37
Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Embed Size (px)

Citation preview

Page 1: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Modeling Cyclical Growth

Steve KeenSchool of Economics &

FinanceUniversity of Western Sydney

Page 2: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

The Project

• UNEP specification of non-equilibrium economic model– Linked to CSIRO bio-physical model

• My brief:– Take single sectoral model of cycles (Keen 1995 etc.)– Single sectoral model of credit (Keen 2009 etc.)– Combine into multi-sectoral cyclical model of credit

and production•Never previously done

– Previous attempts at dynamic “IO” input-output (multi-sectoral) models generally failed

• Fatal instabilities—negative prices etc.– No previous attempts to model multisectoral

monetary dynamics

Page 3: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Trends in economic data

• Growth the norm in market economies...

1960 1970 1980 1990 2000 201010

100

1000

10000

100000

1 106

1 107

GDP

Employment

Prices

Debt

Trends in Economic Data

Year

Vari

ous:

$, In

dex,

Num

ber

Page 4: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Cycles in economic data

• As are cycles...– Previous data, de-trended:

1960 1970 1980 1990 2000 201010

5

0

5

10

GDP

Employment

Prices

Debt

Cycles in Economic Data

Year

Detr

ended P

erc

ent

change p

.a.

Page 5: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Conventional economic models

• “Neoclassical” General Equilibrium models– Focus on trend– Ignore cycles– Ignore money– Presume system is

• In equilibrium unless “shocked”• Will return to equilibrium after “exogenous shock”

– Yet models have “dual instability” dilemma• Prices or quantities or both must be unstable

• Effectively a barter system– Money only affects relative prices & inflation

• Cycles assumed to be caused by noneconomic factors– Agriculture/weather/sunspots... (meteors?)

Page 6: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Conventional economic models

• “The capitalistic economy is stable, and absent some change in technology or the rules of the economic game, the economy converges to a constant growth path with the standard of living doubling every 40 years.”– Edward C. Prescott (Nobel Prize 2004 for Real

Business Cycle Theory), 1999• “As ... discussed in ... “The Dynamic General

Equilibrium Model,” the model features a representative household [i.e., one only!] that chooses paths of consumption, leisure, and investment to maximize utility. The paths of TFP and population are exogenously given, and the agent has perfect foresight over their values. We start the model at date T0 = 1980 and let time run out to infinity...” Conesa 2007

Page 7: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Conventional economic models

• “The model could be described as broadly new Keynesian in its dynamic structure but with an equilibrating long run.

• Activity is demand determined in the short run but supply determined in the long run…

• The model will eventually return to a supply determined equilibrium growth path in the absence of demand or other shocks.”– Australian Treasury TRYM Model (2001)

• Cycles treated as exogenous to model of economy...

Page 8: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Conventional economic models

• E.g. unemployment in Australian Treasury TYRM model

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

Mar-80 Mar-83 Mar-86 Mar-89 Mar-92 Mar-95 Mar-98 Mar-01 Mar-04 Mar-07 Mar-10

% o

f Lab

our

For

ce

History Projection

Steady State Path

Dynamic PathUnemployment Rate

History taken as History taken as givengiven

Equilibrium long Equilibrium long run growth rate run growth rate

assumedassumed

Convergence to Convergence to equilibrium equilibrium

assumedassumed

Page 9: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Conventional economic models

• Treatment of money and debt– In general, money ignored

• “One thing which has not changed over the past five years is the philosophy underpinning the model.

• It remains small, highly aggregated, empirically based, and non-monetary in nature.” Australia’s RBA (2005)

• Money “neutrality” assumed– Affects price level but not real output

– Universally, private debt ignored• Versus empirical data...

Page 10: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Endogenous Money

• “The fact that the transaction component of real cash balances (M1) moves contemporaneously with the cycle

• while the much larger nontransaction component (M2) leads the cycle

• suggests that credit arrangements could play a significant role in future business cycle theory.

• Introducing money and credit into growth theory in a way that accounts for the cyclical behavior of monetary as well as real aggregates is an important open problem in economics.”– Kydland and Prescott (1990, p. 15. Emphasis

added)• 1990 analysis confirmed by more recent data

– E.g., leads and lags for Australia 1954-2009:

Page 11: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Endogenous Money

• Credit leads cycle with significant correlation• All other variables lag or have low correlations:

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-15 -10 -5 0 5 10 15Corr

elati

on C

oeffi

cien

t

Lead or Lag in Months

Leading and Lagging Correlations with business cycle

Money Base

M1

M3

Credit

Page 12: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Key role of private debt

• “Our tests produce a clear story about short-term financing decisions in response to earnings and investment...– The leverage and debt regressions then confirm

that, for dividend payers, debt is indeed the residual variable in financing decisions.

– Like dividend payers, non-payers primarily use debt to absorb short-term variation in earnings and investment.” (Fama & French 2000; emphases added)

Page 13: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Objectives for our economic model

• Non-equilibrium– Economy itself inherently & endogenously cyclical– Model had to represent this

• Multi-sectoral– Many non-neoclassical endogenous cycle models– But none to date were multi-sectoral

• Explicitly monetary– Key role of money & debt shown in data– Incorporate interplay of debt, money and cycles

• 3 key foundations– Goodwin “Growth Cycle” model (1967)– Minsky “Financial Instability Hypothesis”– Graziani “Circuit Theory” model of credit creation

Page 14: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (1) Cycles: Goodwin’s “Growth Cycle”• Capital K determines output Y via the accelerator:

Y/

lr1

Labour Productivitya

L

• Y determines employment L via productivity a:

• L determines employment rate l via population N:

• l determines rate of change of wages w via P.C.

