,exceptfor the“+n” effect describedin section2.2.1.Evenfor thateffect, theactualvalueof DV is irrelevant;theonly thing thatis importantis DV R DI.

In summary, the primarily relevant point defectpropertiesareDIC I andCss C I . In this thesis,point defectvaluesfrom metaldiffusionareused[5, 58] consistently. I/V recombinationis notasig-nificantprocessfor TED (exceptfor thefirst µs); thereforewe canassumefor simplificationthatit isdiffusionlimited. Wehavealsoassumedthatinterstitialprecipitation(formationof extendeddefects)is alsodiffusionlimited. This assumptionis necessaryif we assumefastsurfacerecombination(seenext section),in orderto ensureasteadyinterstitialflux towardsthesurface.

2.3.2 Surfacerecombination

UnderTED conditions,the surfaceis the main sink for interstitials. Databy Eagleshamet al. [17]suggesta surfacerecombinationratethat is decreasingwith time, sincetherateat which interstitialsareconsumedis decreasingapproximatelyexponentiallywith time. Otherexperimentalobservationsalsoindicatethat a fasteffective interstitial surfaceregrowth exists for small thermalbudgets,witha muchslower onefor longertimesandhighertemperatures[15]. Thus,ratherthanusinga simplemodel with constantsurfacerecombinationrate, we usedthe film segregation model of AgarwalandDunham[1] to accountfor surfaceregrowth. In thismodel,theprimarymechanismby which thesurfaceconsumesinterstitialsis notsurfacerecombination,but segregationof interstitialsto theoxidelayer.

However, after performinga seriesof simulations,we find that the surfacehasno strongeffecton the results,aslong asit hasa fastrecombinationrate. The main reasonbehindthe exponentialdecayin Eaglesham’s datais Ostwald ripeningprocess.We find that usinga fast,constantsurfacerecombinationmodelgivesalmostexactly thesameresultsasthefilm segregationmodel.Therefore,weswitchedto aconstantsurfacerecombinationmodelwhereweassumedthattheratioof thesurfacerecombinationvelocityandinterstitialdiffusivity is V 0 � 1A � 1.

20

Page 29: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 3

Modeling ExtendedDefectswith KineticPrecipitation Model

3.1 Intr oduction

As mentionedin section1.2.3,TransmissionElectronMicroscopy (TEM) observations[10, 17] showthat

�311� defects(also known as “rod-like defects”) form, grow and eventually dissolve during

annealingof ion implantedsamples.Initially, thereis ahugedriving forceto form�311� defects,such

that, for sub-amorphizingsilicon implants,almostthe whole net excessinterstitial doseaggregatesinto theseextendeddefectswithin a very short period of time (less than 5s at 815� C) [17]. Asannealingcontinues,thesedefectsundergo Ostwald ripening: Their averagesizeincreasesandtheirnumberdecreases.The total numberof interstitialsboundto thesedefectsdecreasesapproximatelyexponentially, andeventually, all

�311� defectsdissolveanddisappear. It hasbeenreportedthat the

time scalefor their dissolutionis aboutthesameasthetime scaleof TED [10]. Theseobservationsstronglysuggestthat

�311� defectsplay a centralrole underTED conditions.If we couldmodelthe

evolutionof thesedefectscorrectly, weshouldbeableto predictTED.

In general,nucleationandgrowth processesplay a critical role in a largerangeof materialspro-cessingsystems.Classicalmodelingapproachesdivide suchprocessesinto two discretesteps,withnucleationandgrowth being modeledusing fundamentallydifferentassumptions,eachvalid onlyunderidealizedconditions.Thus,althoughtheseapproachesarevery usefulfor understandingqual-itative behavior, they areunsuitablein many casesfor thedevelopmentof quantitative models,par-ticularly undercomplex annealingconditions(e.g.,multi-stepanneals).Noting thepower of moderncomputersto solve complex systemsof coupleddifferentialequations,we have developeda unifiedapproachto modelingof nucleationandgrowth processeswhichextendsnucleationtheoryto includethebehavior of supercriticalaswell assub-criticalaggregates.

3.2 Full Kinetic Precipitation Model (FKPM)

The major challengein modelingthe evolution of precipitatesandextendeddefectsis the fact thatdifferentsizeddefectshave very differentproperties.TheFull Kinetic PrecipitationModel (FKPM)[14] treatsprecipitatesof differentsizesasindependentspecies( fn) andaccountsfor theirkineticsby

21

Page 30: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

I 1 I n

n+1n2

A

AA

Figure3.1: Growth anddissolutionof precipitatesby attachmentandemissionof soluteatoms.

consideringtheattachmentandemissionof soluteatoms(Fig 3.1).

Thedriving forcefor precipitationis theminimizationof thefreeenergy of thesystem,wherethefreeenergy of asizen extendeddefectis givenby:

∆Gn � � nkT lnCA

Css� ∆Gexc

n (3.1)

Here,CA denotesthesoluteconcentration,Css is thesolid solubility and∆Gexcn is theexcesssurface

andstrainenergy of a sizen extendeddefect.We usuallyassumethat∆Gexcn hasa polynomialform,

sinceany functioncanbeapproximatedby a polynomial:

∆Gexcn � a0nβ0 � a1nβ1 � a2nβ2 (3.2)

with β2 � β1 � β0 � 1. The largestexponent(β0) controlsthe asymptoticbehavior for large sizes.Theoreticalcalculations[43] for thefunctionalform of ∆Gexc

n show thatit is reasonableto assumethatβ0 � 0 � 5 since

�311� defectsareplanardefects.Weusedβ1 � � 0 � 2 W β1 � � 1 ascorrectionsfor small

sizebehavior. a0, a1 anda2 remainastemperatureindependentfitting parameters.

The main reactionin the systemis the attachmentand emissionof soluteatomsto and fromprecipitates. If In denotesthe net growth rate from size n to n � 1, we may write the followingequation:

In �/X Dλn 2 CA fn � C n fn1 1 3 for n V 2Dλ1 Y C2

A � C 1 f2 Z for n � 1(3.3)

Note that I1 is differentfrom otherterms,becauseit representsthe ratefor formationof thedefectsby reactionof two interstitials.

Thegrowth rateof precipitatesis written in theform Dλn, whereλn incorporateseffectsof bothdiffusionto theprecipitate/siliconinterfaceandthereactionat theinterface.λn is calculatedbasedonsolvingthesteady-statediffusionequationin theneighborhoodof a precipitate,takingits shapeintoaccount(seeAppendixA). C n representsthe interstitial concentrationat which therewould be nochangein freeenergy for a precipitategrowing from sizen to sizen � 1. C n canbefoundby setting∆Gn � ∆Gn1 1 andsolvingfor CA.

C n � Cssexp

9∆Gexc

n1 1 � ∆Gexcn

kT : (3.4)

Theevolution of thesizedistribution fn is givenby thedifferencebetweenthenet rateat whichdefectsgrow from sizen � 1 to n (In � 1) andthenetrateof growth from sizen to n � 1 (In). Sincethe

22

Page 31: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

fundamentalgrowth processis the incorporationof a soluteatom,the total changein CA includesatermfrom eachgrowth reaction,giving asumover In:

∂ fn∂t � In � 1 � In (3.5)

∂CA

∂t � � 2I1 � ∞

∑n? 2

In (3.6)

3.3 ReducedKinetic Precipitation Models (RKPM)

TheFull Kinetic PrecipitationModeladdsanextradimension,namelyprecipitatesize,to theproblembeingsolved. Even if onelimits thenumberof precipitatesizesthatwill besolved for, thenumberof variablesis still very largefor efficient solutionof theequationsystem.If thesystemhasmultiplespatialdimensions,thenumberof solutionvariablesbecomesprohibitively large.

To minimizethecomputationalbudget,wehavedevelopedamoreefficientversionof thismodel,basedonthework of ClejanandDunham[8]. Insteadof calculatingall the fn, onecalculatesonly thelowestmomentsof thedistribution(mi � ∑∞

n? 2ni fn, wherei � 0 W 1 W 2 WG�>�>� ). This transformsthesystemof equationsto thefollowing set:

∂mi

∂t � 2i I1 � ∞

∑n? 2 [ 2 n � 13 i � ni \ In (3.7)

Note that thesumsover the In canall bewritten in termsof sumsover fn, nfn, etc. Hence,theycanbecalculatedfrom themomentsif momentsareusedto describethedistribution. This reducesthesystemof equationsto besolvedto:

∂mi

∂t � DA [ 2iλ1C2A � m0CAγ 1i � m0Cssγ �i \

γ 1i � ∞

∑n? 2 [ 2 n � 13 i � ni \ λn fn (3.8)

γ �i � λ1C 1 f2 � ∞

∑n? 2 [ ni � 2 n � 13 i \ λn � 1C n � 1 fn

whereC n � C n Css and fn � fn m0.

Sinceno finite numberof momentscanfully describea full distribution, we needa closureas-sumption,which is anassumptionabouttheform of thedistribution, fn � f 2 n W zi 3 . Thezi areparame-tersof thedistributionwhichcanbedeterminedfrom themoments.Thenumberof momentsweneedto keeptrackof equalsthenumberof parametersin thedistribution function.This resultsin differentversionsof RKPM:

3.3.1 3-momentmodel (3KPM)

If nothingis known aboutthedistribution of extendeddefectsover sizespace,it is logical to useanenergy minimizing closureassumption[8]. Theenergy minimizing closureassumptionassumesthat

23

Page 32: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

thedistribution will be theonethatminimizesthe free energy, given the moments.It canbe foundfrom constrainedminimizationof the freeenergy (∆Gn). This resultsin the following (normalized)distributionwith threeparameters:

fn � z0exp Y � ∆Gexcn kT � z1n � z2n2 Z (3.9)

Theresultingsystemis a3-momentsystem(3KPM):

∂m0

∂t � D [ λ1C2A � m0Cssγ �0 \

∂m1

∂t � D [ 2λ1C2A � m0CAγ 11 � m0Cssγ �1 \ (3.10)

∂m2

∂t � D [ 4λ1C2A � m0CAγ 12 � m0Cssγ �2 \

∂CA

∂t � � ∂m1

∂t

with

γ �0 � λ1C 1 f2

γ 11 � ∞

∑n? 2

λn fn

γ �1 � λ1C 1 f2 � ∞

∑n? 2

λn � 1C n � 1 fn (3.11)

γ 12 � ∞

∑n? 2

2 2n � 13 λn fn

γ �2 � λ1C 1 f2 � ∞

∑n? 2

2 2n � 13 λn � 1C n � 1 fn

For the3-momentmodel(3KPM), thedistribution function is not readily integrable.Therefore,we can’t analyticallyreplacea functionof theparametersof thedistribution functionwith a functionof the moments,which are our solution variables. Instead,we have to solve the following set ofnon-linear, coupledequationsatevery timestepandgrid point:

1 � ∞

∑n? 2

z0exp Y � ∆Gexcn kT � z1n � z2n2 Z

m1 � ∞

∑n? 2

nz0exp Y � ∆Gexcn kT � z1n � z2n2 Z (3.12)

m2 � ∞

∑n? 2

n2z0exp Y � ∆Gexcn kT � z1n � z2n2 Z

To make thesimulationcomputationallyefficient,we solve theabovenon-linearsetof equationsfor arangeof m1 andm2 valuesandcalculatetheγi for thesevalues.Thentheγi arestoredin alookup

24

Page 33: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

] 30s^ 60s_ 120s

|�0� |�

200� |�400� |�

600� |�800� |�

1000|�

1200|�

1400

|�0

|�100

|�200

|�300

|�400

|�500 |� |� |� |� |� |� |� |�

|� |� |� |� |� |�

Defect size (atoms)`

Def

ects

Den

sity

(10a8

cm-2

)

bb

bb b b b bc

c c c c c c c cd d d d d d d d d d dFigure3.2: Distribution of

�311� defectdensitiesover defectsizesandbestfit to log-normaldistri-

bution. z2 � 0 � 8 hasbeenusedin all fits. Datafrom PanandTu [41].

tableandinterpolationis usedto find valuesof γi for valuesof mi thathavenotbeentabulated.ClejanandDunhamhave appliedthis systemto dopantdeactivationandshowed that theuseof a momentbasedapproachdoesn’t refrainusfrom capturingthephysicsof thesystem[8].

3.3.2 2-momentmodel (2KPM)

For�311� defectsanddislocationloops,thesizedistributionhasbeenmeasuredexperimentally[41].

Theresultssuggestthatthedistribution is roughlylog-normal:

fn � z0exp 2 � ln 2 n z1 3 2 z2 3 (3.13)

Whenweanalyzethedata,wefind thatz2 appearsto beindependentof annealingtime. Thedistribu-tionscanbeapproximatedby log-normaldistributionswith z2 � 0 � 8 (Fig. 3.2). Thus,we canreducethe numberof parameters(hencenumberof moments)to 2. The resultingsystemis a 2-momentsystem(2KPM):

∂m0

∂t � I1 � D [ λ1C2A � m0Cssγ �0 \

∂m1

∂t � 2I1 � Dm0 [CAγ 11 � Cssγ �1 \ (3.14)

∂CA

∂t � � ∂m1

∂t

25

Page 34: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

{311} defects Approximation Dislocation loops

|� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�10

|M |M |M |M

|M |M |M |M |�100

|M |M |M |M

|M |M |M |M |�1000 |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Defect size (n)100 101 102 103 10� 4 105

λn

(Ang

stro

ms)

Figure3.3: Changeof λn versusdefectsizefor�311� defectsanddislocationloops.Thecalculation

canbefoundin AppendixA.

with

γ �0 � λ1C 1 f2

γ 11 � ∞

∑n? 2

λn fn

γ �1 � ∞

∑n? 2

λnC n fn1 1 (3.15)

Note that for the 2KPM, the integral of the distribution function canbe found analytically, andthereforetheparametersof thedistributioncanbecalculatedfromthemomentsbymeansof analyticalfunctions.Thiseliminatestheneedfor thelookuptableandinterpolation,giving speedandrobustnessadvantages.However, still theγi needto becalculatedby sums,which is aniterativeprocess.

3.4 Analytical Kinetic Precipitation Model (AKPM)

RKPM, althoughcomputationallymoreefficient than the FKPM, canstill be very costly for largesimulationsin multiple dimensions.We have developedanevenmoreefficient versionstartingwith2KPM.

