96

Modeling Evolutionary Processes - TBI

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modeling Evolutionary Processes - TBI
Page 2: Modeling Evolutionary Processes - TBI

Modeling Evolutionary Processes:

Evolution from the Viewpoint of a Physicist

Peter Schuster

Institut für Theoretische Chemie, Universität Wien, Austriaand

The Santa Fe Institute, Santa Fe, New Mexico, USA

Steps in Evolution: Perspectives from Physics, Biochemistry and Cell Biology – 150 Years after Darwin

Bremen, 28.06.– 05.07.2009

Page 3: Modeling Evolutionary Processes - TBI

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

Page 4: Modeling Evolutionary Processes - TBI

What is information ?

• Information is (only) what is understood.

• Information is (only) what creates information.

Carl Friedrich von Weizsäcker, 1912-2007, German physicist and philosopher.

Information in biology

• Understanding of information is interpreted as decoding,

• maintenance of information requires reproduction, and

• creation of information occurs through adaptation to the environment by means of a Darwinian mechanism of variationand selection.

Page 5: Modeling Evolutionary Processes - TBI

1. Darwin‘s two pathbreaking ideas

2. Dynamics of Darwinian evolution

3. RNA evolution in the test tube

4. Stochasticity in evolution

5. Evolutionary optimization of RNA structure

Page 6: Modeling Evolutionary Processes - TBI

1. Darwin‘s two pathbreaking ideas

2. Dynamics of Darwinian evolution

3. RNA evolution in the test tube

4. Stochasticity in evolution

5. Evolutionary optimization of RNA structure

Page 7: Modeling Evolutionary Processes - TBI

Three necessary conditions for Darwinian evolution are:

1. Multiplication,

2. Variation, and

3. Selection.

Darwin discovered the principle of natural selection from empirical observations in nature.

Page 8: Modeling Evolutionary Processes - TBI

1.01

12 =−

=f

ffs

Two variants with a mean progeny of ten or eleven descendants

Page 9: Modeling Evolutionary Processes - TBI

01.0,02.0,1.0;1)0(,9999)0( 21 === sNN

Selection of advantageous mutants in populations of N = 10 000 individuals

Page 10: Modeling Evolutionary Processes - TBI

Charles Darwin drew a tree of life and suggested that all life on Earth descended form one common ancestor

time

Charles Darwin, The Origin of Species, 6th edition. Everyman‘s Library, Vol.811, Dent London, pp.121-122.

Page 11: Modeling Evolutionary Processes - TBI

Modern phylogenetic tree: Lynn Margulis, Karlene V. Schwartz. Five Kingdoms. An Illustrated Guide to the Phyla of Life on Earth. W.H. Freeman, San Francisco, 1982.

Page 12: Modeling Evolutionary Processes - TBI
Page 13: Modeling Evolutionary Processes - TBI

Deoxyribonucleic acid – DNA

The carrier of digitally encoded information

Duplication of genetic information

Page 14: Modeling Evolutionary Processes - TBI
Page 15: Modeling Evolutionary Processes - TBI
Page 16: Modeling Evolutionary Processes - TBI
Page 17: Modeling Evolutionary Processes - TBI

Tim

e

Reconstruction of phylogenies through comparison of molecular sequence data

Page 18: Modeling Evolutionary Processes - TBI

1. Darwin‘s two pathbreaking ideas

2. Dynamics of Darwinian evolution

3. RNA sequences and structures

4. Stochasticity in evolution

5. Evolutionary optimization of RNA structure

Page 19: Modeling Evolutionary Processes - TBI

Reproduction of organisms or replication of molecules as the basis of selection

Page 20: Modeling Evolutionary Processes - TBI

( ) { } 0var22

1≥=−== ∑

=

fffdtdx

fdtd i

n

ii

φ

Selection equation: [Ii] = xi 0 , fi > 0

Mean fitness or dilution flux, φ (t), is a non-decreasing function of time,

Solutions are obtained by integrating factor transformation

( ) fxfxnifxdtdx n

j jjn

i iiii ====−= ∑∑ == 11

;1;,,2,1, φφ L

( ) ( ) ( )( ) ( )

nitfx

tfxtx

jn

j j

iii ,,2,1;

exp0

exp0

1

L=⋅

⋅=∑ =

Page 21: Modeling Evolutionary Processes - TBI

Chemical kinetics of replication and mutation as parallel reactions

Page 22: Modeling Evolutionary Processes - TBI

Mutation-selection equation: [Ii] = xi 0, fi > 0, Qij 0

Solutions are obtained after integrating factor transformation by means of an eigenvalue problem

fxfxnixxQfdtdx n

j jjn

i iijn

j jiji ====−= ∑∑∑ === 111

;1;,,2,1, φφ L

( ) ( ) ( )( ) ( )