• Integral of w determines W (given initial value)

• Y-W determines profits P and thus Investment I…dw/dt 1/S

Integrator

w++

1Initial Wage

*L

W

WY +

-Pi I dK/dt

• Closes the loop:

1Initial Capital +

+1/SIntegrator

dK/dt

K 1/3Accelerator

Y

L/

lr100

PopulationN

l

PhillipsCurve dw/dt+- *

10WageResponse

.96"NAIRU"

Page 15: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (1) Cycles: Goodwin’s “Growth Cycle”

• Goodwin’s“Lokta-Volterra” model generates cycles:

K 1/3Accelerator

Y

/lr1

Labour Productivitya

L

/lr

1Population

Nl

PhillipsCurve dw/dt

1/SIntegrator

w++

1Initial Wage *

LW

Y +-

Pi I dK/dt

3Initial Capital +

+1/SIntegrator

+- *10

WageResponse

.96"NAIRU"

Goodwin's cyclical growth model

Time (Years)0 2 4 6 8 10

.50

.75

1.00

1.25

1.50Employment

Wages

Goodwin's cyclical growth model

Employment.9 .95 1 1.05

Wa

ge

s

.7

.8

.9

1.0

1.1

1.2

1.3

Goodwin01B.vsm

• Cycles caused by essential nonlinearity:

• Wage rate times employment

• Behavioural nonlinearities not needed for cycles;

• Instead, restrain values to realistic levels

Page 16: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (2) Debt: Minsky’s “FIH”

• Only theory that predicts this financial crises:– “it is necessary to have an economic theory which

makes great depressions one of the possible states in which our type of capitalist economy can find itself.” (Can "It” Happen Again? A Reprise)

• Time-&-debt-aware model:– Economy in historical time– Debt-induced recession in recent past– Firms and banks conservative re debt/equity,

assets– Only conservative projects are funded

• Recovery means most projects succeed– Firms and banks revise risk premiums

• Accepted debt/equity ratio rises• Assets revalued upwards…

Page 17: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (2) Debt: Minsky’s “FIH”

• Period of tranquility causes expectations to rise… – “Stability—or tranquility—in a world with a cyclical past

and capitalist financial institutions is destabilizing.” (The Financial Instability Hypothesis: A Restatement)

• Self-fulfilling expectations– Decline in risk aversion causes increase in investment

• Investment expansion causes economy to grow faster– Asset prices rise

• speculation on assets profitable– Increased willingness to lend increases money supply

• Money supply endogenous money, not under Fed control

– Riskier investments enabled, asset speculation rises

• The emergence of “Ponzi” financiers– Cash flow less than debt servicing costs– Profit by selling assets on rising market– Interest-rate insensitive demand for finance

Page 18: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (2) Debt: Minsky’s “FIH”

• Eventually:– Rising rates make conservative projects

speculative– Non-Ponzi investors sell assets to service debts– Entry of new sellers floods asset markets– Rising trend of asset prices falters or reverses

• Ponzi financiers go bankrupt:– Can no longer sell assets for a profit– Debt servicing on assets far exceeds cash flows

• Asset prices collapse, increasing debt/equity ratios• Endogenous expansion of money supply reverses• Investment evaporates; economic growth slows• Economy enters a debt-induced recession

– Back where we started...

Page 19: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (3): Endogenous money

• Fundamental Endogenous Money insight– “Loans create Deposits”

• Reverse of “Money Multiplier” model• Suggested directly modeling bank credit creation via

account dynamics– Simple model of “Wicksellian” pure credit

economy• No government sector or fiat money (yet)• Explicitly monetary model• “Double-entry book-keeping” meets symbolic

math

Page 20: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (3): Endogenous money• New methodology for dynamic modelling

– Table where each column represents a stock– Each row represents relations between system states…

Dynamic System

“System States”Stock A Stock B … Stock Z Accounting

Flows

 + Flow 1 - Flow 1 … … Sum(=0)

… … + Flow 2 - Flow 2 Sum

• To generate the model, symbolically add up each column– Sum of column is differential equation for stock

•Continuous time, not “discrete” time•Strictly monetary model of pure credit

multi-commodity production economy developed…

ddt A t d

dt B t ddt Z t

Page 21: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

S2

"Type"

"Account"

"Account"

"Compound Interest"

"Pay Interest on Loan"

"Interest on Deposit"

"Wages"

"Interest on Deposit"

"Consumption"

"Repay Loan"

"Lend Reserves"

"New Money"

0

"Bank Reserves"

BR t( )

0

0

0

0

0

0

H

I

0

1

"Firm Loan"

FL t( )

A

B

0

0

0

0

H

I

J

1

"Firm Deposit"

FD t( )

0

B

C

D

0

F G

H

I

J

1

"Worker Deposit"

WD t( )

0

0

0

D

E

F

0

0

0

0

"Bank Income"

BI t( )

0

B

C

0

E

G

0

0

0

H

Foundations (3): Endogenous money

• Input system as table:

Interest flows: bank<―>firmInterest flows: bank<―>firm

Wage flows: firm―>workersWage flows: firm―>workersInterest flows: bank―>workersInterest flows: bank―>workers

Consumption flows: bank & workers―>firmsConsumption flows: bank & workers―>firms

New Money/Debt flows: bank<―>firmsNew Money/Debt flows: bank<―>firms

Debt repayment flows: firmsDebt repayment flows: firms―>bank―>bankReserve relending flows: Reserve relending flows: bank―>firmsbank―>firms

• Symbolic substitutions for placeholders above:• E.g., A is “loan interest rate times outstanding

debt”

• Time lags used for behavioural variables

L LA r F t

Page 22: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Foundations (3): Endogenous money

• Simple code develops mode automatically:

SystemODEs x( ) Functions submatrix x 2 2 1 cols x( ) 1( )

Equations submatrix x 3 rows x( ) 1 1 cols x( ) 1( )

Ei t

Functionsi

d

dEquations i

i 0 cols Functions( ) 1for

Ereturn

t

SystemODEs S2

tBR t( )d

d

FL t( )

L

BR t( )

R

tFL t( )d

d

BR t( )

R

FD t( )

M

FL t( )

L

tFD t( )d

drD FD t( ) rL FL t( )

BI t( )

B

BR t( )

R

FD t( )

M

FL t( )

L

WD t( )

W

FD t( ) s 1( )

S

tWD t( )d

drD WD t( )

WD t( )

W

FD t( ) s 1( )

S

tBI t( )d

drL FL t( ) rD FD t( ) rD WD t( )

BI t( )

B

Page 23: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Modelling a Credit Crunch• Simple production model linked to financial

flows– Output is Labour times productivity

• Single sectoral model generates stable dynamics• Can be used to consider some policy questions

• But no cycles as yet• Policy example—stimulus to overcome credit crunch

Q a L

1 D

S

FsL

W

1h

d LW P

W dt N

1

1P

d WP P

dt a s

– Labour is Money Wages flow divided by Money Wage rate

– Wage set by Phillips curve unemployment-money wage change function– Price (necessary link between $ accounts and physical output) lagged convergence to markup over monetary cost of production

Page 24: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Modelling a Credit Crunch

• What’s better? Stimulus to lenders or debtors?

20 22 24 26 28 300

50

100

Government stimulus as 1 year duration pulse

Time (Credit Crunch at t=25)

$ bi

llion

inje

ctio

n in

to e

cono

my

• Injected into either BR (Bank Reserves) or FD (Firm Deposits) in simulation

Parameters &Initial Conditions

FinancialSystem

Bank Assets

Time (Years)

0 10 20 30 40 50 600

1000

2000

3000

4000

5000 LoansUnlent Reserves

ProductionSystem

URate

Unemployment

Time (Years)

0 10 20 30 40 50 600

5

10

15

20

25 No StimulusBank Injection

Borrowers Injection

InfRate

C_size

Inflation

Time (Years)

0 10 20 30 40 50 60-10.0

-7.5

-5.0

-2.5

0

2.5

5.0

7.5

10.0 No StimulusBank Injection

Borrowers Injection

3

Bank Liabilities (Deposits)

Time (Years)

0 10 20 30 40 50 600

2000

4000

6000

8000

10000 FirmsHouseholds

Banks

F_DB_D H_D

Y

Debt to Output Ratio

Time (Years)

0 10 20 30 40 50 600

5

10

15

20

25 No StimulusBank Injection

Borrowers Injection

F_L/

lr

100

0StimBank

NoStimulus

1.StimFirm

StimFirm25 tCC

60.

CreditCrunchGovRescue02.vsm

• Stimulus far more effective if given to debtors

Page 25: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Producing a multi-sectoral nonequilibrium model• Minsky model

– Goodwin cycles– Debt “ratchets up” of in series of cycles

• With “Ponzi lending”, tends towards Depression– But implicit money only (debt to GDP ratio)

• Graziani model– Explicit money– Monetary determination of equilibrium output– But no cycles

• Blending two models necessitates multi-sectoral model– Capital sector for purchases of investment goods– Easily built using “Table to Dynamic Model”

technology

Page 26: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model

• More complicated table (2 sector version shown here):

• Capital and Consumer Goods Sectors• All sectors in 2 halves to force recording of intra-

sectoral monetary purchases• Investment & inter-sectoral demand• Time lags are time-varying

functions of rate of profit rather than constant parameters

I

J

K

L

FDeposits

pr prK t( ) pr prK t( ) pr prC t( ) pr prC t( )

FDK1 t( )

pr prK t( ) FDK2 t( )

pr prK t( ) FDC1 t( )

pr prC t( ) FDC2 t( )

pr prC t( )

FDeposits

pr prK t( ) pr prK t( ) pr prC t( ) pr prC t( )

S1

"Type"

"Name"

"Symbol"

"Compounding Debt"

"Deposit Interest"

"Investment"

"Wages"

"Intersectoral Demand"

"Interest Workers"

"Pay Interest"

"Consumption"

"Repay Loans"

"Recycle Reserves"

"New Money"

0

"BR"

BR t( )

0

0

0

0

0

0

0

0

AF AG AH AI

AJ AK AL AM( )

0

1

"K1 L"