First of all, we notethat for�311� defects,thekinetic precipitationrateλn is a weakfunctionof

theprecipitatesize(ascomparedto dislocationloops)andconvergesto a constantastheprecipitate

26

Page 35: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

sizeincreases(Fig. 3.3). Therefore,it would be reasonableto replaceλn by a constantvalueλ forall sizes.This valuecanbefoundapproximatelyfrom a weightedsumof λn. Therefore,our systemreducesto:

∂m0

∂t � I1 � Dλ [C2A � m0Cssγ0

\∂m1

∂t � 2I1 � Dλm0 CCA � Cssγ1 H (3.16)

∂CA

∂t � � ∂m1

∂t

with

γ0 � C 1 f2

γ1 � ∞

∑n? 2

C n fn1 1 (3.17)

Note that in theabove equations,fn is givenby thedistribution functionwe assume,andcanbedeterminedfully if m1 is given. For example,if thedistribution function is a geometricdistributionfunction( fn � z0zn

1), thenthedistributioncanbedeterminedby solvingthefollowing setof equations:

1 � ∞

∑n? 2

z0zn1

m1 � ∞

∑n? 2

nz0zn1 (3.18)

Thesolutionof this systemgives:

z1 � m1 � 2m1 � 1

z0 � 1 � z1

z21

(3.19)

Hencethenormalizeddistributioncanbewritten in termsof m1:

fn � 1m1 � 1

9m1 � 2m1 � 1 : n � 2

(3.20)

Sincewe alsoassumea functionalform for C n, theγi areuniquelydefinedif m1 is known. so,infact,theγi arefunctionsof m1:

γ0 � γ0 2 m1 3γ1 � γ1 2 m1 3 (3.21)

27

Page 36: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Looking at thefunctionalform of C n and fn, wemaywrite thefollowing limits for thesefunctions:

limm1 e 2

γ0 � C 1lim

m1 e ∞γ0 � 0 (3.22)

limm1 e 2

γ1 � 0

limm1 e ∞

γ1 � 1

Thus,for every ∆Gexcn fn pair, we canfind a correspondingγ0 2 m1 3 , γ1 2 m1 3 pair; andinsteadof using

theparametersof ∆Gexcn asourfitting parameters,wecanusecorrespondingparametersof γ0 2 m1 3 and

γ1 2 m1 3 asfitting parameters.

To demonstratethis transformation,weuseanexample.Assumethatthesizedistribution is againgeometricalasgiven by Eq. 3.20. For simplicity of calculation,assumethat C n is alsogiven in ageometricfashion:

C n � abn � 1 � 1 (3.23)

ThisgivesC 1 � 1 � a and f2 � 1 2 m1 � 13 , resultingin:

γ0 � 1 � am1 � 1

(3.24)

For γ1, wehave to do thefollowing summation:

γ1 � ∞

∑n? 2

2 abn � 1 � 13 1m1 � 1

9m1 � 2m1 � 1 : n � 1� m1 � 2

m1 � 1 J abm1 2 1 � b3 � 1 � b

� 1K (3.25)

Similarly, startingwith the polynomial form of ∆Gexcn asgiven by Eq. 3.2 and the log-normal

distribution of the defectsizesasgiven in Eq. 3.13,we calculatethe correspondingγ0 2 m1 3 , γ1 2 m1 3pairsnumerically. Figures3.4and3.5show thesetof calculatedγi for a givensetof coefficientsforthepolynomialof ∆Gexc

n . Ourcalculationsshow thattheresultscanbeapproximatedby thefollowingfunctionsof m1:

γ0 2 m1 3f� K1

m1 � 1(3.26)

γ1 2 m1 3f� m1 � 2m1 � K0

91 � 2 K0 � 23 K2

m1 � K0 :To get a feel for thesefunctions,we have plotted them in Figure 3.6, in addition to Figures

3.4 and 3.5. The parameterK0 controlsthe x-scale,parameterK1 definesthe overall scaleof γ0

andtheparameterK2 definesthemagnitudeof thepeakfor γ1. Usingthesethreeparameters,we cancoverawide rangeof curveshapes.

Sincethe γi calculatedfrom 2KPM and determinedby the analytical functionsof AKPM areapproximatelyequal,we would expect that both modelswould give the samesimulationresults.

28

Page 37: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

gh

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100 |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |� |� |� |� |� |�

Average sizei

γ1 (From 2KPM) γ1 (AKPM fit) γ0 (From 2KPM) γ0 (AKPM fit)

101 102 103

γ

jj

j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j jk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k kFigure3.4: The correspondingγi asa function of m1 for a0 � 3 � 855, a1 � 15� 9, a2 � � 1 � 4. Theparametersfor γi areK0 � 3, K1 � 14� 5 andK2 � 366.

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0.0

|�0.5

|�1.0

|�1.5|�2.0

|�2.5 |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |�

Average sizei

γ1 (From 2KPM) γ1 (AKPM fit) γ0 (From 2KPM) γ0 (AKPM fit)

101 102 103

γ

ll

l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lm m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

Figure3.5: Thecorrespondingγi asa functionof m1 for a0 � 1, a1 � 4 � 7, a2 � 0. Theparametersforγi areK0 � 8, K1 � 0 � 14andK2 � 8.

29

Page 38: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0.0

|�0.5

|�1.0

|�1.5

|�2.0

|�2.5 |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |�

Average sizei

γ0

γ1

101 102 103

γ

Figure3.6: Exampleof γi asdefinedby Eq. 3.27. In this particularplot K0 � 4, K1 � 2 andK2 � 7havebeenused.

2KPM AKPM

|�0� |�

20|�

40|�

60|�

80|�

100� |�120

|�140

|�160� |�

180� |�200�|�0

|�1

|�2

|�3|�4

|�5 |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |�

Time (s)

m1

(101

3 cm

-3)

Figure3.7: Comparisonof 2KPM andAKPM underidenticalconditionsandequivalentparametersasgivenin Fig. 3.4.

30

Page 39: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Indeed,whenwetestbothmodelsunderthesameconditions,theresultsarealmostindistinguishable(Fig 3.7). To obtainFig 3.7,we have usedtheparametersof Fig. 3.4,with an initial 5 � 1013cm� 2

interstitialdose.

It is alsopossibleto find C n, andhence∆Gexcn , if theparametersof theγi (Ki) andthedistribution

function is given,althoughthis procedureis lessstraightforward. Sinceγ0 is theproductof C 1 andf2, knowing γ0, wecaneasilyfind C 1. Ontheotherhand,γ1 is only dependentonC 2 throughC ∞. So,wecanfind C n, by solvinga largesetof linearequationsthatis definedby:

γ1 2 m1 3n� nmax

∑n? 2

C n fn 2 m1 3 (3.27)

atdifferentm1. OnceC n is determined,∆Gexcn canbefoundby solvingtheexpressionfor C n (Eq.3.4)

for ∆Gexcn , whichgivesa recurrencerelation:

∆Gexcn1 1 � ∆Gexc

n � kT lnC n (3.28)

Obviously, ∆Gexc1 mustbesetasa referencepoint.

3.5 Simplesolid-solubility model (SSS)

All of the above modelsaccountfor the fact that the characteristicsof the precipitateschangewithchangingaveragesize, and thereforecan be consideredas “sophisticated”models. The simplestmodelfor precipitationis to assumeaconstantsolidsolubility cut-off. Thisamountsto assumingthatall soluteatomsabovethesolidsolubility level will form precipitatesinstantaneously. Wehaveaddeda kinetic ratefor this systemandwill useit for comparisonswith KPM modelsdiscussedin thetext.Therateequationsfor this modelcanbeformulatedasfollows:

∂m1

∂t � Dλm1 2 CA � Css3 � X Dλ 2 CA � Css3 2 for CA - Css

0 for CA o Css(3.29)

∂CA

∂t � � ∂m1

∂t

The first term in the above equationis for growth/dissolutionof the precipitates,whereasthesecondtermis for nucleationof precipitateswhenCA - Css. Sincethismodelkeepstrackof only onemoment(m1), we canclassifyit asa 1-momentmodel.This modelis similar to themodelproposedby Rafferty [48], in thesensethatbothmodelscapturethedynamicsof clusterformation,but useaconstantsolid solubility.

31

Page 40: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 4

Modeling p 311q Defectsand TED

In this chapter, wewill applythemodelsthatweredevelopedin thepreviouschapterto�311� defect

evolutiondataby Eagleshametal. [17] to obtainparametervaluesfor thesemodels.Wewill thenusetheseparametersandmodelsto predictTED andcomparethepredictionsto boronmarker layerdataby Packan[39] andChao[6].

4.1 Evolution of r 311s DefectProfile

Eagleshamet al. [17] implanted5 � 1013cm� 2 Si into silicon at 40keV andannealedthe samplesat varioustemperatures.They measuredthe resulting

�311� defectdistributions using TEM and

reportedthemomentsof thisdistribution. However, they wereunableto observedefectssmallerthana cut-off of 20A andassumedthat all

�311� defectshave a constantwidth of 50A. An elongated

defectshouldn’t have its width largerthanits length,soweassumedw � min 2 l W 50A 3 (seeAppendixA). Wefit ourdatato momentsthatwecalculatethesamewayEagleshametal. did, but wewill showthattherealmomentsmightbedifferentfrom those.

First,weappliedthe3-momentmodel(3KPM) to Eaglesham’sdata.Weoptimizedourparameters(a0, a1, a2 andCss, with only Css beingtemperaturedependent)to matchthedatarepresented.It canbe seenthat we wereable to obtaina goodagreementbetweenthe dataandthe model (Figs. 4.1,4.2 and4.3). We show model resultsboth for the full distribution (actual)and the portion of thedistribution with sizegreaterthan20A (observable). Note that the averagesizeof the observabledefects(l - 20A) seemsto diverge from the averagesizeof all defects,and we will explain thisbehavior later.

To gainabetterunderstandingof thesystemlet usinvestigatehow thedepthprofilechangesovertime (Fig. 4.4). It canbe observed that the

�311� defectpile is beingconsumedfrom the sidethat

is closerto the surface,andthis processmovesthe profile deeperinto the substratewith time. Asa matterof fact, theapproximatelyexponentialdecayof thenumberof interstitialsin

�311� defects

arisesfrom thecombinationof theOstwaldripeningbehavior andtheshift of the�311� defectfrontier

away from thesurface.

Fig. 4.5 shows a plot of C n versusdefectlengthfor this system.It canbe observed thatC n hasa peakaroundn � 7, which would be the leaststableclustersize. The fact that small clustersare

32

Page 41: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

t Data Model (Observable) Model (Actual)

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200�|� |M |M |M

|M |M |M |M |M |� |M

|M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M

|M |� |� |� |� |� |� |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Time (s)u1011

1012

1013

1014

Den

sity

of I

nter

stiti

als

in D

efec

ts (

cm

v-2

) w w w w w w w w w wFigure4.1: Evolutionof densityof interstitialsin

�311� defects(m1) andcomparisonto model.Data

for 5 � 1013cm� 2 Si implantat 40keV with annealat 815� C.

x Data Model (Observable) Model (Actual)

|�0� |�

20|�

40|�

60|�

80|�

100� |�120

|�140

|�160� |�

180� |�200�|�0

|�20

|�40

|�60

|�80

|�100

|�120

|�140|�160

|�180

|�200

|�220

|� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |�

Time (s)

Ave

rage

leng

th o

f {31

1} D

efec

ts (

A)

y y y yy y y y y y

Figure4.2: Evolution of the averagelengthof�311� defectsandcomparisonto model. Data for

5 � 1013cm� 2 Si implantat 40keV with annealat815� C.

33

Page 42: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

z Data Model (Observable) Model (Actual)

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200�|M |M |M |M |� |M

|M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M

|� |M |M |M

|M |M |M |M |M |� |� |� |� |� |� |� |� |� |� |� |�

|N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Time (s)u109

1010

1011

1012

Den

sity

of {

311}

Def

ects

(cm

-2) { { { { { { { { { {

Figure 4.3: Evolution of density of�311� defects(m0) and comparisonto model. Data for

5 � 1013cm� 2 Si implantat 40keV with annealat815� C.

|�0.00� |�

0.05� |�0.10| |�

0.15| |�0.20� |�

0.25�|� |M |M |M |M |M |M|M |M |� |M |M |M |M |M

|M |M |M |� |M |M |M |M|M |M |M |M |� |M |M |M

|M |M |M |M |M |� |M |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N1s

20s

60s

120s

200s

1015

1016

1017

1018

1019

Depth (Q µm)

Con

cent

ratio

n of

Inte

rstit

ials

in D

efec

ts (

cm

P

-3)

Figure4.4: The�311� defectprofile for variousannealingtimesat 815� C.

34

Page 43: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|�1| |' |' |' |' |' |' |' |' |�

10|' |' |' |' |' |' |' |' |�

100� |' |' |' |' |' |' |' |' |�1000

|� |M |M |M

|M |M |M |M |M |� |M

|M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M

|M |� |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Defect size (n)

Cn*

Css

1012

1013

1014

1015

Equ

ilibr

ium

con

cent

ratio

n of

inte

rstit

ials

(cm

}-3

)

Figure4.5:C n andCss versus�311� defectsizefor annealsat 815� C.

stablegivesrise to the very rapid formationof�311� defects,whereasthecontinuouslydecreasing

C n for l - 10A givesriseto theongoingOstwald ripeningin thesystem.Theleveling off aftersizesl - 300A stopsthegrowth of

�311� defectsaroundl � 150A, assuggestedby thedata.Notethatthe

exactshapeof C n dependson theform assumed,but thegeneralslopeis necessaryin orderto matchtheexperimentalresults.

Theshapeof thedistributionoverthesizes(Fig.4.6)alsotellsusthatthereis anunstableregionofclustersizes,suchthatthedistributionsaredouble-peaked.Thisshapeof thedefectsizedistributionisanimmediateresultof theenergy-minimizingclosureassumption.ThefactthatEagleshametal. can-not observe clusterssmallerthan20A resultsin anoverestimationof theaveragesize(seeFig. 4.2),aswell asanunderestimationof m0, thenumberof clusters(Fig.4.3).Theclustersin thefirst peakarecompletelyinvisible to them. Luckily, theseclustersdon’t contributesignificantlyto m1. Note thatfor a log-normalclosureassumption,thereis nosecondpeak,suchthattheaveragesizeof observableclustersandall clustersis thesame.