)0()0(;,,2,1;exp0

exp01

1

1

0

1

0 ∑∑ ∑∑

=

=

=

= ==⋅⋅

⋅⋅=

n

i ikikn

j kkn

k jk

kkn

k iki xhcni

tc

tctx L

l

l

λ

λ

{ } { } { }njihHLnjiLnjiQfW ijijiji ,,2,1,;;,,2,1,;;,,2,1,; 1 LLlL ======÷ −

{ }1,,1,0;1 −==Λ=⋅⋅− nkLWL k Lλ

Page 23: Modeling Evolutionary Processes - TBI
Page 24: Modeling Evolutionary Processes - TBI

Perron-Frobenius theorem applied to the value matrix W

W is primitive: (i) is real and strictly positive

(ii)

(iii) is associated with strictly positive eigenvectors

(iv) is a simple root of the characteristic equation of W

(v-vi) etc.

W is irreducible: (i), (iii), (iv), etc. as above

(ii)

0allfor 0 ≠> kk λλ

0allfor 0 ≠≥ kk λλ

Page 25: Modeling Evolutionary Processes - TBI
Page 26: Modeling Evolutionary Processes - TBI
Page 27: Modeling Evolutionary Processes - TBI

Formation of a quasispeciesin sequence space

p = 0

Page 28: Modeling Evolutionary Processes - TBI

Formation of a quasispeciesin sequence space

p = 0.25 pcr

Page 29: Modeling Evolutionary Processes - TBI

Formation of a quasispeciesin sequence space

p = 0.50 pcr

Page 30: Modeling Evolutionary Processes - TBI

Formation of a quasispeciesin sequence space

p = 0.75 pcr

Page 31: Modeling Evolutionary Processes - TBI

Uniform distribution in sequence space

p pcr

Page 32: Modeling Evolutionary Processes - TBI

Quasispecies

Driving virus populations through threshold

The error threshold in replication

Page 33: Modeling Evolutionary Processes - TBI
Page 34: Modeling Evolutionary Processes - TBI

Molecular evolution of viruses

Page 35: Modeling Evolutionary Processes - TBI

A fitness landscape showing an error threshold

Page 36: Modeling Evolutionary Processes - TBI

Quasispecies as a function of the mutation rate p

f0 = = 10

Single peak fitness landscape: 1and 210 ==== Nfffff K

n

N

i ii

NI

xfxf

κ

σ

=

−=

∑ =

;sequencemaster

)1(

0

10

0

K

Page 37: Modeling Evolutionary Processes - TBI

Fitness landscapes showing error thresholds

Page 38: Modeling Evolutionary Processes - TBI

Error threshold: Individual sequences

n = 10, = 2 and d = 0, 1.0, 1.85

Page 39: Modeling Evolutionary Processes - TBI

1. Darwin‘s two pathbreaking ideas

2. Dynamics of Darwinian evolution

3. RNA evolution in the test tube

4. Stochasticity in evolution

5. Evolutionary optimization of RNA structure

Page 40: Modeling Evolutionary Processes - TBI

Three necessary conditions for Darwinian evolution are:

1. Multiplication,

2. Variation, and

3. Selection.

Variation through mutation and recombination operates on the genotype whereas the phenotype is the target of selection.

One important property of the Darwinian scenario is that variations in the form of mutations or recombination events occur uncorrelated with their effects on the selection process.

All conditions can be fulfilled not only by cellular organisms but also bynucleic acid molecules in suitable cell-free experimental assays.