FLK1 t( )

A

0

0

0

0

0

V

0

AF

AJ

AN

1

"K2 L"

FLK2 t( )

B

0

0

0

0

0

W

0

AG

AK

AO

1

"C1 L"

FLC1 t( )

C

0

0

0

0

0

X

0

AH

AL

AP

1

"C2 L"

FLC2 t( )

D

0

0

0

0

0

Y

0

AI

AM

AQ

1

"K1 D"

FDK1 t( )

0

E

I J K( )

M

Q

0

V

Z

AF

AJ

AN

1

"K2 D"

FDK2 t( )

0

F

J I L( )

N

R

0

W

AA

AG

AK

AO

1

"C1 D"

FDC1 t( )

0

G

K

O

S Q T( )

0

X

AB Z ACAD AE

2

AH

AL

AP

1

"C2 D"

FDC2 t( )

0

H

L

P

T R S( )

0

Y

AC AA ABAD AE

2

AI

AM

AQ

1

"W D"

WD t( )

0

0

0

M N O P

0

U

0

AD

0

0

0

0

"B I"

BI t( )

0

E F G H( )

0

0

0

U

V W X Y

AE

0

0

0

BR

Page 27: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model

• More complex financial model results– Constrained by nonlinear behavioural relations

80 90 100 11050

0

50

Wage Change Function

Employment Rate (percent normal participation rate)

Rat

e of

cha

nge

of M

oney

Wag

es p

erce

nt

0 5 106

8

10

12

14

Lag in new money creation as function of rate of profit

Rate of profit in percent

Tim

e la

g in

yea

rs f

or d

oubl

ing

of m

oney

0 5 100

2

4

6

8

10

Investment time lag as function of rate of profit

Rate of profit in percent

Tim

e la

g fo

r do

ublin

g of

cap

ital s

tock

0 5 10

Loan repayment time lag as function of rate of profit

Rate of profit in percent

Tim

e la

g fo

r lo

an r

epay

men

t in

year

s

0 5 100

10

20

30

40

50

Money relending as function of rate of profit

Rate of profit in percent

Tim

e la

g re

lend

ing

exis

ting

inac

tive

mon

ey s

tock

• (Nonlinear functions not essential for dynamics but constrain simulation values to more realistic ranges)

Page 28: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model

• Allied to lagged Goodwin growth cycle production model– Investment minus Depreciation determines Capital

tKK1 t( )d

d

FDK1 t( )

pr prK t( ) PK1 t( ) KK1 t( )

tQK1 t( )d

d

1QK

QK1 t( )1

vKKK1 t( )

tLK1 t( )d

d

1LK

LK1 t( )QK1 t( )

aK t( )

– Output function of capital stock

– Employment function of output

• Model of financially driven cyclical economy• Simulations shown here lead to sustained cycles

• (No speculative debt in model as yet)• Overall system very complex

• But easily simulated in modern software• Scales indefinitely (more sectors easily added)

Page 29: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model

• Model requires minimum of– 4n+3 financial ODEs– 2n Loan & 2n Deposit– Bank Income– Bank Reserves– Household Deposit

• 5n sectoral equations– capital, output, labour,

prices, productivity• 1 population equation• 40 ODEs in this 4 sector

model

GivenBR 0( ) BR0

FLK1 0( ) FLK10

tBR t( )d

d

FLA1 t( )

RL prA t( ) 2 BR t( )

RR prC t( ) 2 BR t( )

RR prE t( ) 2 BR t( )

RR prK t( ) 2 BR t( )

RR prA t( ) FLA2 t( )

RL prA t( ) FLC1 t( )

RL prC t( ) FLC2 t( )

RL prC t( ) FLE1 t( )

RL prE t( ) FLE2 t( )

RL prE t( ) FLK1 t( )

RL prK t( ) FLK2 t( )

RL prK t( ) FLK2 0( ) FLK20

FLC1 0( ) FLC10

tFLK1 t( )d

d

BR t( )

RR prK t( ) FLK1 t( )

RL prK t( ) FLK1 t( )

NM prK t( ) FLC2 0( ) FLC20

FLA1 0( ) FLA10

tFLK2 t( )d

d

BR t( )

RR prK t( ) FLK2 t( )

RL prK t( ) FLK2 t( )

NM prK t( )

FLA2 0( ) FLA20

tFLC1 t( )d

d

BR t( )

RR prC t( ) FLC1 t( )

RL prC t( ) FLC1 t( )

NM prC t( ) FLE1 0( ) FLE10

FLE2 0( ) FLE20

tFLC2 t( )d

d

BR t( )

RR prC t( ) FLC2 t( )

RL prC t( ) FLC2 t( )

NM prC t( ) FDK10( ) FDK10

FDK20( ) FDK20

tFLA1 t( )d

d

BR t( )

RR prA t( ) FLA1 t( )

RL prA t( ) FLA1 t( )

NM prA t( ) FDC1 0( ) FDC10

tFLA2 t( )d

d

BR t( )

RR prA t( ) FLA2 t( )

RL prA t( ) FLA2 t( )

NM prA t( ) FDC2 0( ) FDC20

FDA1 0( ) FDA10

tFLE1 t( )d

d

BR t( )

RR prE t( ) FLE1 t( )

RL prE t( ) FLE1 t( )

NM prE t( )