We characterizedthe parametersof the systemfor different temperatures(specifically, 815� C,738� C, 705� C and670� C), takingonly Css astemperaturedependent.Two of thesefits areshown inFig. 4.7.

We thenappliedthesamesystemandparametersto thedosedependenceof interstitialsin�311�

defects. Poateet al. [46] reportedthat above a thresholddosethe numberof interstitialsin�311�

defectsat theinitial stagesof TED increaseslinearlywith implantdose,but with aslopeof about1 � 4.Our modelwasableto accuratelypredictthis behavior (Fig. 4.8),boththeslopeaswell asthedosebelow whichno

�311� defectsform.

35

Page 44: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|' |' |' |' |' |�10

|' |' |' |' |' |' |' |' |�100� |' |'|� |M |M |M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |M |M |M |M |M |M |M

|M |� |M |M |M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |M |M |M |M |M |M |M

|M |� |M |M |M |M |M |M |M |M |� |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |(

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Average Length (A)~5s

45s

200s�10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Nor

mal

ized

Con

cent

ratio

ns o

f Def

ects

(f

n)

Figure4.6: Normalizeddistributionof�311� defectsizesfor varioustimesfor annealsat815� C. The

verticalline representstheminimumobservabledefectsize(20A).

��|' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|� |M |M |M

|M |M |M |M |M |� |M|M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M|� |M |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N

Time (s)

Data (815oC) Model (815oC) Data (670oC) Model (670oC)

101 102 103 10� 4 1051011

1012

1013

1014

Den

sity

of I

nter

stiti

als

in D

efec

ts (

cm

v

-2) � � � � � � � � � �

� � � � ��

Figure4.7: Evolutionof densityof interstitialsin�311� defects(m1) andcomparisonto model.Data

for 5 � 1013cm� 2 Si implantsat40keV with annealsat 815� C and670� C.

36

Page 45: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

� Data Model

|�0.0� |�

0.2� |�0.4� |�

0.6� |�0.8� |�

1.0� |�1.2� |�

1.4� |�1.6�|�0.0

|�0.5

|�1.0

|�1.5

|�2.0 |� |� |� |� |� |� |� |� |�

|�

|�

|�

|�

|�40keV Si implant

Implant Dose (10� 14 cm-2)

{31

1} In

ters

titia

l Dos

e (1

0

v14

cm

-2)

� � � �� �

Figure4.8: Predictionof dosedependenceof interstitialsin�311� defectsduring initial stagesof

TED. Datafrom Poateet al. [46] for 40keV Si implantsand1hr annealat 670� C.

4.2 Prediction of TED

We usedthe parametersobtainedin the previous sectionto predictTED behavior asa function ofimplantandannealingconditions.Forcomparison,weuseddatafromPackan[39], whousedimplantsof 29Si into silicon at energiesrangingfrom 10keV to 200keV anddosesrangingfrom 1 � 1012 to2 � 1014cm� 2. TED wasmeasuredby observingprofilemovementof adeepboronmarker layer. Nofurtherfitting wasdoneat thisstageandall parameterswerefrom work citedpreviously[1, 5] or frommatchingdataby Eagleshamet al.

Theresultsshow thatthemodelpredictionsdoagoodjob in matchingthetimeandenergy depen-dence(Figs.4.9and4.10). Themodelnot only givestheright magnitudefor theobservedenhance-ments,but alsopredictslengthof time TED lasts. In addition,it alsocorrectlypredictsthathigherdosesor energiesmake TED last longer, but give similar enhancementsfor shorttimes(Fig. 4.10).Thepredicteddosedependencematchesmostof thedata(Fig.4.11),with substantialdifferencesonlyfor thelowestimplantdose.Pleasenotethat in thesesimulationsa “+1” damagedosewasusedandtheeffectof usingaplusvaluethatis dosedependentwill beinvestigatedlater.

4.3 Comparisonof models

In this section,we will comparefour extendeddefectmodels:3-momentmodel(3KPM), which wasdemonstratedin the previous section,2-momentmodel (2KPM), the simplesolid solubility model

37

Page 46: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

� Data Model

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200� |�

220�|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110

|�120

|� |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |� |�

Energy (keV)

(D

t)� 1/2

(nm

)

Temp = 800oC , Dose = 1014 cm-2 , Time = 60min

� �� � �

Figure4.9: Energy dependenceof TED. Total broadeningof a deepB marker profile dueto implan-tationof 1 � 1014cm� 2 29Si with annealingat 800� C for 60min.

� Data (80keV) Model (80keV)� Data (200keV) Model (200keV)

|�0� |�

10|�

20|�

30|�

40|�

50|�

60|�

70

|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80|�90

|�100

|�110

|�120

|�130 |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |� |� |�

Time (min)

(D

t)� 1/2

(nm

)

Temp=800� oC , Dose = 1014 cm-2�� � � � � �

� � � � � �

Figure4.10:Timedependenceof TED. Totalbroadeningof aB markerprofiledueto implantationof1 � 1014cm� 2 29Si at 80 and200keV with annealingat800� C.

38

Page 47: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

� Data Model

|� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |�|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110

|�120 |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |� |�

1012 1013 1014

Dose (cm) -2)

(Dt)

1/2

(nm

)

Temp=800� oC , Energy = 200keV , Time = 45min

� � � � � �

Figure4.11:Dosedependenceof TED. Total broadeningof a B marker profiledueto 29Si implanta-tion at 200keV with annealingat 800� C for 45min.

(SSS)andtheanalyticalmodel(AKPM). Wefirst review theassumptionsof thesefour models:� 1-momentmodel: In thismodelweassumethatsoluteatomsabovesolidsolubility precipitateto extendeddefectswith a diffusion limited rate. This modeldoesnot accountfor Ostwaldripening.� 2-moment model: We uselog-normaldistribution of extendeddefectswith fixed z2. Thevariableswehavearem0 andm1.� 3-momentmodel: Weuseenergy minimizingclosureassumptionwith threemoments.� Analytical model: We useanalyticalfunctionsfor the reactionratesthat dependon averagesize.

Figure4.12shows thecomparisonof 1-, 2- and3-momentmodelsto the�311� dissolutiondata

from Eagleshamet al. [17]. It can be observed that both the 2 and3-momentmodelsaccuratelycapturethe observed behavior. However, the 1-momentmodelcannotaccountfor the exponentialdecayin thenumberof interstitialsstoredin

�311� defects,sinceit neglectsOstwaldripeningprocess,

andpredictsanapproximatelylineardecayin thenumberof interstitialsstoredin�311� defects.The

exponentialdecayrateis a resultof decreasingsuper-saturationof interstitialswith time,which is, inturn,a resultof theripeningof defects.

WhenweapplyAKPM to thesamesetof data,wefind thatit alsodescribestheOstwaldripeningprocessequallywell, althoughthecomputationtime is muchsmaller(Fig. 4.13andFig. 4.14). This

39

Page 48: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

� Data 3-moment model 2-moment model 1-moment model

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200�|� |M |M |M

|M |M |M |M |M |� |M

|M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M

|M |� |� |� |� |� |� |� |� |� |� |� |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Time (s)u1011

1012

1013

1014

Den

sity

of I

nter

stiti

als

in D

efec

ts (

cm

v-2

) � � � � � � � � � �Figure4.12: Comparisonof 1, 2 and3-momentmodelsfor evolution of

�311� defects.Both 2 and

3-momentmodelscapturetheexponentialdecayof interstitialsin�311� defects.�

Data (Eaglesham) Analytical model 3-moment model

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200�|M |M |M |M |M |M |M |�

|M |M |M |M |M|M |M |M |� |M

|M |M |M |M |M |M |M|� |� |� |� |� |� |� |� |� |� |� |�

|N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Time (s)u1012

1013

1014

Den

sity

of I

nter

stiti

als

in D

efec

ts (

cm

v

-2) � � � � � � � � � �

Figure4.13: Evolution of densityof interstitialsin�311� defects(m1) andcomparisonto analytical

model(AKPM) and3-momentmodel(3KPM).

40

Page 49: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

� Data Analytical model

|�0� |�

20|�

40|�

60|�

80|�

100� |�120� |�

140� |�160� |�

180� |�200�|�0

|�20

|�40

|�60

|�80

|�100

|�120

|�140

|�160

|�180

|�200 |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |�

Time (s)u

Ave

rage

leng

th o

f {31

1} D

efec

ts (

A)

� � � �� � � � � �

Figure4.14: Evolution of the averagelengthof�311� defectsandcomparisonto analyticalmodel

(AKPM).

makesthe AKPM modelof choicefor simulationof�311� defectsin large systems.The fact that

AKPM doesn’t requireany proprietaryoperatorsenableseasyintegrationto many PDEsolvers.

If we look at TED datafrom Packan[39], thedifferencesbetweenthe threemodelsis relativelysmall(Fig. 4.15).Onecanreadilyobservethatthefinal amountof TED predictedby all threemodelsis approximatelythesame.This is dueto the fact that thefinal amountof TED is not dependentonhow the interstitial super-saturationevolvesover time, but ratheron effectivenessof the surfaceinconsuminginterstitials.Only atshorttimesdoesthereseemto beasignificantdifferencebetweenthemodels.If we look at shorttime behavior moreclosely, thedifferencebetweenthemodelsbecomesmoreevident (Fig. 4.16). The1-momentmodelpredictsa constantenhancementof diffusivity untilTED is over, whereasthe2-momentmodelaccountsfor thereductionof diffusivity enhancement—or interstitialsuper-saturation— duringTED. Again,this is aneffectcausedby theOstwaldripeningprocess.

4.4 Effect of “ � n” factor

Let’sinvestigatethedifferencesbetweenusinga“ � 1” modelfor initial damage,andthemorerigorous“ � n” modeldescribedin section2.2.1usingAKPM. Sincethe“ � n” modelpredictsa plusvalueashigh as10 (Fig. 2.4), we would expectthat the TED predictionsat lower doseswould bewould besubstantiallyincreased.However, simulationsshow only a marginal increase(Fig. 4.17).Thereasonbehindthiscanbeunderstoodby investigatingthedepthprofileof thedamage(Fig.2.3).Althoughthe

41

Page 50: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

� Data (Packan) 3-moment model 2-moment model 1-moment model

|�0� |�

5� |�10

|�15

|�20

|�25

|�30� |�

35

|�0

|�1000

|�2000

|�3000

|�4000

|�5000

|�6000

|�7000

|�8000 |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |�

Time (min)

Dt (

nm  2 )

850oC, Si, 200keV

5e13 cm-2

1e14 cm-2

¡ ¡ ¡ ¡¢¢ ¢ ¢ ¢

Figure 4.15: Comparisonof 1, 2 and 3-momentmodelsfor TED predictions. The modelsdiffersignificantlyonly at shorttimebehavior, which thisdatacannotdistinguish.

£ Data (Chao) AKPM model SSS model

|� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|M |M |M |M |M |M|M |�1000

|M |M |M |M|M |M |M |M |�10000

|M |M |M |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N

Time (s)101 102 103 104

<D

>/D

*

750oC, Si, 50keV, 5e13cm-2¤ ¤ ¤ ¤

¤Figure4.16: Comparisonof 1 and2-momentmodelsfor shorttime diffusivity enhancements.Datafrom Chao[6]for a5 � 1013cm� 2 50keV implantwith annealsat 750� C.

42

Page 51: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

¥ Data "+n" model "+1" model

|�0� |�

1| |�2� |�

3¦ |�4� |�

5� |�6� |�

7§ |�8� |�

9|�

10

|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110 |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |�

Dose (10) 13 cm-2)

(D

t)1/

2 (n

m) © © © © © ©

Figure4.17:Comparisonof predictionsfor thedosedependenceof TED using“ � 1” and“ � n” mod-els.

lowerimplantdosesindeedresultin ahigherplusvalue,muchof thisextrainterstitialconcentrationisnearthesurface,suchthatit is dissolvedveryquickly. Therefore,theneteffectof thisexcessdamageis minimal.

However, to fully understandtheeffects,a morerigorous“ � n” modelhasto bedevelopedbasedon atomisticsimulations,which takesdiffusion of interstitialsandvacanciesduring annealingintoaccountandalsoconsidersfactorssuchasamorphouspocket formation.

4.5 Summary

In summary, we have developeda rangeof KPM modelsandtestedthemfor validity andaccuracyunderdifferentconditions.For theevolution of

�311� defectsandfor TED behavior thedifference

betweenthe2 and3-momentmodels(2KPM, 3KPM) andtheanalyticalmodel(AKPM) is negligible.Theorderingof modelswith respectto their computationalefficiency is asfollows (from mosttimeconsumingto leasttime consuming):3KPM, 2KPM, AKPM, SSS.For the rangeof availabledata,AKPM seemsto bethebestcompromisebetweencomputationalefficiency andaccuracy.

Thesimplesolid solubility model(SSS)is not ableto accountfor theOstwald ripeningprocess,andthusis unsuitablefor modelingof extendeddefectkineticsandshort-timeTED behavior. How-ever, it doesa goodjob in predictingthefinal amountof TED. But thekineticsof

�311� defectsat

the initial stagesof TED is importantif we have temperatureramps.Dependingon thespeedof thetemperatureramp,wemayendupwith differentamountsof clusteredinterstitials.TheSSSmodelis

43

Page 52: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

not capableof makingthis distinctionsinceit doesn’t accountfor Ostwald ripening. Anotherpointwherethe

�311� defectkinetics is importantis whenwe have a competingprocess,suchasboron

interstitial cluster(BIC) formation. In sucha case,both�311� defectsandBICs will competein

capturingthe interstitials,andthekineticsbecomeimportant.With respectto all of these,we won’trecommendusingSSSmodelfor modelingextendeddefects.

44

Page 53: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 5

Models for DislocationLoops

5.1 Extending KPM to dislocation loops

Our first approachto modelingof dislocationloopswasto extendtheKPM modelto includedislo-cationloopsin additionto

�311� defects.We did this by assumingthat therearetwo populationof

extendeddefectswhich caninteractwith eachother. We assumedthat for smallersizesit wasener-geticallymorefavorableto stayasa

�311� defect,but above a certainsizeit wasmorefavorableto

transforminto a dislocationloop (Fig 5.2). Our simulationsgavea cross-over aroundn � 2200.Thetransferratefrom

�311� defectsinto dislocationloopscanbeexpressedas:

DI

b2 ª f « 311¬n � f loop

n exp ­®� ∆G« 311¬n � ∆Gloop

n

kT ¯±° (5.1)

whereb is a “capturedistance.” We found a valueof 20µm for b. Thus the transferfrom�311�

defectsinto dislocationloopsis a ratherslow process.