Page 41: Modeling Evolutionary Processes - TBI

RNA sample

Stock solution: Q RNA-replicase, ATP, CTP, GTP and UTP, buffer

Time0 1 2 3 4 5 6 69 70

D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

Application of serial transfer to RNA evolution in the test tube

Page 42: Modeling Evolutionary Processes - TBI

Reproduction of the original figure of theserial transfer experiment with Q RNAβ

D.R.Mills, R,L,Peterson, S.Spiegelman,

. Proc.Natl.Acad.Sci.USA (1967), 217-224

An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule58

Page 43: Modeling Evolutionary Processes - TBI

Cross-catalysis of two RNA enzymes leads toself-sustained replication

Tracey A. Lincoln, Gerald F. Joyce, Science 323, 1229-1232, 2009

Page 44: Modeling Evolutionary Processes - TBI

Amplification: 1.5µ1010

Exponential growth levels off when the reservoir is exhausted (l.h.s.).

RNA production in serial transfer experiments (r.h.s.)

Tracey A. Lincoln, Gerald F. Joyce, Science 323, 1229-1232, 2009

Page 45: Modeling Evolutionary Processes - TBI

RNA evolution of recombinant replicators

Tracey A. Lincoln, Gerald F. Joyce, Science 323, 1229-1232, 2009

Page 46: Modeling Evolutionary Processes - TBI

Application of molecular evolution to problems in biotechnology

Page 47: Modeling Evolutionary Processes - TBI

OCH2

OHO

O

PO

O

O

N1

OCH2

OHO

PO

O

O

N2

OCH2

OHO

PO

O

O

N3

OCH2

OHO

PO

O

O

N4

N A U G Ck = , , ,

3' - end

5' - end

Na

Na

Na

Na

5'-end 3’-endGCGGAU AUUCGCUUA AGUUGGGA G CUGAAGA AGGUC UUCGAUC A ACCAGCUC GAGC CCAGA UCUGG CUGUG CACAG

Definition of RNA structure

Page 48: Modeling Evolutionary Processes - TBI

N = 4n

NS < 3n

Criterion: Minimum free energy (mfe)

Rules: _ ( _ ) _ {AU,CG,GC,GU,UA,UG}

A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

Page 49: Modeling Evolutionary Processes - TBI

RNA sequence:

RNA structureof minimal free

energy:

GUAUCGAAAUACGUAGCGUAUGGGGAUGCUGGACGGUCCCAUCGGUACUCCA

RNA folding:

Structural biology,spectroscopy of biomolecules, understanding

molecular function

Inverse FoldingAlgorithm

Iterative determinationof a sequence for the

given secondarystructure

Sequence, structure, and design

Inverse folding of RNA:

Biotechnology,design of biomolecules

with predefined structures and functions

Page 50: Modeling Evolutionary Processes - TBI

The inverse folding algorithm searches for sequences that form a given RNA secondary structure under the minimum free energy criterion.

Page 51: Modeling Evolutionary Processes - TBI

many genotypes one phenotype

Page 52: Modeling Evolutionary Processes - TBI

AUCAAUCAG

GUCAAUCAC

GUCAAUCAUGUCAAUCAA

GUCAAUCCG

GUCAAUCG

G

GU

CA

AU

CU

G

GU

CA

AU

GA

G

GUC

AAUU

AG

GUCAAUAAGGUCAACCAG

GUCAAGCAG

GUCAAACAG

GUCACUCAG

GUCAGUCAG

GUCAUUCAGGUCCAUCAG GUCGAUCAG

GUCU

AUCA

G

GU

GA

AUC

AG

GU

UA

AU

CA

G

GU

AA

AU

CA

G

GCC

AAUC

AGGGCAAUCAG

GACAAUCAG

UUCAAUCAG

CUCAAUCAG

GUCAAUCAG

One-error neighborhood

The surrounding of GUCAAUCAG in sequence space

Page 53: Modeling Evolutionary Processes - TBI

One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

Page 54: Modeling Evolutionary Processes - TBI

One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

Page 55: Modeling Evolutionary Processes - TBI

One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

Page 56: Modeling Evolutionary Processes - TBI

One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

Page 57: Modeling Evolutionary Processes - TBI

GGCUAUCGUAUGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUAGACGGGCUAUCGUACGUUUACUCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGCUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCCAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGUGUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAACGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCUGGCAUUGGACGGGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACGGGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACGGGCUAGCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACGGGCUAUCGUACGUUUACCCAAAAGCCUACGUUGGACCCAGGCAUUGGACG G