FDA2 0( ) FDA20

tFLE2 t( )d

d

BR t( )

RR prE t( ) FLE2 t( )

RL prE t( ) FLE2 t( )

NM prE t( ) FDE1 0( ) FDE10

tFDK1t( )d

d

BR t( )

RR prK t( ) rL FLK1 t( ) LK1 t( ) WM t( )FDA1 t( )

pr prA t( ) FDC1 t( )

pr prC t( ) FDE1 t( )

pr prE t( ) FDK1t( )

pr prK t( ) FDK2t( )

pr prK t( ) FLK1 t( )

RL prK t( ) FLK1 t( )

NM prK t( ) FDK1t( )

CKA

FDK1t( )

CKC

FDK1t( )

CKE FDK1t( ) rD FDK1t( ) KA LK1 t( ) WM t( ) KC LK1 t( ) WM t( ) KELK1 t( ) WM t( )

FDE2 0( ) FDE20

tFDK2t( )d

d

BR t( )

RR prK t( ) rL FLK2 t( ) LK2 t( ) WM t( )FDA2 t( )

pr prA t( ) FDC2 t( )

pr prC t( ) FDE2 t( )

pr prE t( ) FDK1t( )

pr prK t( ) FDK2t( )

pr prK t( ) FLK2 t( )

RL prK t( ) FLK2 t( )

NM prK t( ) FDK2t( )

CKA

FDK2t( )

CKC

FDK2t( )

CKE FDK2t( ) rD FDK2t( ) KA LK2 t( ) WM t( ) KC LK2 t( ) WM t( ) KELK2 t( ) WM t( )

WD 0( ) WD0

BI 0( ) BI0tFDC1 t( )d

d

BR t( )

RR prC t( ) rL FLC1 t( ) LC1 t( ) WM t( )FDC1 t( )

pr prC t( ) FLC1 t( )

RL prC t( ) FLC1 t( )

NM prC t( ) BI t( )

2 CBC

FDA1 t( )

CAC

FDC1 t( )

CCA

FDC1 t( )

CCC

FDC2 t( )

CCC

FDC1 t( )

CCE

FDE1 t( )

CEC

FDK1t( )

CKC

WD t( )

2 CWC FDC1 t( ) rD FDC1 t( ) AC LA1 t( ) WM t( ) CA LC1 t( ) WM t( ) CC LC1 t( ) WM t( ) CC LC2 t( ) WM t( ) CE LC1 t( ) WM t( ) EC LE1 t( ) WM t( ) KC LK1 t( ) WM t( )

tFDC2 t( )d

d

BR t( )

RR prC t( ) rL FLC2 t( ) LC2 t( ) WM t( )FDC2 t( )

pr prC t( ) FLC2 t( )

RL prC t( ) FLC2 t( )

NM prC t( ) BI t( )

2 CBC

FDA2 t( )

CAC

FDC2 t( )

CCA

FDC1 t( )

CCC

FDC2 t( )

CCC

FDC2 t( )

CCE

FDE2 t( )

CEC

FDK2t( )

CKC

WD t( )

2 CWC FDC2 t( ) rD FDC2 t( ) AC LA2 t( ) WM t( ) CA LC2 t( ) WM t( ) CC LC1 t( ) WM t( ) CC LC2 t( ) WM t( ) CE LC2 t( ) WM t( ) EC LE2 t( ) WM t( ) KC LK2 t( ) WM t( )

tFDA1 t( )d

d

BR t( )

RR prA t( ) rL FLA1 t( ) LA1 t( ) WM t( )FDA1 t( )

pr prA t( ) FLA1 t( )

RL prA t( ) FLA1 t( )

NM prA t( ) BI t( )

2 CBA

FDA1 t( )

CAA

FDA2 t( )

CAA

FDA1 t( )

CAC

FDC1 t( )

CCA

FDA1 t( )

CAE

FDE1 t( )

CEA

FDK1t( )

CKA

WD t( )

2 CWA FDA1 t( ) rD FDA1 t( ) AA LA1 t( ) WM t( ) AA LA2 t( ) WM t( ) AC LA1 t( ) WM t( ) CA LC1 t( ) WM t( ) AE LA1 t( ) WM t( ) EA LE1 t( ) WM t( ) KA LK1 t( ) WM t( )

tFDA2 t( )d

d

BR t( )

RR prA t( ) rL FLA2 t( ) LA2 t( ) WM t( )FDA2 t( )

pr prA t( ) FLA2 t( )

RL prA t( ) FLA2 t( )

NM prA t( ) BI t( )

2 CBA

FDA1 t( )

CAA

FDA2 t( )

CAA

FDA2 t( )

CAC

FDC2 t( )

CCA

FDA2 t( )

CAE

FDE2 t( )

CEA

FDK2t( )

CKA

WD t( )

2 CWA FDA2 t( ) rD FDA2 t( ) AA LA1 t( ) WM t( ) AA LA2 t( ) WM t( ) AC LA2 t( ) WM t( ) CA LC2 t( ) WM t( ) AE LA2 t( ) WM t( ) EA LE2 t( ) WM t( ) KA LK2 t( ) WM t( )

tFDE1 t( )d

d

BR t( )

RR prE t( ) rL FLE1 t( ) LE1 t( ) WM t( )FDE1 t( )

pr prE t( ) FLE1 t( )