Pan et al. [42] implanted1 � 1016cm� 2 Si into silicon at 50keV andannealedthe samplesat850� C and1000� C. They measuredtheresultingdislocationloopdistributionsusingTEM. Wemod-eledtheir datausinga similar approachto

�311� defects. The parametersfor

�311� defectswere

from previouswork [25]. It canbearguedthatCss for loopsshouldbejustC I , sinceaninfinite sizeperfectloop is nothingbut an extra planein silicon. For partial loopsCss shouldbeslightly higher,but smallchangesin Css hadno significanteffect in our simulationresults.Initial damageconditionswereobtainedasdescribedin Section2.2.2,wheretheamorphizationthresholdhasbeenadjustedtogetthecorrectdoseof interstitialsin loops.

Our resultsshow thatwewereableto correctlymodeltheevolutionof thesystemandtransforma-tion of

�311� defectsinto dislocationloops(Fig. 5.3). We werealsoableto get thecorrectOstwald

ripeningbehavior (Fig.5.4).Similarmatchesfor datafrom Lui etal. [35] thatincludedlongerannealswhich led to substantialloopdissolution(Fig. 5.5).

The relatively slow dissolutionrateof dislocationloopsstemsfrom the factsthat they cangrowvery largeandCss for loopsis closeto C I . This resultsin C n for loopsapproachingC I , so that theysustainonly a small super-saturationof interstitials. Sincetheseloopsaredeepin thesubstrateandsustainonly aminimal super-saturation,theflux to thesurfaceis smallandthusdissolvethey slowly.

45

Page 54: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

{311}s Dislocation Loops

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0

|�1

|�2

|�3

|�4

|�5

|�6 |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |� |�

Size²

Def

ect e

nerg

y (e

V/a

tom

)

³

101 102 103 104 105

Figure5.1:�311� defectanddislocationloopenergy asa functionof defectsize.Theloopsaremore

stableat largersizes.

{311}s Dislocation Loops

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|� |M |M |M |M |M |M |M |M |� |M |M |M|M |M |M |M |M |� |M |M |M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |M |M |M |M |M |M |M |M |�|M |M |M |M |M |M |M |M |� |M |M |M |M |M |M |M |M

|� |M |M |M |M |M |M |M |M |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Size² CI

*

101 102 103 104 105108

109

1010

1011

1012

1013

1014

1015

1016

C

´ n* (c

m-3

)

Figure5.2:�311� defectanddislocationloopC n asa functionof defectsize.

46

Page 55: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

µ¶ {311} defects Dislocation loops

|� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|� |M

|M |M |M |M |M

|M |M |� |M

|M |M |M |M |M

|M |M |� |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Time (s)u

Data (1000oC) Data (850oC)

10-1 100 101 102 103 10� 4 1051013

1014

1015

Inte

rstit

ials

bou

nd to

Def

ects

(cm

·-2

) ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¹ ¹ ¹ ¹ ¹ ¹ ¹

Figure5.3: Evolution of densityof interstitialsin extendeddefects(m1) andcomparisonto model.Datafrom Panetal. [42] for 1 � 1016cm� 2 Si implantat 50keV.º»

{311} defects Dislocation loops

|� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|M |M |M |M |M |M |M|�1000

|M |M |M |M |M|M |M |M |�10000

|M |M |M |M |M|M |M |M |�100000 |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |�

Time (s)

Ave

rage

Siz

e ³ Data (1000oC) Data (850oC)

10-1 100 101 102 103 10� 4 105

¼ ¼ ¼ ¼ ¼ ¼ ¼½ ½ ½ ½ ½ ½ ½

Figure5.4: Evolution of averagedefectsize(m1 m0) for 1 � 1016cm� 2 Si implantsat 50keV andcomparisonto datafrom Panetal. [42]

47

Page 56: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

¾¿ {311} defects Dislocation loops

|�1| |' |' |' |' |' |' |' |' |�

10|' |' |' |' |' |' |' |' |�

100� |' |' |' |' |' |' |' |' |�1000

|' |' |' |' |' |' |' |' |�10000� |' |' |' |' |' |' |' |' |�

100000

|�0

|�1

|�2

|�3

|�4

|�5

|�6

|�7 |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |� |� |�

Time (s)u

Data (1000oC) Data (800oC)

Inte

rstit

ials

bou

nd to

Def

ects

(1014

cm

-2)

ÀÀ À À

Á Á Á Á Á

Figure5.5: Evolution of densityof interstitialsin dislocationloops(m1) andcomparisonto model.Datafor 1 � 1015cm� 2 Si implantat 50keV.

5.2 Analytical loop model

Although themodelpresentedin theprevioussectiongivesgoodpredictionsof loop evolution, it iscomputationallyexpensive. Therefore,we seekto find ananalyticalmodelfor loop evolution basedon theanalyticalmodelfor

�311� defects(AKPM). Theapproachwetake is similar: Weassumethat�

311� defectstransforminto dislocationloopsby an unfaulting reactiononcethey reacha criticalsize.Wecannotethefollowing pointsfor thefunctionsthatareinvolvedin AKPM:� Loopshavealowersolidsolubility than

�311� defects,typically aroundC I . Therefore,wehave

to setthesolid solubility of the�311� defects/dislocationloop distribution to Cloop

ss . Sincetheγi areinverselyproportionalto thesolid solubility they have to bemultiplied by thedifferencefor smallersizes.� To ensurelim

n ∞γ1 � 1, weneeda functionalchangeafterthe

�311� /loopcrossoverpoint (ncrit).� Theγi have to becontinuousat the

�311� /loopcrossoverpoint (ncrit).

To understandwhattypeof functionthisrestrictionsgive,weproceedasearlier:Weuse∆Gexcn for

dislocationloops(which is identicalto ∆Gexcn for

�311� defectsatsizessmallerthanncrit), anda log-

normaldistribution function;andfind thecorrespondingγi aswe did for�311� defectsby Eq. 3.17.

Theresultsareshown in Fig 5.6,togetherwith analyticalfunctionsthatcapturethebehavior of γ1.

48

Page 57: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Ã

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|� |M |M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M |� |M

|M |M |M |M |M |M |M |� |M |M

|M |M |M |M |M |M |� |M |M |M |M

|M |M |M |M |� |M |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N

Defect SizeÄOnly {311}s {311}s and loops

γ1 (From 2KPM) γ1 (AKPM fit)

101 102 103 104 105 106100

101

102

103

104

105

γ1 Å

Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å ÅFigure5.6: Theγ1 functionfor dislocationloopsat asderivedfrom ∆Gexc

n for dislocationloopsandalog-normalclosureassumption.

We find asetof γi functionsto beusedwith AKPM by extendingthesetof functionsweusedfor�311� defects:

γ0 � ÆÇÇÇÈ ÇÇÇÉC « 311¬

ss

Cloopss

K1

m1 � 1for m1 � ncrit

K3

91

m1 � 1 : αfor m1 - ncrit

(5.2)

γ1 � ÆÇÇÇÈ ÇÇÇÉC « 311¬

ss

Cloopss

m1 � 2m1 � K0

91 � 2 K0 � 23 K2

m1 � K0 : for m1 � ncrit

1 � K4

9K0 � 2

m1 � K0 : αfor m1 - ncrit

(5.3)

whereK3 andK4 arechosensuchthatcontinuityof γ0 andγ1 areensured(Fig. 5.7). In our simula-tions,we have useda cross-over point of ncrit � 1000andleft α asa fitting parameters.Pleasenotethatncrit shouldnot be interpretedas“the point where

�311� defectto dislocationloop transforma-

tion happens,” but rather“the sizebelow which no�311� defectto dislocationloop transformation

happens.” Thetransformationwill happenatany sizegreaterthanncrit.

Weagaincompareourmodelagainstdatafrom Panetal.[42]. As onecanreadilyobserve,agoodmatchcanbefound(Fig.5.8andFig. 5.9).Sincethismodelcan’t distinguishbetweentheinterstitialscontainedin dislocationloopsand the interstitialscontainedin

�311� defects,we can’t plot them

separately. However, to obtainan ideaon how the�311� defectswould evolve, we canturn off the

49

Page 58: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|� |M |M |M

|M |M |M |M |M |� |M

|M |M |M |M |M |M |M |�

|M |M |M |M |M |M |M |M

|� |M |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N

Defect SizeÄ

Only {311}s {311}s and loops

101 102 103 104 105100

101

102

103

γ1

Figure 5.7: The γ1 function for dislocationloops at 1000� Cfor the AKPM. For m1 � ncrit, γ1 isidenticalto thatfor

�311� defects,exceptfor amultiplier to accountfor differencesin solidsolubility.

Ê Loop model {311} model

|� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�0

|�1

|�2

|�3|�4

|�5 |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |� |� |� |� |�

Time (s)

Data (850oC)

101 102 103 104 105

Inte

rstit

ials

bou

nd to

Def

ects

(1014

cm

-2) Ë Ë Ë Ë Ë Ë Ë

Figure5.8: Evolutionof totalnumberof interstitialsstoredin dislocationloopsand�311� defectsfor

theAKPM. Datafor 1 � 1016cm� 2 Si implantat 50keV with annealat 850� C.

50

Page 59: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

ÌÍ Model

|� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |� |' |' |' |' |' |' |' |' |�|�100

|M |M |M |M |M

|M |M |M |�1000

|M |M |M |M |M

|M |M |M |�10000

|M |M |M |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |� |( |( |( |( |( |( |( |( |�

|� |N |N |N |N |N |N |N |N |� |N |N |N |N |N |N |N |N |� |N |N |N

Time (s)u

Ave

rage

Siz

e (a

tom

s)

Data (1000oC) Data (850oC)

100 101 102 103 10� 4 105

Î Î Î Î Î Î ÎÏ Ï Ï Ï Ï Ï Ï

Figure5.9: Evolutionof averagedefectsizefor 1 � 1016cm� 2 Si implantsat 50keV from AKPM.

loop portionof themodelandplot�311� defectsin theabsenceof loops(Fig. 5.8). Themodelalso

givesa goodfit to theOstwald ripeningprocessof dislocationloops(Fig. 5.9).

5.3 Simulating TED

We have appliedour loop modelto TED conditionsto predictdopantmovementof a buriedmarkerlayerdueto anamorphizingimplant. To this end,we have useddatafrom Chao[6] andHuang[32].Chaoalso had datafor non-amorphizingimplants,and for thoseimplantsthe modelpredictsthatdislocationloopswill never form in agreementwith experiment.

Our resultsshow thatwe wereableto predictTED behavior over a largerangeof implantdoses(Fig. 5.10). Although the fact that a 1 � 1015cm� 2 implant causeslessTED thana 1 � 1014cm� 2

implantmayseemsa little paradoxicalin thefirst look, it is very reasonablewhenwe considerthatmostof theimplantdamageannealsoutby epitaxialregrowth for amorphizingimplants.

5.4 Modeling heterogeneousnucleation

Themodelwedemonstratedin theprecedingsectionsassumedthatthesolemechanismof dislocationloop formationwasthroughtransformationfrom

�311� defects,andthat the

�311� defectsgrow to

a certainsize (ncrit), after which it becomesenergetically favorableto transforminto a dislocationloop. Moreover, weassumedthatthenucleationof

�311� defects,andhenceformationof dislocation

51

Page 60: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

|�0� |�

10|�

20|�

30|�

40|�

50|�

60|�

70|�

80|�

90� |�100� |�

110| |�120� |�

130¦|�0

|�10

|�20

|�30

|�40

|�50

|�60

|�70

|�80

|�90

|�100

|�110 |� |� |� |� |� |� |� |� |� |� |� |� |� |�

|� |� |� |� |� |� |� |� |� |� |� |�

Time (min)

1016 cm-2 (Huang) 1015 cm-2 (Chao) 1014 cm-2

1013 cm-2

(D

t)1/

2 (n

m) Ð Ð ÐÑ Ñ ÑÒ Ò

Ò

Ó ÓFigure5.10: Predictionof TED usingFKPM for amorphizingandnon-amorphizingimplants.Datafor 50keV Si implantswith annealingat 750Ô C.

loopsis ahomogeneousprocess.Thatis, in thewafer, thereis nopreferredsitefor Õ 311Ö defect/loopformationandthesedefectswill form anywherewhenthereis enoughdriving force to form thesedefects.

However, experimentalobservationsby Pan et al. revealedthat after annealingan amorphizingimplant,thereexistsalsoloopsthatarein sizemuchsmallerncrit [41]. Althoughour previousmodeldoesn’t rule out this possibility, it is very unlikely that a small Õ 311Ö defectwill transforminto adislocationloopsinceit is energeticallyunfavorable.Panet al. concludedthattheseloopsmusthavenucleateddirectly from thematrix.

But why do we observe loopsthatnucleatedirectly without Õ 311Ö defectsif we have an amor-phizingimplant,andobserveonly Õ 311Ö defectsif wehaveanon-amorphizingimplant?Theanswermay be heterogeneousnucleationwith the amorphous/ crystallineinterfaceactingasa nucleationsitefor dislocationloops.Therefore,wecanhavedislocationloopsthataremuchsmallerthan Õ 311Ödefects,sincethey have formedby nucleationassistedby theamorphous/crystallineinterface.