GC

UAU

CG

UAC

GU

UUA

CCC A

AAAG U

CUACG UUGGACC C AG

GCAU

UGGACG

One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

Page 58: Modeling Evolutionary Processes - TBI

Number Mean Value Variance Std.Dev.Total Hamming Distance: 150000 11.647973 23.140715 4.810480Nonzero Hamming Distance: 99875 16.949991 30.757651 5.545958Degree of Neutrality: 50125 0.334167 0.006961 0.083434Number of Structures: 1000 52.31 85.30 9.24

1 (((((.((((..(((......)))..)))).))).))............. 50125 0.3341672 ..(((.((((..(((......)))..)))).)))................ 2856 0.0190403 ((((((((((..(((......)))..)))))))).))............. 2799 0.0186604 (((((.((((..((((....))))..)))).))).))............. 2417 0.0161135 (((((.((((.((((......)))).)))).))).))............. 2265 0.0151006 (((((.(((((.(((......))).))))).))).))............. 2233 0.0148877 (((((..(((..(((......)))..)))..))).))............. 1442 0.0096138 (((((.((((..((........))..)))).))).))............. 1081 0.0072079 ((((..((((..(((......)))..))))..)).))............. 1025 0.006833

10 (((((.((((..(((......)))..)))).))))).............. 1003 0.00668711 .((((.((((..(((......)))..)))).))))............... 963 0.00642012 (((((.(((...(((......)))...))).))).))............. 860 0.00573313 (((((.((((..(((......)))..)))).)).)))............. 800 0.00533314 (((((.((((...((......))...)))).))).))............. 548 0.00365315 (((((.((((................)))).))).))............. 362 0.00241316 ((.((.((((..(((......)))..)))).))..))............. 337 0.00224717 (.(((.((((..(((......)))..)))).))).).............. 241 0.00160718 (((((.(((((((((......))))))))).))).))............. 231 0.00154019 ((((..((((..(((......)))..))))...))))............. 225 0.00150020 ((....((((..(((......)))..)))).....))............. 202 0.001347 G

GC

UAU

CG

UAC

GU

UUA

CCC A

AAAG U

CUACG UUGGACC C AG

GCAU

UGGACG

Shadow – Surrounding of an RNA structure in shape space: AUGC alphabet, chain length n=50

Page 59: Modeling Evolutionary Processes - TBI
Page 60: Modeling Evolutionary Processes - TBI

Charles Darwin. The Origin of Species. Sixth edition. John Murray. London: 1872

Page 61: Modeling Evolutionary Processes - TBI

Motoo Kimuras population genetics of neutral evolution.

Evolutionary rate at the molecular level. Nature 217: 624-626, 1955.

The Neutral Theory of Molecular Evolution. Cambridge University Press. Cambridge, UK, 1983.

Page 62: Modeling Evolutionary Processes - TBI

The average time of replacement of a dominant genotype in a population is the reciprocal mutation rate, 1/ , and therefore independent of population size.

Is the Kimura scenario correct for frequent mutations?

Page 63: Modeling Evolutionary Processes - TBI
Page 64: Modeling Evolutionary Processes - TBI

5.0)()(lim 210 ==→ pxpxp

dH = 1

apx

apx

p

p

−=

=

1)(lim

)(lim

20

10

dH = 2

dH ≥ 3

1)(lim,0)(lim

or0)(lim,1)(lim

2010

2010

==

==

→→

→→

pxpx

pxpx

pp

pp

Random fixation in thesense of Motoo KimuraPairs of genotypes in neutral replication networks

Page 65: Modeling Evolutionary Processes - TBI
Page 66: Modeling Evolutionary Processes - TBI

for comparison: = 0, = 1.1, d = 0

Neutral network: Individual sequences

n = 10, = 1.1, d = 1.0

Page 67: Modeling Evolutionary Processes - TBI

Consensus sequence of a quasispecies of two strongly coupled sequences of Hamming distance dH(Xi,,Xj) = 1.