RL prE t( ) FLE1 t( )

NM prE t( ) BI t( )

2 CBE

FDA1 t( )

CAE

FDE1 t( )

CEA

FDC1 t( )

CCE

FDE1 t( )

CEC

FDE1 t( )

CEE

FDE2 t( )

CEE

FDK1t( )

CKE

WD t( )

2 CWE FDE1 t( ) rD FDE1 t( ) AE LA1 t( ) WM t( ) EA LE1 t( ) WM t( ) CE LC1 t( ) WM t( ) EC LE1 t( ) WM t( ) EE LE1 t( ) WM t( ) EE LE2 t( ) WM t( ) KELK1 t( ) WM t( )

tFDE2 t( )d

d

BR t( )

RR prE t( ) rL FLE2 t( ) LE2 t( ) WM t( )FDE2 t( )

pr prE t( ) FLE2 t( )

RL prE t( ) FLE2 t( )

NM prE t( ) BI t( )

2 CBE

FDA2 t( )

CAE

FDE2 t( )

CEA

FDC2 t( )

CCE

FDE2 t( )

CEC

FDE1 t( )

CEE

FDE2 t( )

CEE

FDK2t( )

CKE

WD t( )

2 CWE FDE2 t( ) rD FDE2 t( ) AE LA2 t( ) WM t( ) EA LE2 t( ) WM t( ) CE LC2 t( ) WM t( ) EC LE2 t( ) WM t( ) EE LE1 t( ) WM t( ) EE LE2 t( ) WM t( ) KELK2 t( ) WM t( )

tWD t( )d

dLA1 t( ) WM t( ) LA2 t( ) WM t( ) LC1 t( ) WM t( ) LC2 t( ) WM t( ) LE1 t( ) WM t( ) LE2 t( ) WM t( ) LK1 t( ) WM t( ) LK2 t( ) WM t( )

WD t( )

CWA

WD t( )

CWC

WD t( )

CWE WD t( ) rD WD t( )

tBI t( )d

drL FLA1 t( ) rL FLA2 t( ) rL FLC1 t( ) rL FLC2 t( ) rL FLE1 t( ) rL FLE2 t( ) rL FLK1 t( ) rL FLK2 t( )

BI t( )

CBA

BI t( )

CBC

BI t( )

CBE FDA1 t( ) rD FDA1 t( ) FDA2 t( ) rD FDA2 t( ) FDC1 t( ) rD FDC1 t( ) FDC2 t( ) rD FDC2 t( ) FDE1 t( ) rD FDE1 t( ) FDE2 t( ) rD FDE2 t( ) FDK1t( ) rD FDK1t( ) FDK2t( ) rD FDK2t( ) WD t( ) rD WD t( )

Production system

Capital 1 Capital 2 Consumption 1 Consumption 2Agriculture 1 Agriculture 2

Energy 1 Energy 2KK1 0( ) KK10 KK2 0( ) KK20 KC1 0( ) KC10 KC2 0( ) KC20

KA1 0( ) KA10 KA2 0( ) KA20 KE1 0( ) KE10 KE2 0( ) KE20Capital Stock

tKK1 t( )d

d

FDK1t( )

pr prK t( ) PK1 t( ) KK1 t( )

tKK2 t( )d

d

FDK2t( )

pr prK t( ) PK2 t( ) KK2 t( )

tKC1 t( )d

d

FDC1 t( )

pr prC t( ) PK1 t( ) KC1 t( )

tKC2 t( )d

d

FDC2 t( )

pr prC t( ) PK2 t( ) KC2 t( )

tKA1 t( )d

d

FDA1 t( )

pr prA t( ) PK1 t( ) KA1 t( )

tKA2 t( )d

d

FDA2 t( )

pr prA t( ) PK2 t( ) KA2 t( )

tKE1 t( )d

d

FDE1 t( )

pr prE t( ) PK1 t( ) KE1 t( )

tKE2 t( )d

d

FDE2 t( )

pr prE t( ) PK2 t( ) KE2 t( )

Output QK1 0( ) QK10 QK2 0( ) QK20 QC1 0( ) QC10 QC2 0( ) QC20QA1 0( ) QA10 QA2 0( ) QA20 QE1 0( ) QE10 QE2 0( ) QE20

tQK1 t( )d

d

1QK

QK1 t( )1

vKKK1 t( )

tQK2 t( )d

d

1QK

QK2 t( )1

vKKK2 t( )

tQC1 t( )d

d

1QC

QC1 t( )1

vCKC1 t( )

tQC2 t( )d

d

1QC

QC2 t( )1

vCKC2 t( )

tQA1 t( )d

d

1QA

QA1 t( )1

vAKA1 t( )

tQA2 t( )d

d

1QA

QA2 t( )1

vAKA2 t( )

tQE1 t( )d

d

1QE

QE1 t( )1

vEKE1 t( )

tQE2 t( )d

d

1QE

QE2 t( )1

vEKE2 t( )