We now seekways to extendour model to include this capability. Oneway of accomplishingthis goalis to have two separatedistributionsof extendeddefects.Thefirst distributionwould bethedistribution for Õ 311Ö defectsanddislocationloopsthatwereformedby transformationfrom Õ 311Ödefects,which is thedistribution we consideredin previoussection.Theseconddistribution wouldbefor dislocationloopsthat formedheterogeneouslyat theamorphous/crystallineinterface.We candealwith the heterogeneousnatureof the seconddistribution by lowering the formationenergy oftheseextendeddefectsaroundthe amorphous/crystallineinterface. A simpleway of achieving thisgoal is depictedin Fig 5.11. Sincewe can’t seesmallsizedefects,thedeterminationof how ∆Gexc

n ,

52

Page 61: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

{311}/loop distribution Loops at a/c interface Loops elsewhere

|× |× |× |× |× |× |× |× |Ø |× |× |× |× |× |× |× |× |Ø |× |× |× |× |× |× |× |× |Ø |× |× |× |× |× |× |× |× |Ø |× |× |× |× |× |× |× |× |Ø |× |× |× |× |× |× |× |× |Ø|Ù |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù

|Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù |Ú |Ú

|Ú |Ú |Ú |Ú |Ú |Ú |Ù |Ú |Ú |Ú |Ú |Ú |Ú

|Ú |Ú |Ù |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù

|Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù |Û |Û |Û |Û |Û |Û |Û |Û |Ü |Û |Û |Û |Û |Û |Û |Û |Û |Ü |Û |Û |Û |Û |Û |Û |Û |Û |Ü |Û |Û |Û |Û |Û |Û |Û |Û |Ü |Û |Û |Û |Û |Û |Û |Û |Û |Ü |Û |Û |Û |Û |Û |Û |Û |Û |Ü

|Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý

Defect sizeß101 102 103 104 105 106100

101

102

103

104

105

106

C

à n*

Figure5.11: Distribution of C án for heterogeneousnucleation.Note thatC án will bedifferentfor thepureloopdistributionbasedon spatiallocation.

andhenceC án lookslikeat smallsizeswill have to dependheavily on atomisticcalculations.

Oneissuehereis the“thickness”of theheterogeneousnucleationregion. An initial approximationcouldbetheroughnessof a/c interface.However, theregionswherethis nucleationeffectsthepointdefectconcentrationscangrow to themaximumloopsize.

5.5 Summary

In summary, wewereableto modeltheformationandevolutionof dislocationloopsby extendingourmodelfor Õ 311Ö defectsto a systemwith two distributionsandaccountingfor the transferbetweenÕ 311Ö defectsanddislocationloops. We alsodevelopeda computationallyefficient versionof thismodel,basedonAKPM.

The loop modelextendsour TED predictioncapabilityto amorphizingdoses.We wereabletoobtaingoodTED predictionsfor a largerangeof implantdoses.

53

Page 62: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 6

Software DevelopmentEfforts

In orderto carryout thesimulationsdescribedin theprecedingchapters,we havedevelopedamulti-purposepartialdifferentialequationsolver, DOPDEES,whichis capableof solvinginitial valueprob-lemsin onespatialdimensionusinga finite differencesmethod. The systemof partial differentialequationsis specifiedusinga “dial-an-operator”paradigm,and the programusesTcl (a re-usableandextendiblecommandlanguagedevelopedat UC Berkeley [38, 54]) asa front end. DOPDEEShascommandsfor structuregenerationandmodification,aswell asfeaturesthatmake simulationoftime-varyingparameters(e.g. temperatureramps)possible.Thesolver is fastandsuitablefor useasaprocesssimulatorandmodeltestbedin 1-D.

ProcessModelingModules(PMM) is aframework for platform-independentscriptizationof com-monlyencounteredmodelsin theprocessmodelingcommunity. PMM freestheuserfrom theburdenof specifyingall equationsandparametersfor commonlyknown models,but still retainsthepowertospecifyarbitraryequationsandmodels.It alsoprovidesa framework for transferringmodelsdirectlyfrom the university to the industry, without the needfor a vendorto implementthosemodelsin acommercialprocesssimulator.

6.1 DOPDEES

Theshrinkingdimensionsof VLSI devicesleadsto morecomplex phenomenabecomingimportantduringfabrication.This requiresa flexible environmentfor developingprocessmodels.Thesystemshouldnot restrict the userto predefinedmodels,but rathershouldenableimplementationof anysystemof continuumequations.DOPDEESis suchaneffort.

DOPDEESis a multi-purposePDEinitial valuesolver in onespatialdimensionthatusesa “dial-an-operator”paradigmfor specificationof theequationsystem[37]. Theprimaryaim of thecodeisrapiddevelopmentof continuummodelsandit maybeusedfor avarietyof systems.It is intendedtobeeasyto useandeasyto extendwith new operators.

DOPDEEScanbeusedin any systemwheretheuserwantsto obtainsolutionsfor coupledpartialdifferentialequations(PDEs). Theprogramwasoriginally written to solve diffusion/reactionprob-lemsandthis is why it comeswith operatorssuitedfor suchsystems.However, if the operatorsorfunctionstheuserneedsarenot included,it is relatively easyto addthem. Anotherpositive featureis that theuseris ableto selecttheintegrationengine,asdifferentsystemsbenefitfrom differentnu-

54

Page 63: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Field

Structure

Region Grid point

1 1Equation

Operator

EvaluableFunctionFigure6.1: A structurein DOPDEESconsistsof regions,whicheachhaveanumberof fields(solutionvariables)andagrid structure.Eachfield is associatedwith anequationof thetype∂ f â ∂t ã ∑opi .

mericalalgorithmswhich associatedtrade-offs in speedandstability. Therearealsocommandsforgrid generationandresultextraction. Theuserinterfaceof DOPDEESis in Tcl, which providesforpowerful input scripting.

DOPDEESsolvesa given setof partial differentialequations.The (onedimensional)spaceisassumedto bedivided into chunkscalledregions, andit is assumedthatdifferentequationsneedtobesolvedin differentregions(Fig 6.1).Thesolutionvariablesarecalledfields, andit is assumedthatfor all fieldsequationsof thetype∂ f â ∂t ãåä>ä>ä exist thatdescribethePDEs.A field specifiedin oneregion doesn’t exist in others,unlessexplicitly specified.Actually, theonly communicationbetweenregionshappensthroughboundarytransfers.

The right handsidesof the partial differential equationsare specifiedas a sum of operators:∂ f â ∂t ã ∑opi This approachis calleddial-an-operator, sincethe usercanchoosethe operatorsontheright handside.Theoperatorscanmakeuseof functions, which canbedefinedin termsof fieldsanddefinedparametersaswell asotherfunctions.

DOPDEESactuallydiscretizestheuser-specifiedpartialdifferentialequationsandthensolvestheresultingsetof ordinarydifferentialequations(ODE)usingastandardODEsolver, or solver“engine”(Fig. 6.2). This considerablyreducesthecodedevelopmenttime, while theuseof well-known, bug-freecodeleadsto stability in theprogram.

DOPDEESsupportstime-varying parameters,which enablesthe userto simulatesystemslike

55

Page 64: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Discretization

System of PDEs

System of ODEs

ODE solverlsode rkc dvode

Field

Structure

Region

1 1Equation

Operator

EvaluableFunction

Figure6.2: DOPDEEShandlesPDEsby discretizingthemusingfinite differencesandfeedingtheminto astandardODEsolver.

56

Page 65: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

temperatureramps.The parametersandfields arehandledalike usingthe samefunctions,the onlydifferencebeingthataparameteris asinglevaluedquantityin a region,whereasfieldshavedifferentvaluesateachspatialgrid point. Whenfunctionsaredefined,theresultingquantityis singlevaluedifall argumentsaresinglevalued,otherwiseit is assumedto bemulti-valued.This eliminatestheneedfor writing separatefunctionsfor parametersandfields,but still leadsto efficientexecution.

6.2 ProcessModeling Modules (PMM)

The conceptof ProcessModelingModules(PMM) developedfrom our realizationthat therewasagapto befilled betweenaprocessmodelingsoftwarelikeSUPREMandapartialdifferentialequation(PDE) solver like DOPDEESor Alamode. Processsimulatorsare not flexible enoughto providechoiceovertheequationsto besolvedfor; they arehard-codedandusercontrolis limited to afixedsetof modelsandparametervalues.On theotherhand,whenusingageneralPDEsolver, it is necessaryto specifyevery singleequationandparameterin all input decks,evenif someof theequationsandparametersareconsideredto bewell-known. In additionto theoverheadinvolved,thismayalsoleadto inconsistenciesbetweenusers,or groupsof users.

Thus,oneform of softwareprovidesalmostno flexibility , while theotherrequiresthesameworkto bedoneoverandover, oftenleadingto errors.Weattackthisdilemmaby writing reusablemodulesthat canbe incorporatedinto input decksof PDE solvers. This approachretainsthe flexibility of aPDEsolver, while providing reasonabledefaultsfor modelsandparameters.

Severalstandardmodelshavebeenimplementedin PMM, aswell asmany modelsthathavebeendevelopedat BostonUniversity. Fig 6.3 shows availablemodelsaswell astheir interdependencies.PMM (ProcessModeling Modules)usesa hierarchicalmodeldescription,suchthatmodelscanin-cludeothermodels,andensuresinter-operabilityof modelsby consistency checks.Currently, PMMincludesacollectionof modulesfrequentlyencounteredin VLSI processmodeling:æ Dopantdiffusion,simpleandcoupledwith point defects.æ Pointdefectdiffusion,generationandrecombination.æ Dopant-dopantpairing.æ Two-streamdiffusionin polysilicon.æ Clusteringof point defectsandprecipitationof dopants.

PMM modeldescriptionsareindependentof thePDEsolverused,thusproviding amechanismfortransferof modelsbetweensimulationpackages.In additionto DOPDEES,PMM hasbeeninterfacedwith theAlamodesolver [55], which is partof theSUPREMOO7system.We have alsopublisheda white paperdescribingthe commonscriptingplatform [56]. The TCAD softwarevendorAvant!Corp. shows an effort to integratePMM with their new processsimulator. We believe that the useof thePMM conceptwill speedmodeldevelopmentandfacilitatetransferof thosemodelsbetweengroupsof users.Themostdirect impactwould berapid transferof modelsfrom universityresearchgroupsto industry, without theneedto wait for implementationby commercialsoftwarevendors.

57

Page 66: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

poly

five-stream

full-cpl

fermi

carrierconc

params-B

params-P

params-As

params-IVpoint-defect

kpm-AsV

kpm-BIC

kpm-loop

kpm-311

params-AsV

params-BIC

params-311

params-poly

oxide-I params-oxide

Figure6.3: Modelsimplementedin PMM andtheir interdependencies.Modulescaninherit parame-tersfrom lower level modulesanddoconsistency checks.

6.3 Simulation of dopant diffusion

As anexamplewe will considerdiffusionof two dopants,boronandarsenic,in silicon. The diffu-sivity of bothboronandarsenicaredependenton thelocal Fermilevel, andthereforethey canaffecteachothersdiffusionthroughthenetdopantconcentration.At high concentrations,arsenicis knowto becomeimmobileandelectricallyinactive. We will considera simplemodelwheretheeffect ofpoint defectinteractionsis not taken into account(theFermimodel)andthedeactivationof arsenicis assumedto happenabruptlyabove thesolid solubility. More rigorousmodelsexistsbothfor diffu-sionanddeactivationandhavebeenimplementedin DOPDEES/PMMframework. Underconditionswherethepointdefectconcentrationsarecloseto theirequilibriumvalues,thismodelshouldprovidereasonableresults.

Thesetof PDEsin our systemcanbeformulatedasfollows:

∂CB

∂tã ç∇DB è ç∇CB é CB ç∇ ln ê nâ ni ëGì (6.1)

∂CAs

∂tã ç∇DAs è ç∇Cact

As í CactAs ç∇ ln ê nâ ni ëGì (6.2)

CactAs ã min ê CAs î Cssë (6.3)

nni

ã ï CactAs é CB

2ni ð í ï CactAs é CB

2ni ð 2 í 1 (6.4)

58

Page 67: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

The diffusivities of boronandarsenicareassumedto dependon nâ ni in a standardmanner. Inaddition to the silicon region, we also have an oxide region on top of the structureand boron isassumedto segregatepreferentiallyto theoxide. Figure6.4 shows thescriptusedin DOPDEESformodeldefinition. Note that theoperatorsneedto specifyto which field (i.e., equation)they belongto. UsingPMM greatlysimplifiestheinputfile sinceit callsthepre-definedFermimodule(Fig. 6.5).Notethattheusercanstill specifyanarbitrarysetof PDEs,for this casePDEsfor boronsegregationto anddiffusion in the oxide, whenusingPMM modules.This ensuresmaximumflexibility whilesimplifying theinput. Figure6.6shows theinitial andfinal dopingprofilesin thestructure.