Page 68: Modeling Evolutionary Processes - TBI

Neutral network: Individual sequences

n = 10, = 1.1, d = 1.0

Page 69: Modeling Evolutionary Processes - TBI

Consensus sequence of a quasispecies of two strongly coupled sequences of Hamming distance dH(Xi,,Xj) = 2.

Page 70: Modeling Evolutionary Processes - TBI

N = 7

Computation of sequences in the core of a neutral network

Page 71: Modeling Evolutionary Processes - TBI

1. Darwin‘s two pathbreaking ideas

2. Dynamics of Darwinian evolution

3. RNA evolution in the test tube

4. Stochasticity in evolution

5. Evolutionary optimization of RNA structure

Page 72: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 73: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 74: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 75: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 76: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 77: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 78: Modeling Evolutionary Processes - TBI

Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Page 79: Modeling Evolutionary Processes - TBI

RNA replication and mutation as a multitype branching process

Page 80: Modeling Evolutionary Processes - TBI
Page 81: Modeling Evolutionary Processes - TBI

1. Darwin‘s two pathbreaking ideas

2. Dynamics of Darwinian evolution

3. RNA evolution in the test tube

4. Stochasticity in evolution

5. Evolutionary optimization of RNA structure

Page 82: Modeling Evolutionary Processes - TBI

Phenylalanyl-tRNA as target structure

Structure of randomly chosen initial sequence

Page 83: Modeling Evolutionary Processes - TBI

Evolution in silico

W. Fontana, P. Schuster, Science 280 (1998), 1451-1455

Page 84: Modeling Evolutionary Processes - TBI

Replication rate constant:

fk = / [ + dS(k)]

dS(k) = dH(Sk,S )

Selection constraint:

Population size, N = # RNA molecules, is controlled by

the flow

Mutation rate:

p = 0.001 / site replication

NNtN ±≈)(

The flowreactor as a device for studies of evolution in vitro and in silico

Page 85: Modeling Evolutionary Processes - TBI
Page 86: Modeling Evolutionary Processes - TBI

10 12 14 16 18 20 22

Population size

0

0.2

0.4

0.6

0.8

1

Pro

babi

lity

to r

each

the

targ

et s

truc

ture

AUGCGC

Probability of a single trajectory to reach the target structure

Page 87: Modeling Evolutionary Processes - TBI

In silico optimization in the flow reactor: Evolutionary Trajectory

Page 88: Modeling Evolutionary Processes - TBI

28 neutral point mutations during a long quasi-stationary epoch

Transition inducing point mutations change the molecular structure

Neutral point mutations leave the molecular structure unchanged

Neutral genotype evolution during phenotypic stasis

Page 89: Modeling Evolutionary Processes - TBI

Randomly chosen initial structure

Phenylalanyl-tRNA as target structure

Page 90: Modeling Evolutionary Processes - TBI

A sketch of optimization on neutral networks

Page 91: Modeling Evolutionary Processes - TBI

Is the degree of neutrality in GC space much lower than in AUGC space ?

Statistics of RNA structure optimization: P. Schuster, Rep.Prog.Phys. 69:1419-1477, 2006

Page 92: Modeling Evolutionary Processes - TBI

Number Mean Value Variance Std.Dev.Total Hamming Distance: 150000 11.647973 23.140715 4.810480Nonzero Hamming Distance: 99875 16.949991 30.757651 5.545958Degree of Neutrality: 50125 0.334167 0.006961 0.083434Number of Structures: 1000 52.31 85.30 9.24

1 (((((.((((..(((......)))..)))).))).))............. 50125 0.3341672 ..(((.((((..(((......)))..)))).)))................ 2856 0.0190403 ((((((((((..(((......)))..)))))))).))............. 2799 0.0186604 (((((.((((..((((....))))..)))).))).))............. 2417 0.0161135 (((((.((((.((((......)))).)))).))).))............. 2265 0.0151006 (((((.(((((.(((......))).))))).))).))............. 2233 0.0148877 (((((..(((..(((......)))..)))..))).))............. 1442 0.0096138 (((((.((((..((........))..)))).))).))............. 1081 0.0072079 ((((..((((..(((......)))..))))..)).))............. 1025 0.006833