Employment LK1 0( ) LK10 LK2 0( ) LK20 LC1 0( ) LC10 LC2 0( ) LC20LA1 0( ) LA10 LA2 0( ) LA20 LE1 0( ) LE10 LE2 0( ) LE20

tLK1 t( )d

d

1LK

LK1 t( )QK1 t( )

aK t( )

tLK2 t( )d

d

1LK

LK2 t( )QK2 t( )

aK t( )

tLC1 t( )d

d

1LC

LC1 t( )QC1 t( )

aC t( )

tLC2 t( )d

d

1LC

LC2 t( )QC2 t( )

aC t( )

tLA1 t( )d

d

1LA

LA1 t( )QA1 t( )

aA t( )

tLA2 t( )d

d

1LA

LA2 t( )QA2 t( )

aA t( )

tLE1 t( )d

d

1LE

LE1 t( )QE1 t( )

aE t( )

tLE2 t( )d

d

1LE

LE2 t( )QE2 t( )

aE t( )

Prices PK1 0( ) PK10 PK2 0( ) PK20 PC1 0( ) PC10 PC2 0( ) PC20PA1 0( ) PA10 PA2 0( ) PA20 PE1 0( ) PE10 PE2 0( ) PE20

tPK1 t( )d

d

1PK

PK1 t( )WM t( )

aK t( ) 1 sK

tPK2 t( )d

d

1PK

PK2 t( )WM t( )

aK t( ) 1 sK

tPC1 t( )d

d

1PC

PC1 t( )WM t( )

aC t( ) 1 sC

tPC2 t( )d

d

1PC

PC2 t( )WM t( )

aC t( ) 1 sC

tPA1 t( )d

d

1PA

PA1 t( )WM t( )

aA t( ) 1 sA

tPA2 t( )d

d

1PA

PA2 t( )WM t( )

aA t( ) 1 sA

tPE1 t( )d

d

1PE

PE1 t( )WM t( )

aE t( ) 1 sE

tPE2 t( )d

d

1PE

PE2 t( )WM t( )

aE t( ) 1 sE

Wages WM 0( ) WM0 tWM t( )d

dPh t( )( ) WM t( )

Employment Rate 0( ) 0 t( )LK1 t( ) LK2 t( ) LC1 t( ) LC2 t( ) LA1 t( ) LA2 t( ) LE1 t( ) LE2 t( )

Pop t( )

Technical ChangetaK t( )d

d aK t( ) aK 0( ) aK0 t

aC t( )d

d aC t( ) aC 0( ) aC0 t

aA t( )d

d aA t( ) aA 0( ) aA0 t

aE t( )d

d aE t( ) aE 0( ) aE0

Population GrowthtPop t( )d

d Pop t( ) Pop 0( ) Pop0

Aggregate Sectoral Capital Stock

Capital Consumer Agriculture Energy

KK 0( ) KK10 KK20 KC 0( ) KC10 KC20KA 0( ) KA10 KA20 KE 0( ) KE10 KE20

KK t( ) KK1 t( ) KK2 t( ) KC t( ) KC1 t( ) KC2 t( )KA t( ) KA1 t( ) KA2 t( ) KE t( ) KE1 t( ) KE2 t( )

Sectoral Rates of Profit

prK t( )100 rL FLK1 t( ) FLK2 t( ) rD FDK1t( ) FDK1t( ) FDK2t( ) WM t( ) LK1 t( ) LK2 t( ) PK1 t( ) QK1 t( ) QK2 t( ) KA WM t( ) LA1 t( ) LA2 t( ) KC WM t( ) LC1 t( ) LC2 t( ) KEWM t( ) LE1 t( ) LE2 t( )

KK1 t( ) PK1 t( ) KK2 t( ) PK2 t( )Capital Goods

prK 0( )100 rL FLK10 FLK20 rD FDK10 FDK10 FDK20 WM0 LK10 LK20 PK10 QK10 QK20 KA WM0 LA10 LA20 KC WM0 LC10 LC20 KEWM0 LE10 LE20

KK10PK10 KK20PK20

prC t( )100 rL FLC1 t( ) FLC2 t( ) rD FDC1 t( ) FDC1 t( ) FDC2 t( ) WM t( ) LC1 t( ) LC2 t( ) PC1 t( ) QC1 t( ) QC2 t( ) CA WM t( ) LA1 t( ) LA2 t( ) CC WM t( ) LC1 t( ) LC2 t( ) CE WM t( ) LE1 t( ) LE2 t( )

KC1 t( ) PK1 t( ) KC2 t( ) PK2 t( )Consumer Goods

prC 0( )100 rL FLC10 FLC20 rD FDC10 FDC10 FDC20 WM0 LC10 LC20 PC10 QC10 QC20 CA WM0 LA10 LA20 CC WM0 LC10 LC20 CE WM0 LE10 LE20

KC10 PK10 KC20 PK20

Agriculture prA t( )

100 rL FLA1 t( ) FLA2 t( ) rD FDA1 t( ) FDA1 t( ) FDA2 t( ) WM t( ) LA1 t( ) LA2 t( ) PA1 t( ) QA1 t( ) QA2 t( ) AA WM t( ) LA1 t( ) LA2 t( ) AC WM t( ) LC1 t( ) LC2 t( ) AE WM t( ) LE1 t( ) LE2 t( )

KA1 t( ) PK1 t( ) KA2 t( ) PK2 t( )

prA 0( )100 rL FLA10 FLA20 rD FDA10 FDA10 FDA20 WM0 LA10 LA20 PA10 QA10 QA20 AA WM0 LA10 LA20 AC WM0 LC10 LC20 AE WM0 LE10 LE20