59

Page 68: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

ñóòõôLöø÷õùIúøûýüEþøÿ�� ô����������� �� ����� ÿ��õô������� ÿ��óòóÿIô����õô���� ÿñóòõô�� � � üEþøÿ�� ô��øò������ ��!"�$#�%�& ò���'Iò # �õôøô����óò ñ)(������ ÿ�'�� ÿ � �ñóòõô %�� � ü ò*(���(���+-, .� � �0/1!�324"�"�"�"�"�"�56�87 ò9�� ÿ ò���( ò���õô���� ñ�Iò'���� ÿ ñóò� õò�� ô�:�*��6;Iò87 �69�9õþGñ���� ÿ$��9=<������ ÿ�� ÿ���*��6;Iòñóòõô 7�>�? :�*ýü4����@ òóÿ�� þGñ�AB24C�"øò�!��"324C���� ����DIñ����(�;��69�9�� > . 7�>�? :�*�� >�Iò'���� ÿ ñóò� õò�� ô � �� ����� ÿ�% � ô�� & ò��� ñóòóÿ������� ÿ��óòóÿIô����õô���� ÿñóòõô�� ����?�% ñ ü4����@ òóÿ�� þGñ��324���øò������32FE�G�� ��!"�ñóòõô�� % ñ ? ��� ô üF9õþøÿ��H�I� ÿ�� % ñ�.� ����?�% ñ�� �������� ò�J�� ÿ��óòóÿIô����õô���� ÿK� ÿ ñ��� ����� ÿñóòõô�L�M ü4����@ òóÿ�� þGñ ü ò*(���"324�øò�A)N�O�(���+-, .óöø÷õùIúøû3/ AB24��56�K�324N������ ��!"�ñóòõô ÿøÿ�� üF9õþøÿ����������� ò���� ÿ�� üF9õþøÿ��Lñ þ��$.� % ñ ? ��� ô üF9õþøÿ��P(�����;�!�AQ� > ����.�L�M6�87 �69�9õþGñ���� ÿ$��9=<������ ÿ�� ÿ � �� ����� ÿñóòõô 7�>�? � ü4����@ òóÿ�� þGñ��324��"�G�"32FE�N�� ����DIñ��ñóòõô 7�>�? úýü4����@ òóÿ�� þGñ��324G�NR"32FE�N�� ����DIñ��ñóòõô 7�> üF9õþøÿ��8;��69�9õþGñ�� & � ô�S�. ÿøÿ��8. 7�>�? ����. 7�>�? ú�����(�;��69�9�� > . 7�> � >87 ���69øô���9�<������ ÿ��(�;��69�9�� > üF9õþøÿ��P(�����;�!�AP. 7�> � > � üF9õþøÿ��8 ���'�. ÿøÿ��6�87 �69�9õþGñ���� ÿ$��9��� ñóòóÿ����ñóòõô 7�% ñ ? � ü4����@ òóÿ�� þGñ��324��N�N�N�"32FE�E�� ����DIñ��ñóòõô 7�% ñ ? ù ü4����@ òóÿ�� þGñ�A)�324C�ET24����� ����DIñ��ñóòõô 7�% ñ üF9õþøÿ��8;��69�9õþGñ�� & � ô�S$. ÿøÿ��P. 7�% ñ ? ��. 7�% ñ ? ù�������(�;��69�9�� % ñ�. 7�% ñ8.� % ñ ? ��� ô87 ���69øô���9��� ñóòóÿ������(�;��69�9�� % ñ üF9õþøÿ��Q(�����;�. 7�% ñ�.� % ñ ? ��� ô��ýüF9õþøÿ��� ���'�. ÿøÿ��6��� ò'��Iò'��õôIò�<������ ÿ ô�� ô@ ò���*��6;IòñóòõôQ� ñóò'ýü4����@ òóÿ�� þGñ�A�A)��N��324��A6�ñóòõôLûøô�� üF9õþøÿ��8;�� & üF9õþøÿ�� ñ þ���. 7�>�? ��. 7�>�? ú���. %�� �6���( ô����óÿGñ�9Iò�J:�*��6;Iò�� > � > üF9õþøÿ��8;�� & � > .�� ñóò'���� > .óûøô��8U þøÿ ô@ ò ñ��V� þ� �õô����T2ñ�� & ò���õþøÿ�� üEþøÿ�� ô�"��W�I� ÿ��Figure6.4: DOPDEESinput script for thesolvingtheequationsystemfor co-diffusionof boronandarsenic.

60

Page 69: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

ñóòõôLöø÷õùIúøûýüEþøÿ�� ô���������87 ò9�� ÿ ò���( ò���õô���� ñ�Iò'���� ÿ ñóò� õò�� ô�:�*��6;Iò87 �69�9õþGñ���� ÿ$��9=<������ ÿ�� ÿ���*��6;Iòñóòõô 7�>�? :�*ýü4����@ òóÿ�� þGñ�AB24C�"øò�!��"324C���� ����DIñ����(�;��69�9�� > . 7�>�? :�*�� >�Iò'���� ÿ ñóò� õò�� ô � �� ����� ÿ����;õþ� õò�9Iò�)�I�8!Iñøñøñ8!Iñ þ�(��Iò6�K!�;Iò�<øþ�'�� ò'��Iò'��õôIò�<������ ÿ ô�� ô@ ò���*��6;IòñóòõôQ� ñóò'ýü4����@ òóÿ�� þGñ�A�A)��N��324��A6�ñóòõôLûøô�� üF9õþøÿ��8;�� & üF9õþøÿ�� ñ þ���. 7 , > /X��5=. 7 , > / ú�56�J. %�� �6���( ô����óÿGñ�9Iò�J:�*��6;Iò�� > � > üF9õþøÿ��8;�� & � > .�� ñóò'���� > .óûøô��8U þøÿ ô@ ò ñ��V� þ� �õô����T2ñ�� & ò���õþøÿ�� üEþøÿ�� ô�"��W�I� ÿ��Figure 6.5: DOPDEESinput script for the solving the sameequationsystem,but with the FermimodelimplementedusingaPMM script.

As B Initial As Initial B

|Ø-0.05

|Ø0.00

Y |Ø0.05

Y |Ø0.10

|Ø0.15

|Ø0.20

|Ø0.25

|Ú |Ú |Ú |Ú |Ú |Ú |Ù |Ú |Ú |Ú |Ú|Ú |Ú |Ú |Ú |Ù |Ú |Ú |Ú |Ú |Ú |Ú |Ú

|Ú |Ù |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù|Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù |Ú

|Ú |Ú |Ú |Ú |Ú |Ú |Ú |Ù |Ü |Ü |Ü |Ü |Ü |Ü |Ü

|Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Þ |Ý

1016

1017

1018

1019

1020

1021

Depth (Z µm)

Con

cent

ratio

n (c

m

[

-3)

Figure6.6: Theinitial dopantprofilesandfinal profilesaftera 30min annealat 900Ô C accordingtosimulationusingtheFermimodel.

61

Page 70: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Chapter 7

Summary and Futur e Dir ections

7.1 Modeling and experiments

Our aim in this work wasto understandthephysicalprocessesoccurringunderTransientEnhancedDiffusion(TED) conditions,expressthemin amathematicalmodel,integratethis modelinto adiffu-sionequationsolverandquantitatively matchtheexperimentalobservations.

To this end, we have developeda solid physicalmodel (KPM) for the evolution of extendeddefects( Õ 311Ö defectsanddislocationloops)which areobserved underTED conditions. We havealsodevelopeddifferentversionsof KPM thathave applicabilityunderdifferentcircumstances,andhave anassociatedrangeof computationalefficiency. The full setof modelsdevelopedin this workgivestheusertheability to makeappropriatetrade-offs betweenaccuracy andcomputationaltime.

We have appliedKPM to Õ 311Ö defectsthat areobserved undernon-amorphizingimplant con-ditions andwe wereable to get a goodagreementwith the availableexperimentaldata. We havethenusedthismodelto predictTED behavior basedonmarker layerexperimentsandwe foundgoodagreementfor themagnitudeof TED, aswell asthetimeenergy anddosedependence.To extendthemodelto dislocationloops,we assumedthatdislocationloopsform by unfaultingof Õ 311Ö defectsasobservedexperimentally. We accountedfor this transformationin our modelandwe wereabletoobtaina goodmatchto theexperimentaldatawithout any modificationsin the Õ 311Ö defectmodel.Wealsoindicatedhow thesamemodelcouldbeusedfor heterogeneousnucleation.

Note that we have only dealtwith silicon implantsandmarker layer experimentsin this work.A naturalextensionof our work is to extendit to dopantimplants,which areusedfor makingrealdevices. One of the phenomenathat becomesimportantunder theseconditionsis the decreasedsolid solubility of boron,which hasbeenattributedto formationof boron-interstitialclusters(BICs).ModelingBICs with a comprehensive, yet computationallyefficient modelremainsstill a challengeat this point,althoughseveralresearchershavemadesubstantialprogressin this field in recentyears.

Oneimportantfact is that theTED predictionsstronglydependon point defectproperties,espe-cially theDIC áI product.All theresultsobtainedin thiswork wouldbedifferentif weusedadifferentvalueof DIC áI . Although work hasbeendoneto measurepoint defectpropertiesat highertemper-atures,the extrapolationto lower (TED) temperaturesis errorprone. Obtainingaccuratevaluesforpoint defectparameterseitherthroughexperimentsor throughab-initio calculationsis essential.

62

Page 71: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

7.2 Softwaredevelopment

Our work alsoinvolvedin developinga computersoftwarethat is capableof solvingthemodelsthatwe have postulated.To this end,we have developedDOPDEES,a one-dimensionalmulti-purposepartial differentialequationinitial valuesolver. To enablefastertechnologytransfer, we have alsodevelopedProcessModeling Modules(PMM) which consistsa set of scriptsthat encapsulatethemodelsthatwehavedevelopedin a readyto useform.

AlthoughDOPDEES/PMMframework is goodfor modeldevelopment/testing,it haslimited ap-plicability in a productionenvironment,primarily due to its 1-D nature. One commercialTCADsoftwarevendor(Avant! Corp.) hasdevelopeda similar framework (TaurusPMEI) thatcanbeusedin 1, 2 and3 dimensionalproblems.The modelsthatwe implementedundertheDOPDEES/PMMframework will beportedto TaurusPMEI framework for wider usewithin theindustry.

63

Page 72: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Appendix A

Calculation of the Kinetic Precipitation Rate

In thisappendix,wederivethekineticprecipitationratefor variousprecipitateshapes.To thisend,wesolvethesteadystatediffusionfield aroundaprecipitate,calculatingtheflux attheinterfacefollowingthetechniqueusedby Dunham[12]. Westartwith thefollowing definitions:

D: Diffusivity of soluteatoms.

k: Surfacereactionrate(k \ 1 ã 0 if thereactionis diffusionlimited).

An: Surfaceareaof asizen precipitate.

rn: Radiusof thesphere.

Rn: Radiusof thedisc.

b: Reactiondistance(onelatticespacing).

Cintn : Concentrationat thesurfaceof asizen precipitate.

C án: Concentrationthatwouldbein equilibriumwith asizen precipitate.

C: C é C∞.

cs: Concentrationat thesurfaceof asphere.

Our basicequationis flux in to thesurface ã amountof materialconsumed:

AnDdCdr

]]]]r ^ surface

ã Ank ê Cintn é C án ë (A.1)

We will executethefollowing stepsfor eachprecipitateshape:

1. Write down C ê r ë asa functionof cs (sumoverspheresfor usingr ratherthanb).

2. Write down Cintn asa functionof cs (setr ã r int in thepreviousstep).

3. Take thederivativeof C ê r ë with respectto r andevaluateat theinterface.

4. Solve for cs from step1 andsubstituteinto above to find Reff.

5. Write down λn.

64

Page 73: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

A.1 Spherical defects

1.

C ê r ë ã csrn í br

(A.2)

2.Cint

n ã cs (A.3)

3.dCdr

]]]]r ^ rn _ b

ã é cs

rn í b(A.4)

4.dCdr

]]]]r ^ rn _ b

ã é Cintn

rn í b` Reff ã rn í b (A.5)

5.

Dλn ã An

Reff

D í k \ 1ã DAn

Reff í Dk \ 1(A.6)

If thesystemis diffusionlimited this reducesto:

λn ã An

Reff (A.7)

If not wehave

Λ ã Dk

` λn ã An

Reff í Λ(A.8)

For thesphere,An ã 4π ê rn í bë 2, hence:

λn ã 4π ê rn í bë 2ê rn í bë í Λaã 4π ê rn í bë (A.9)

A.2 Disc-shapeddefects:

1.C ê r ë ã csln ê 8Rn â r ë (A.10)

2.Cint

n ã csln ê 8Rn â bë (A.11)

3.dCdr

]]]]r ^ b

ã é cs

b(A.12)

4.dCdr

]]]]r ^ b

ã é Cintn

bln ê 8Rn â bë ` Reff ã bln ê 8Rn â bë (A.13)

65

Page 74: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

b

{311} defect

[113]

[332]

[110]

l

w r

FigureA.1: Divisionof thecapturecross-sectionof a Õ 311Ö defectinto spheresof equalarea.

5.

λn ã An

Reff í Λaã An

Reff (A.14)

For thedisc(torus)An ã 4π2Rnb, soweget:

λnaã 4π2Rn

ln ê 8Rn â bë (A.15)

A.3b311c defects:

Weassumethat Õ 311Ö defectsareplanarwith arectangularshapeandgrow primarily in theirlength.[50]Thecapturecross-sectionof a Õ 311Ö defectis assumedto becylindrical regionsof radiusb with half-spheresateachend(Fig.A.1), whereb is thesilicon latticespacing.In orderto find thediffusionfieldarounda Õ 311Ö defect,wedividedthis region into spheresof radiusb whichhavea total surfaceareaequalto thatof thesumof thetwo cylindersandfour half-spheres.Wethenaddedupthesteady-statediffusion fields of thesespheresto find the concentrationat a distancer along the mid-line of thewidth of a Õ 311Ö defect:

1.

C ê r ë ã 2N d 2

∑i ^ 1

csber2 ígf i w

N h 2 í 2N d 2

∑i ^ 1

csbe ê l í r ë 2 ígf i wN h 2ã 2 i wd 2

0

csbjr2 í y2

Nw

dy í 2 i wd 2

0

csbj ê l í r ë 2 í y2

Nw

dyã 4 i wd 2

0

csjr2 í y2

dy í 4 i wd 2

0

csj ê l í r ë 2 í y2dyã 4cs kl ln mn w

2 í er2 í ê w2 ë 2r

op í ln mn w2 í e ê l í r ë 2 í ê w2 ë 2

l í r

oprqs66

Page 75: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

(A.16)

2.

Cintn ã 4cs t ln ï w

2 í eb2 í ê w2 ë 2 ð é ln ê bë í ln ï w

2 í e ê l í bë 2 í ê w2 ë 2 ð é ln ê l í bë�u (A.17)

3.

dCdr

]]]]r ^ b

ã é 2csw kl 1

be

b2 í ê w2 ë 2 í 1ê l í bë e ê l í bë 2 í ê w2 ë 2 qs(A.18)

4.

Reff ã v ln è w2 í e

b2 í ê w2 ë 2 ì é ln ê bë í ln è w2 í e ê l í bë 2 í ê w2 ë 2 ì é ln ê l í bë�w

w2

kl 1

be

b2 í ê w2 ë 2 í 1ê l í bë e ê l í bë 2 í ê w2 ë 2 qsã t ln ï 1 í e

1 í ê 2bw ë 2 ð é ln ê 2b

w ë í ln ï 1 í e1 í ê 2 x l _ by

w ë 2 ð é ln ê 2 x l _ byw ë ukl 1

be

1 í ê 2bw ë 2 í 1ê l í bë e 1 í ê 2 x l _ by

w ë 2 qs(A.19)

5.