10 (((((.((((..(((......)))..)))).))))).............. 1003 0.00668711 .((((.((((..(((......)))..)))).))))............... 963 0.00642012 (((((.(((...(((......)))...))).))).))............. 860 0.00573313 (((((.((((..(((......)))..)))).)).)))............. 800 0.00533314 (((((.((((...((......))...)))).))).))............. 548 0.00365315 (((((.((((................)))).))).))............. 362 0.00241316 ((.((.((((..(((......)))..)))).))..))............. 337 0.00224717 (.(((.((((..(((......)))..)))).))).).............. 241 0.00160718 (((((.(((((((((......))))))))).))).))............. 231 0.00154019 ((((..((((..(((......)))..))))...))))............. 225 0.00150020 ((....((((..(((......)))..)))).....))............. 202 0.001347

Number Mean Value Variance Std.Dev.Total Hamming Distance: 50000 13.673580 10.795762 3.285691Nonzero Hamming Distance: 45738 14.872054 10.821236 3.289565Degree of Neutrality: 4262 0.085240 0.001824 0.042708Number of Structures: 1000 36.24 6.27 2.50

1 (((((.((((..(((......)))..)))).))).))............. 4262 0.0852402 ((((((((((..(((......)))..)))))))).))............. 1940 0.0388003 (((((.(((((.(((......))).))))).))).))............. 1791 0.0358204 (((((.((((.((((......)))).)))).))).))............. 1752 0.0350405 (((((.((((..((((....))))..)))).))).))............. 1423 0.0284606 (.(((.((((..(((......)))..)))).))).).............. 665 0.0133007 (((((.((((..((........))..)))).))).))............. 308 0.0061608 (((((.((((..(((......)))..)))).))))).............. 280 0.0056009 (((((.((((..(((......)))..)))).))).))...(((....))) 278 0.005560

10 (((((.(((...(((......)))...))).))).))............. 209 0.00418011 (((((.((((..(((......)))..)))).))).)).(((......))) 193 0.00386012 (((((.((((..(((......)))..)))).))).))..(((.....))) 180 0.00360013 (((((.((((..((((.....)))).)))).))).))............. 180 0.00360014 ..(((.((((..(((......)))..)))).)))................ 176 0.00352015 (((((.((((.((((.....))))..)))).))).))............. 175 0.00350016 ((((( (((( ((( ))) ))))))))) 167 0 003340

GG

CU

AUC

GU

ACGU

UUA

CCC A

AAAG U

CUACG UUGGACC C AG

GCAU

UGGACG

CC

CC

GGG

CC

GGGG

GCG

CGC G

GGCC G

GCGGCGCGGCGGG G G

GGGGGCGG

CC

Shadow – Surrounding of an RNA structure in shape space – AUGC and GC alphabet

Page 93: Modeling Evolutionary Processes - TBI

Acknowledgements

Karl Sigmund, Universität Wien, AT

Walter Fontana, Harvard Medical School, MA

Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE

Christian Reidys, Nankai University, Tien Tsin, China

Christian Forst, Los Alamos National Laboratory, NM

Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber, Institut für Molekulare Biotechnologie, Jena, GE

Ivo L.Hofacker, Christoph Flamm, Andreas Svrček-Seiler, Universität Wien, AT

Kurt Grünberger, Michael Kospach , Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Universität Wien, AT

Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne, Ulrike Mückstein, Hakim Tafer, Thomas Taylor, Universität Wien, AT

Universität Wien

Page 94: Modeling Evolutionary Processes - TBI

Acknowledgement of support

Fonds zur Förderung der wissenschaftlichen Forschung (FWF)Projects No. 09942, 10578, 11065, 13093

13887, and 14898

Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) Project No. Mat05

Jubiläumsfonds der Österreichischen NationalbankProject No. Nat-7813

European Commission: Contracts No. 98-0189, 12835 (NEST)

Austrian Genome Research Program – GEN-AU: BioinformaticsNetwork (BIN)

Österreichische Akademie der Wissenschaften

Siemens AG, Austria

Universität Wien and the Santa Fe Institute

Universität Wien

Page 95: Modeling Evolutionary Processes - TBI

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

Page 96: Modeling Evolutionary Processes - TBI