KA10PK10 KA20PK20

Energy prE t( )100 rL FLE1 t( ) FLE2 t( ) rD FDE1 t( ) FDE1 t( ) FDE2 t( ) WM t( ) LE1 t( ) LE2 t( ) PE1 t( ) QE1 t( ) QE2 t( ) EA WM t( ) LA1 t( ) LA2 t( ) EC WM t( ) LC1 t( ) LC2 t( ) EE WM t( ) LE1 t( ) LE2 t( )

KE1 t( ) PK1 t( ) KE2 t( ) PK2 t( )

prE 0( )100 rL FLE10 FLE20 rD FDE10 FDE10 FDE20 WM0 LE10 LE20 PE10 QE10 QE20 EA WM0 LA10 LA20 EC WM0 LC10 LC20 EE WM0 LE10 LE20

KE10PK10 KE20PK20

Page 30: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model

• Notional Sectors in system shown here:– Capital Goods– Consumer Goods– Agriculture– Energy

• Generates complex endogenous cycles in income shares, output, credit, employment—just like actual economy– No need for “exogenous shocks”

• Though can also be added in future• Not yet fitted to empirical data

– But qualitative behaviour of model matches “stylised facts” of (credit-driven) business cycle

Page 31: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model of production• Endogenous cycles...

• Cycles similar to stylised facts of business cycle• Long accelerating boom• Sudden slump• Tepid recovery before next boom

20 25 30 35 402

0

2

4

6

8

Real Rate of Economic Growth

Per

cent

p.a

.

0 20 40 60 80 1005

0

5

10

15

Capital GoodsConsumer GoodsAgricultureEnergy

The Rate of Profit in a Monetary Multisectoral Model of Production

YearsP

rofi

t/Cap

ita (

Per

cent

)

Page 32: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model of production

• With equilibrium models– History cyclical– The future equilibrium...

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

Mar-80 Mar-83 Mar-86 Mar-89 Mar-92 Mar-95 Mar-98 Mar-01 Mar-04 Mar-07 Mar-10

% o

f Lab

our

For

ce

History Projection

Steady State Path

Dynamic PathUnemployment Rate

• With non-equilibrium model, projections look like history• Cycles in past & future

0 20 40 60 802

0

2

4

6

8

Real Rate of Economic Growth

Per

cent

p.a

.

20 25 30 35 400

20

40

60

0

10

20

30

40

GDPDebt

Change in Nominal Credit and Nominal GDP

Per

cent

cha

nge

p.a.

Page 33: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model of production

• Crucial role of credit– Change in credit leads cycle

20 25 30 35 402

1

0

1

2

3

4

5

6

7

50

40

30

20

10

0

10

20

30

40

Rate of GrowthChange in Debt Ratio (RHS)

Debt and Growth Dynamics

20 25 30 35 402

0

2

4

6

8

0

50

100

150

Rate of GrowthDebt Ratio (RHS)

Page 34: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model of production

• Income distribution cycles...

80 85 90 95 10060

70

80

90

100

10

0

10

20

30

WagesProfit (RHS)Interest (RHS)Rate of Growth (RHS)

Distribution of National Income

Wag

es S

hare

Pro

fit &

Int

eres

t Sha

re a

nd R

ate

of G

row

th94 96 98 100 102 104

55

60

65

70

75

80

85

90

95

100

15

10

5

0

5

10

15

20

25

30

WagesProfitInterest

Income Distribution Limit Cycles

Employment RateW

ages

Sha

re o

f O

utpu

t

Cap

italis

t & B

anke

r S

hare

s

Page 35: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model of production• Crucial role of monetary variables

0 20 40 60 80 100100

1000

10000

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

LoansBank ReservesDeposits

Bank Assets & Liabilities

20 25 30 351 10

5

1 106

1 107

1 108

10000

1 105

1 106

1 107

LoansDepositsBank Reserves (RHS)

Bank Assets & Liabilities

• Simulation show here generates “stable instability”• Cycles but not breakdown

• Different parameters can generate• Convergence to stability; or• Financial collapse (Great Depression)

Page 36: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

A Multi-sectoral monetary model of production• Crucial characteristic that cycles are endogenous

– General Disequilibrium as hallmark of a good model

• ““Instability is an observed characteristic of our Instability is an observed characteristic of our economy.economy.

• For a theory to be useful as a guide to policy for the For a theory to be useful as a guide to policy for the control of instability, the theory must show how control of instability, the theory must show how instability is generated.instability is generated.

• The abstract model of the neoclassical synthesis The abstract model of the neoclassical synthesis cannot generate instability...”cannot generate instability...”– (Minsky, “Can "It“ Happen Again? A Reprise”)

Page 37: Modeling Cyclical Growth Steve Keen School of Economics & Finance University of Western Sydney

Future development of model

• First “meteorological” model of capitalism– Causal dynamics rather than equilibrium assumptions– Realistic non-equilibrium multi-sectoral production– Designed for rising realism/complexity over time

• Parameter calibration of nonlinear, disequilibrium model– Two approaches to data fitting feasible

• Fit functions and selected empirical data• Fit overall model and generate realistic nonlinear

functions, lags, etc. from that• Develop to generate alternative scenarios

– All will include cyclical, non-equilibrium future• Enable automatic generation of higher-dimensional

multisectoral models