λn ã An

Reff í Λaã An

Reff (A.20)

For the Õ 311Ö defectAn ã 4πbw í 8πb2, soweget:

λnaã 4πb ê w í 2bë

Reff (A.21)

67

Page 76: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Appendix B

BU Parameter Set

In this sectionwewantto list all theparametersusedin this thesis. !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! úõùøù�!�! ú������óò ñøñ ù���;Iò� �� ÿ�' ù���;õþ� õò ñ�,V9���� 7 :óú 7 ÷ø÷ � �óÿ�; % �6����;Iò�5 ,���5�A)����G % �(�z{2}|Iòóÿ��óò� �� �(�~�<øþ{2 ò;õþ .�M6;T��(�����6� ñ! >� 2 ô�� -/ & AB24�JA)����G�D����D�A)N$A)N3�4��"3�FE�E��� �( ÷�*(��� �(�. !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!8� � þP���SLþGñóò ô@��óñ ñ��9øô+���Iò$�69�S�� þ���+øÿ��� ����óòóÿ��óò ô�� þGñóò 7 :óú 7 ÷ø÷ � ����% �6����;Iò32 � � þP� þGñ ôLÿ��óôQ����;��69�S ô@��óñLñ��9øô+���Iò�� ÿ��óÿ�S8+��ST2 7 òõô����� Iñ���9 ����óòóÿGñóò����óÿ�< ò89�� þøÿ�;��õô�@Iôøô({�XD�Dõòóÿ�'��-2�<øþ{2 ò;õþ�D��)�� �(�D�(���� !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�% ô������� ÿ��óòóÿIô����õô���� ÿ�� ÿ � �(�����6�$� � � üEþøÿ�� ô��øò������ ��!"��� �õôøô����óò;ñ)(������ ÿ�'���9 � �(�����6� %�� � ü ò*(���(���+-,Gü�(�����6��� � �6�3/1!�324"�"�"�"�"�56�(�����6��(��6E�� ü ò*(�� ü�(�����6� %�� �6��O�E�O"32�A6E�A)������G� M ÿIô���� ÿGñ���� ò� õò�� ô���� ÿJ�� ÿ��óòóÿIô����õô���� ÿ�� ÿ � �(�����6�;ÿ ? � üF9õþøÿ��P(�����; ü4����@ òóÿ�� þGñ�"324�øò�A)N��324N������ ��!"���üF9õþøÿ��P(���+ ò��.óöø÷õùIúøû$AB24�����% �I� ÿ��V� þ����� ÿ��óòóÿIô����õô���� ÿJ9����8� ��� M(�����6�$�6�I� ÿýüEþøÿ�� ô$A ò�C�� ��!"�87 ��(��óÿIôJ�)@����'Iò ñ(�����6�$�óÿ òõô ? ��õò9�9 ? úKA(�����6�$�óÿ òõô ? ��õò9�9 ?�% ñ$A(�����6�$�óÿ òõô ? ��õò9�9 ?�> !�A !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! ú�����6�>òõôIò� ñ�9������� ñóòóÿ����-2 !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�� �� ��6; ñ�� þ�<��� �� ô�S$��9 % ñ(�����6�$� ñøñ ?�% ñ ü4����@ òóÿ�� þGñ��324���øò������32FE�G�� ��!"�87 �69�9õþGñ�� & � ô�SJ��9 % ñ(�����6� 7 �69�9 ? � ?�% ñ ü4����@ òóÿ�� þGñ�A�ET24����� ��� ñ!�A6�(�����6� 7 �69�9 ? � ?�% ñ ü4����@ òóÿ�� þGñJA)�8ET24����� ��� ñ!�A6�(�����6� 7 �69�9 ? ( ?�% ñ��(�����6� 7 �69�9 ? ; ?�% ñ��8� ����� ô���� ÿ��� $� ÿIôIò� ñ ô�� ô��)�� ���S������(�� ÿ òóÿIô(�����6� � � ? � ?�% ñ��324"(�����6� � � ? � ?�% ñ��324�(�����6� � � ? ( ?�% ñ�!�A)����� M6���Iò� õò & �óÿIô(�����6� � � ? ; ?�% ñ�!�A)����� M6���Iò� õò & �óÿIô68

Page 77: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

z��6'@��� ÿ��óòóÿIô����õô���� ÿJ;��69�9õþGñ�� & � ô�S ò9�9Iò�� ô ñ=9���� % ñ(�����6��z���; ? (��Iò ?�% ñ ü4����@ òóÿ�� þGñ�E�A)C�AB24��N�� ��� ñ!�A6�(�����6��z���; ? (���+ ?�% ñ�ET24� ��� þ�(� �� ÿ�'�+�� ô@�(���� ÿIô�;Iò9Iò�� ô ñ(�����6� û(����6� ? M ?�% ñ ü4����@ òóÿ�� þGñ ü ò*(��$A�D ü�(�����6�$� � �6����!�324"���(�����6� û(����6� ? � ?�% ñ ü4����@ òóÿ�� þGñ ü ò*(��$A�D ü�(�����6�$� � �6����!�AB24�� !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! ú�����6�>òõôIò� ñ�9����8(�@��Iñ)(�@����õþGñ-2 !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�� �� ��6; ñ�� þ�<��� �� ô�S$��9 ú(�����6�$� ñøñ ? úýü4����@ òóÿ�� þGñ��324�øò������32FE���� ��!"�87 �69�9õþGñ�� & � ô�SJ��9Lú(�����6� 7 �69�9 ? � ? úýü4����@ òóÿ�� þGñ$AB24��"324��C�� ��� ñ!�A6�(�����6� 7 �69�9 ? � ? úýü4����@ òóÿ�� þGñ$AB24��"324��C�� ��� ñ!�A6�(�����6� 7 �69�9 ? ; ? ú��(�����6� 7 �69�9 ? ( ? ú��8� ����� ô���� ÿ��� $� ÿIôIò� ñ ô�� ô��)�� J�����(�� ÿ òóÿIô(�����6� � � ? � ? ú��324�����(�����6� � � ? � ? ú��324����A(�����6� � � ? ; ? ú�!�A)����� M6���Iò� õò & �óÿIô(�����6� � � ? ( ? ú�!�A)����� M6���Iò� õò & �óÿIô z��6'@��� ÿ��óòóÿIô����õô���� ÿJ;��69�9õþGñ�� & � ô�S ò9�9Iò�� ô ñ=9���� ú(�����6��z���; ? (��Iò ? ú ü4����@ òóÿ�� þGñ�"324��"øòE$AB24N���(�����6��z���; ? (���+ ? ú�ET24� ��� þ�(� �� ÿ�'�+�� ô@�(���� ÿIô�;Iò9Iò�� ô ñ(�����6� û(����6� ? M ? ú ü4����@ òóÿ�� þGñ ü ò*(��$A�D ü�(�����6�$� � �6����!�324��(�����6� û(����6� ? � ? ú ü4����@ òóÿ�� þGñ ü ò*(��$A�D ü�(�����6�$� � �6����!�AB24�� !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! ú�����6�>òõôIò� ñ�9���� > !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�� �� ��6; ñ�� þ�<��� �� ô�S$��9 >(�����6�$� ñøñ ?�> ü4����@ òóÿ�� þGñ��324�øò������324G�"�� ��!"�87 �69�9õþGñ�� & � ô�SJ��9 >(�����6� 7 �69�9 ? � ?�> ü4����@ òóÿ�� þGñ��324"���"324��G�� ��� ñ!�A6�(�����6� 7 �69�9 ? ( ?�> ü4����@ òóÿ�� þGñ$AB24C�"324��G�� ��� ñ!�A6�(�����6� 7 �69�9 ? � ?�> �(�����6� 7 �69�9 ? ; ?�> �8� ����� ô���� ÿ��� $� ÿIôIò� ñ ô�� ô��)�� ���S������(�� ÿ òóÿIô(�����6� � � ? � ?�> �324�����(�����6� � � ? ( ?�> �324�����(�����6� � � ? � ?�> !�A)����� M6���Iò� õò & �óÿIô(�����6� � � ? ; ?�> !�A)����� M6���Iò� õò & �óÿIô L��P@��6'@J�� ÿ��óòóÿIô����õô���� ÿ�;��69�9õþGñ�� & � ô�S;ò9�9Iò�� ô ñ�9���� >(�����6��z���; ? (��Iò ?�> �(�����6��z���; ? (���+ ?�> A ��� þ�(� �� ÿ�'�+�� ô@�(���� ÿIô�;Iò9Iò�� ô ñ(�����6� û(����6� ? M ?�> ü4����@ òóÿ�� þGñ ü ò*(��$A�D ü�(�����6�$� � �6����!�324��(�����6� û(����6� ? � ?�> ü4����@ òóÿ�� þGñ ü ò*(��$A�D ü�(�����6�$� � �6����!�32�A6� !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! ú�����6�>òõôIò� ñ�9����J� ÿIôIò� ñ ô�� ô��)�� Iñ��óÿ�; & �����óÿ���� ò ñ-2 !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! ú���� ÿIô�;Iò9Iò�� ô�(�����( ò�øô�� ò ñ(�����6� 7 � ñ ô��� ? M ? C�C�G üEþøÿ�� ô�ET24G��øòEJ� ��!�Aóñ!�A6�(�����6� 7 � ñ ô��� ? M ? ÷ üEþøÿ�� ô�ET24��� ò����(�����6� 7 � ñ ô��� ? � ? C�C�G üEþøÿ�� ôJAB24���øò���� ��!�Aóñ!�A6�69

Page 78: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

(�����6� 7 � ñ ô��� ? � ? ÷ üEþøÿ�� ô�"324C�� ò����87 �69�9õþGñ�� & � ô�� ò ñ(�����6� 7 �69�9 ? � ? M ? C�C�G üEþøÿ�� ôJAB24���øò�!NJ� ��� ñ!�A6�(�����6� 7 �69�9 ? � ? M ? ÷ üEþøÿ�� ôJAB24G�G ò����(�����6� 7 �69�9 ? � ? � ? C�C�G üEþøÿ�� ô�ET24Nøò�!N�� ��� ñ!�A6�(�����6� 7 �69�9 ? � ? � ? ÷ üEþøÿ�� ôJAB24C ò���� ùøþ� óô���(� �� ò; 7 ��<�SJA òE ��@����'Iò;ñ ô��õôIò�� ÿ�9��(�����6� û��)@�' ? � ? M ü4����@ òóÿ�� þGñ��324N�C��324��(�����6� û��)@�' ? ( ? M ü4����@ òóÿ�� þGñ��324N�C��324��N�(�����6� û��)@�' ? � ? � ü4����@ òóÿ�� þGñ��324N�C��32�A6E���(�����6� û��)@�' ? ( ? � ü4����@ òóÿ�� þGñ��324N�C��32FE����� M�!����Iò������<�� ÿ��õô���� ÿ(�����6� û U�? ÷��324��� �� ����Iñ ô�;��69�9õþGñ���� ÿ$ ��V�I� ôIò;�� þ���9����óò��Iò������<�� ÿ��õô���� ÿ$ õòóÿ�'øô@(�����6� � þ���9��Iò�� ? M üEþøÿ�� ôJA)� % �(�����6� � þ���9��Iò�� ? � üEþøÿ�� ôJA)� % � !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!87 ��(��óÿIô�!�;���(��óÿIô�(����6��� ÿ�'T2nú�����6�>òõôIò� ñ�9���������� ôøôIò� �2 !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! ��@����)@�(����6� ñ=@�� & ò8< òøòóÿ�;Iò9�� ÿ ò;ñóòõôLú % M U������> ú�� �>�% ñ���� ú����� ÿ�'J��õò9�9������ òóÿIô ñ(�����6� û(����6� ?�>�? ú ü4����@ òóÿ�� þGñ ü ò*(��$AB24��D�324C�Nøò���N�$!�AB24C�� ��!"�(�����6� û(����6� ?�>�?�% ñ ü4����@ òóÿ�� þGñ ü ò*(��$AB24��D�324���øò���N�$!�AB24C�� ��!"� !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�� "�A�A)�8;Iò9Iò�� ô��óÿ�;�;��óñ ������õô���� ÿ$ �����(�9����)���õô���� ÿ�(�����6�>òõôIò�T2 !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�� �� ��6; ñ�� þ�<��� �� ô�S$��9�M�� ÿ�"�A�AóñP9���� ñøñøñW����;Iò� ���� ���<����õôIò; ô�� ú����)���óÿT� ñ öø÷ 7 ;��õô��32 � òøò ú����)���óÿ�!óöø÷ 7 2(�����6�$� ñøñ ? "�A�A ? ñøñøñ ü4����@�C�C�G�A)"�����!�324���� �� ��6; ñ�� þ�<��� �� ô�S$��9�M�� ÿ�"�A�AóñP9������óÿ��� �Søô����Q����;Iò� ���� ���<����õôIò; ô�� ÷��'� õò ñ)@��6��� ñ � "�A�A)��;��õô��32 � òøòL÷��'� õò ñ)@��6��!"�A�AB2(�����6�$� ñøñ ? "�A�A ? �óÿ� ü4����@�C�C�G�A)G�����!�AB24����(�����6� û�"�A�A ? �óÿ� ? ��!�324N��(�����6� û�"�A�A ? �óÿ� ? A��324G��(�����6� û�"�A�A ? �óÿ� ? �RET24"�� ú�����6�>òõôIò� ñ�9����Lô@ ò�"õûøúõù8����;Iò� �,�� ? ��5(�����6� û�"�A�A ? "õûøúõù ? ��"324C����(�����6� û�"�A�A ? "õûøúõù ? A�A)�324����N(�����6� û�"�A�A ? "õûøúõù ? ��!�AB2FE���� ù�� ÿ��V� þ��K�� ÿ��óòóÿIô����õô���� ÿGñ(�����6�;ù�M ? � ? �I� ÿ üEþøÿ�� ô$AB24���øòEJ� ��!"�(�����6�;ù�M ? A ? �I� ÿ üEþøÿ�� ô��324��A òEJ� ��!"�(�����6�;ù�M ? � ? �I� ÿ üEþøÿ�� ô�ET24���øòEJ� ��!"� !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�! M ÿIôIò� ñ ô�� ô��)�� ;ñóò'��Iò'��õô���� ÿ$�óÿ�;�;��69�9õþGñ���� ÿ�� ÿ���*��6;Iò328U ò9Iò�Iòóÿ��óò ñ-� ! 7 �69�9õþGñ�� & � ô�S�9������r2�2�2 !Lñóò'��Iò'��õô���� ÿ���õò9�9������ òóÿIô�9������ % 2 % '���+��� �, >� 5B2 !�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!87 �69�9õþGñ�� & � ô�SJ��9JM�� ÿ���*��6;Iò(�����6� 7 �69�9 ? :�* ? M ü4����@ òóÿ�� þGñJA)"8ET24��� ��� ñ!�A6��� ò'��Iò'��õô���� ÿ���õò9�9T2(�����6�;ùGñóò' ? :�* ?� � ? M ü4����@ òóÿ�� þGñ��324C���N��32�A�A6�70

Page 79: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

71

Page 80: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

Bibliography

[1] A.M. Agarwal andS.T. Dunham.“Consistentquantitativemodelsfor thespatialextendof pointdefectinteractionsin silicon”. J. Appl.Phys.78, 5313(1995).

[2] R.Angelucci,F. Cembali,P. Negrini, M. Servidori,andS.Solmi. “Temperatureandtimedepen-denceof dopantenhanceddiffusionin self ion implantedsilicon”. J. Electrochem.Soc.134(12),3130(1987).

[3] R. Angelucci,P. Negrini, andS. Solmi. “Transientenhanceddiffusion of dopantsin siliconinducedby implantationdamage”.Appl.Phys.Lett.49(21),1468(1986).

[4] J.P. BiersackandW. Ecstein.Appl.Phys.A 34, 73 (1984).

[5] H. Bracht,N.A. Stolwijk, andH. Mehrer. “Propertiesof intrinsic point defectsin silicon deter-minedby zinc diffusionexperimentsundernon-equilibriumconditions”. Phys.Rev. B 52(23),16542(1995).

[6] H.S.Chao. “Physicsandmodelingof ion implantationinducedtransientenhanceddifusion insilicon”. Ph.D.thesis,StanfordUniversity(1997).

[7] S.Chaudhry, J.Lui, M.E. Law, andK.S. Jones.“Evolution of dislocationloopsin silicon in aninertambient(Part 2)”. SolidStateElectronics38(7), 1313(1995).

[8] I. Clejanand S.T. Dunham. “A reducedmomentbasedmodel for precipitationkineticsandapplicationto dopantdeactivationin silicon”. J. Appl.Phys.78(12),7327(1995).

[9] N.E.B. Cowern,K.T.F. Janssen,andH.F.F. Jos. “Transientdiffusionof ion implantedB in Si:Dose,timeandmatrixdependenceof atomicandelectricalprofiles”.J. Appl.Phys.68(12),6191(1990).

[10] N.E.B. Cowern, G.F.A. van de Walle, P.C. Zalm, andD.W.E. Vandenhoudt.“Mechanismsofimplant damageannealingand transientenhanceddiffusion in Si”. Appl. Phys.Lett. 65(23),2981(1994).

[11] S.T. Dunham.“A quantitativemodelfor thecoupleddiffusionof phosphorusandpoint defectsin silicon”. ElectrochemicalSoc.139, 2628(1992).

[12] S.T. Dunham.“Growth kineticsof disk-shapedextendeddefectswith constantthickness”.Appl.Phys.Lett.63(4), 464(1993).

72

Page 81: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

[13] S.T. Dunham. “Modeling of dopantdiffusionduringannealingof sub-amorphizingimplants”.In Materials Synthesisand ProcessingUsing Ion Beams, MaterialsResearchSoc.,(1994).

[14] S.T. Dunham.“Modeling of thekineticsof dopantprecipitationin silicon”. J. Electrochem.Soc.142, 2823(1995).

[15] S.T. DunhamandA.M. Agarwal. “Spatial variationsin point defectconcentrationsandtheirimpacton submicrondevice structures”. In ULSI Scienceand Technology, ElectrochemicalSoc.,235(1995).

[16] S.T. Dunham,I. Clejan,andA.H. Gencer. “Accurateandefficient modelingof nucleationandgrowth processes”.Mat. Sci.Eng. A 238(1), 152(1997).

[17] D.J. Eaglesham,P.A. Stolk, H.J. Gossmann,and J.M. Poate. “Implantation and transientBdiffusionin Si: Thesourceof theinterstitials”. Appl.Phys.Lett.65(18),2305(1994).

[18] P.M. Fahey, P.B. Griffin, andJ.D. Plummer. “Point defectsanddopantdiffusion in silicon”.Reviewsof ModernPhysics61(2), 289(1989).

[19] R.Fair. “Point defectchargestateeffectsontransientdiffusionof dopantsin Si”. J. Electrochem.Soc.137(2), 667(1990).

[20] A.H. Gencer, S.Chakravarthi, I. Clejan,andS.T. Dunham.“Fundamentalmodelingof transientenhanceddiffusion throughextendeddefectevolution”. In Defectsand Diffusion in SiliconProcessing, MaterialsResearchSoc.,(1997).

[21] A.H. Gencer, S. Chakravarthi, and S.T. Dunham. “Physical modelingof transientenhanceddiffusionanddopantdeactivationvia extendeddefectevolution”. In Proceedingsof Inter na-tional Conferenceon Simulation of SemiconductorProcessesand Devices(SISPAD), IEEEElectronDevicesSociety, 77 (1997).

[22] A.H. GencerandS.T. Dunham. “Modeling of dislocationloop growth andtransientenhanceddiffusionin silicon for amorphizingimplants”. In Micr ostructure Evolution During Irradia-tion, MaterialsResearchSoc.,(1996).

[23] A.H. Gencerand S.T. Dunham. “Modeling of evolution of Õ 311Ö defectsand predictionoftransientenhanceddiffusion”. In TECHCON ’96 Proceedings, SemiconductorResearchCor-poration,(1996).

[24] A.H. GencerandS.T. Dunham.“Modeling of transientenhanceddiffusionbasedon evolutionof Õ 311Ö defects”.In ProcessPhysicsand Modeling in SemiconductorTechnology, Electro-chemicalSoc.,155(1996).

[25] A.H. GencerandS.T. Dunham.“A predictive modelfor transientenhanceddiffusionbasedonevolutionof Õ 311Ö defects”.J. Appl.Phys.81(2), 631(1997).

[26] A.H. GencerandS.T. Dunham.“DOPDEES/PMM:A systemfor portablemodeldescription”.In Proceedingsof the First Inter national Conferenceon Modeling and Simulation of Mi-crosystems,Semiconductors,Sensorsand Actuators (MSM) , (1998).

73

Page 82: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

[27] A.H. GencerandS.T. Dunham.“Modeling andsimulationof transientenhanceddiffusionandextendeddefectkinetics”. In TECHCON ’98 Proceedings, SemiconductorResearchCorpora-tion, (1998).

[28] A.H. GencerandS.T. Dunham.“Moment-basedmodelingof extendeddefectsfor simulationofTED: What level of complexity is necessary?”.In Silicon Front-End Technology-MaterialsProcessingand Modeling, MaterialsResearchSoc.,(1998).

[29] M.D. Giles. “Transientphosphorusdiffusion below the amorphizationthreshold”. J. Elec-trochem.Soc.138(4), 1160(1991).

[30] M.D. Giles. “Transientphosphorusdiffusion from silicon and argon implantationdamage”.Appl.Phys.Lett.62(16),1940(1993).

[31] P.B. Griffin, R.F. Lever, P.A. Packan,andJ.D.Plummer. “Doping anddamagedosedependenceof implant inducedtransientenhanceddiffusion below the amorphizationthreshold”. Appl.Phys.Lett.64(10),1242(1994).

[32] R.A. Huang.“Experimentalinvestiagtionandmodelingof theeffectsof high-doseion implan-tationdamageonborondiffusionin silicon”. Ph.D.thesis,StanfordUniversity(1994).

[33] K.S. Jones,J.Lui, L. Zhang,V. Krishnamoorthy, andR.T. DeHoff. “Studiesof theinteractionsbetweenÕ 311Ö defectsandtype I andII dislocationloopsin Si implantedsilicon”. Nuc. Inst.andMeth.B 106, 227(1995).

[34] H. Kinoshita,G.Q. Lo, andD.L. Kwong. “Dif fusion modellingof ion implantedboronin Siduringrta: correlationof extendeddefectformationandannealingwith theenhanceddiffusionof boron”. J. Electrochem.Soc.140(1), 248(1993).

[35] J.Lui, M.E. Law, andK.S. Jones.“Evolution of dislocationloopsin silicon in aninert ambient(Part 1)”. SolidStateElectronics38(7), 1305(1995).

[36] M. Miyake andS.Aoyama.“Transientenhanceddiffusionof ion implantedboronin Si duringrapidthermalannealing”.J. Appl.Phys.63(5), 1754(1988).

[37] B.J. Mulvaney, W.B. Richardson,and T.L. Crandle. IEEE Trans.Comp.Aided Des.8, 336(1989).

[38] J.K.Osterhout.Tcl andtheTk toolkit. AddisonWesley (1994). ISBN 0–201–63337–X.

[39] P.A. Packan.“Physicalmodelingof transientdiffusioneffectsin silicondueto surfaceoxidationandion-implantation”.Ph.D.thesis,StanfordUniversity(1991).

[40] P.A. PackanandJ.D. Plummer. “Transientdiffusion of low-concentrationB in Si dueto 29Siimplantationdamage”.Appl.Phys.Lett.56(18),1787(1990).

[41] G.Z.PanandK.N. Tu. “Transmissionelectronmicroscopy on Õ 113Ö rodlikedefectsand Õ 111Ödislocationloopsin silicon-implantedsilicon”. J. Appl.Phys.82(2), 601(1997).

[42] G.Z.Pan,K.N. Tu, andS.Prussin.“Sizedistributionof end-of-ragedislocationloopsin silicon-implantedsilicon”. Appl.Phys.Lett.68(12),1654(1996).

74

Page 83: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

[43] A. Parisini and A. Bourret. “Diamond hexagonalsilicon phaseand Õ 311Ö defects: Energycalculationsandnew defectmodels”.Phil. Mag. A 67(3), 605(1993).

[44] H. Park andM. Law. “Effectsof low doseSi implantationdamageon diffusionof phosphorusandarsenicin Si”. Appl.Phys.Lett.58(7), 732(1991).

[45] H. Park andM. Law. “Point defectbasedmodellingof low dosesilicon implant damageandoxidation effects on phosphorusand boron diffusion in silicon”. J. Appl. Phys.72(8), 3431(1992).

[46] J.M. Poate,D.J.Eaglesham,andG.H. Gilmer. “Ion implantationandtransientenhanceddiffu-sion”. In IEDM TechnicalDigest, IEEE,77 (1995).

[47] S. Prussin,G.Z. Pan,andP.F. Zhang. “Role of dose,doserateandannealtemperatureon end-of-rangedislocationloops”. In ElectrochemicalSoc.Proceedings, ElectrochemicalSoc.,379(1996).

[48] C.S.Rafferty, G.H.Gilmer, M. Jaraiz,D. Eaglesham,andH.J.Gossmann.“Simualtionof clusterevaporationandtransientenhanceddiffusionin silicon”. Appl.Phys.Lett.68, 2395(1996).

[49] M. Servidori,R. Angelucci,F. Cembali,P. Negrini, S.Solmi,P. Zaumsteil,andU. Winter. “Re-tardedandenhanceddopantdiffusion in silicon relatedimplantationinducedexcessvacanciesandinterstitials”. J. Appl.Phys.61(5), 1834(1987).

[50] S. Takeda,M. Kohyama,andK. Ibe. “Interstitial defectson Õ 311Ö in Si andGe: line defectconfigurationincorporatedwith aself interstitialatomchain”. Phil. Mag. A 70(2), 28 (1994).

[51] Al Tasch.UT-MarloweUser’sManual. Universityof TexasatAustinversion4.1edition(1997).

[52] R.H.Thompson,V. Krishnamoorthy, J.Lui, andK.S.Jones.“TypeII dislocationloopsandtheireffectonstrainin ion implantedsiliconasstudiedby highresolutionx-raydiffraction”. In Proc.of MRS Meeting, MaterialsResearchSoc.,378(1995).

[53] O. Vancauwenberghe,N. Herbots,andO. Hellman.J. Vac.Sci.Tech. B 9, 2027(1991).

[54] B.B. Welch.Practicalprogrammingin Tcl andTk. PrenticeHall (1995).ISBN 0–13–182007–9.

[55] D. Yergeau.Alamode— A LayaredModelingEnvironment(1996).

[56] D. Yergeau,R. Dutton, A.H. Gencer, and S.T Dunham. “A model implementationenviron-mentto supportrapid prototypingof new TCAD models:A casestudyfor dopantdiffusion”.TechnicalreportSEMATECH(1997).

[57] L.H. ZhangandK.S.Jones.“Transientenhanceddiffusionwithout Õ 311Ö defectsin low energyB implantedsilicon”. Appl.Phys.Lett. (1995). in press.

[58] H. ZimmermannandH. Ryssel.“Gold andplatinumdiffusion:Thekey to theunderstandingofpoint defectbehavior in silicon”. AppliedPhysicsA 55, 121(1992).

75

Page 84: MODELING AND SIMULATION OF TRANSIENT ENHANCED …working with all of them. In particular, I would like to thank Anu Agarwal for her encouraging me to join the group, Soumya Banerjee

CURRICULUM V ITAE

EDUCATIONæ Ph.D. in Electrical Engineering 1999BostonUniversity, Departmentof ElectricalandComputerEngineering,Boston,MA.æ Master of Sciencein Electrical Engineering 1995BostonUniversity, Departmentof Electrical,ComputerandSystemsEngineering,Boston,MA.GPA: 4.00/4.00.æ Bachelorof Sciencein Electrical Engineering 1993Bogazici University, Departmentof ElectricalandElectronicsEngineering,Istanbul, Turkey.GPA: 3.92/4.00(High Honors).æ Bachelorof Sciencein Physics 1993Bogazici University, Departmentof Physics,Istanbul, Turkey. GPA: 3.92/4.00(High Honors).æ Abitur 1989GermanHigh School,Istanbul, Turkey.

EXPERIENCEæ Avant! Corporation, Lincoln, MA 1998–presentApplicationsEngineerat theTCAD BusinessUnit.æ BostonUniversity, Boston,MA 1994–1998ResearchAssistantfor Assoc.Prof. ScottDunhamin the Departmentof ElectricalandCom-puterEngineering.æ BostonUniversity, Boston,MA 1993–1994Teachingassistantfor Prof. T.D. Moustakasin the Departmentof Electrical and ComputerEngineering.æ KondaResearch Inc., Istanbul, Turkey 1991–1993IT consultantandapplicationdeveloper(part-time).æ SiemensAG, Munich,Germany 1991SummerInternat theDepartmentof CorporateResearchandDevelopment.

76