module-2 digital control systems

Embed Size (px)

Citation preview

  • 8/18/2019 module-2 digital control systems

    1/54

    Module-2 Time responses of discrete data systems

    As the outputs of discrete-data control system are function

    of the continuous variable ‘t’, with t = kT, k =, 2, !, "#$t become a must to evaluate the performance of the

    system in the time-domain#

     Time response of a discrete-data control system can becharacteri%ed by terms as in that of continuous-data

    control system

    (i) Maximum overshoot

    (ii) Rise time

    (iii) Delay time

    Iv) Settling time

    (v) Damping ratio

    vi) Damping factor

    vii) Natural undamped frequency 

  • 8/18/2019 module-2 digital control systems

    2/54

    •  Time response of a system can be divided into twocate&ories'

    () Transient *esponse

    (2) +teady state *esponseTransient Response  refers to that portion of the

    response which is due to the closed loop systempoles#

     Transient *esponse depends on the initial conditionof the system#

     Transient response of a practical control system,where the output si&nal is continuous-time, oftenehibits damped oscillation before reachin& thesteady state#

    Steady-state response refers to that portion ofthe response which is due to the poles of theforcin& function# 2

  • 8/18/2019 module-2 digital control systems

    3/54

    • +election of ain . and +amplin& /eriod T

    0rom the studies of continuous-data control system'

    $ncreasin& the value of ain . &enerally'

    (i) would reduce the dampin& ratio#(ii) $ncrease the maimum overshoot#

    (iii) $ncrease the natural un-damped fre1uency and thusbandwidth#

    iv) reduce the steady-state error if it is nite and non-%ero#

     These properties would carry over to discrete-datasystems#

    0or samplin& period , for a &iven ., increasin& T wouldcause instability

    A smaller samplin& period would re1uire a faster clockrate for di&ital computer, which translates into morecomple hardware and cost# !

  • 8/18/2019 module-2 digital control systems

    4/54

    •   As the samplin& period becomes smaller, the roots move closer to the % = pointin the rst and fourth 1uadrant of %-plane#

    • +election of the samplin& period shouldsuch that if the pole of the di&ital controlsystem would lie in the rst and fourth

    1uadrants of %-plane

    •   very close to the %= point, di&italcontrol system would emulate the

    correspondin& continuous-time system#

    3

  • 8/18/2019 module-2 digital control systems

    5/54

    • 4orrelation between the time response androot location in s-plane and z -plane

    4orrelation between the location of the poles of

    the system in the s-plane  and the transientresponse is well known for the continuous-timesystem

    0or eample, comple con5u&ate poles in theleft half of s-plane rise eponentially decayin&sinusoidal responses#

    /oles on the ne&ative real ais of s-plane 

    correspond to monotonically decayin&responses#

    +imple con5u&ate roots on the ima&inary ais ofs-plane  &ive rise to un-damped constantamplitude sinusoidal oscillations 6

  • 8/18/2019 module-2 digital control systems

    6/54

    Multiple-order poles on the ima&inaryais and poles in the ri&ht half of s-plane correspond to unstable responses#

     The samplin& operation brin& about anininite number of poles in the s-plane at

    net e7ect is e1uivalent to havin& asystem with the poles,

     The poles are then mapped onto the %-plane usin& the transformation

    ,11   s jn j s   ω ω σ    ++=

    ,...3,2,1   ±±±=n

    ( ) sn j s   ω ω σ    ++=   11

    Tse z =

    8

  • 8/18/2019 module-2 digital control systems

    7/54

    • 0ollowin& 0i&ures illustrates several casesof the root location of a second-ordersystem in the s- and %-plane and their

    correspondin& time responses'

    () 4ase when poles are ima&inary ais-

    9

  • 8/18/2019 module-2 digital control systems

    8/54

    2) 4ase when the pole is midway in theprimary strip and on the ima&inary ais inthe s-plane'

    :

  • 8/18/2019 module-2 digital control systems

    9/54

    !) 4ase when the pole is near to ws;2 in the primarystrip and on the ima&inary ais in the s-plane

    <

  • 8/18/2019 module-2 digital control systems

    10/54

    3) 4ase when the pole is e1ual to ws;2and on the ima&inary ais in the s-plane

  • 8/18/2019 module-2 digital control systems

    11/54

    6) 4ase when the pole is e1ual to  in the s-plane( )2/1   s j s   ω σ   +−=

  • 8/18/2019 module-2 digital control systems

    12/54

    8) 4ase when the poles is e1ual to  in the s-plane( )   )2/(111   swith j s   ω ω ω σ   

  • 8/18/2019 module-2 digital control systems

    13/54

    9) 4ase when the pole is at ori&in

      in the s-plane !

  • 8/18/2019 module-2 digital control systems

    14/54

    :) 4ase when the pole is ne&ative real ais

    in the s-plane 3

  • 8/18/2019 module-2 digital control systems

    15/54

  • 8/18/2019 module-2 digital control systems

    16/54

    >hen the poles of the closed loop system&et nearer to the ne&ative real ais of %-plane, the system response becomeoscillatory#

    >hen the roots are all real and ne&ativein the %-plane, the response will beoscillatory with alternate positive and

    ne&ative values#

    8

  • 8/18/2019 module-2 digital control systems

    17/54

    +teady +tate /erformance+teady-state error analysis'

     The error si&nal of control system is oftendenes the di7erence between the referenceinput and output#

     The error si&nal is dened as error

      is lost in the %-transformation analysis#

      sampled error si&nal is used#

    ( ) ( ) ( )e t r t b t  = −

    ( )e t * ( )e t 

    9

  • 8/18/2019 module-2 digital control systems

    18/54

     The steady-state error of the di&italsystem is &iven as'

    ?y the usin& the nal value theorem'

    >ith condition that doesnot have any poles on or outside the unitcircle in z -plane#

     The steady state error between samplin&instants can be determined by use of themodied z -transform'

    * *lim ( ) lim ( ) sst k 

    e e t e kT  →∞ →∞

    = =

    ( )* 11

    lim 1 ( ) ss z 

    e z E z  −→

    = −

    ( )11 ( ) z E z −−

    [ ]   ( )110 1 0 1

    lim ( , ) lim 1 ( , )k z m m

    e kT m z E z m−

    →∞ →≤ ≤ ≤ ≤

    = −:

  • 8/18/2019 module-2 digital control systems

    19/54

    •  where is the modied z -transform of #

     The z -transform of error si&nal e(t ) is&iven by'

    where @(%) is &iven by'

     Therefore'

    ( , ) E z m   ( )e t 

    ( )( )1 ( )

     R z  E z GH z 

    = +

    ( )1   ( ) ( )( ) 1   G s H sGH z z   s

    −   = −  

    ( )* * 11 ( )lim ( ) lim 1 1 ( ) ss t z  R z e e t z  GH z 

    −→∞ →

    = = − +

    ( )GH z  <

    d d i

  • 8/18/2019 module-2 digital control systems

    20/54

    • +teady state error due to a step input

    +teady state error is &iven by'

    et us dene discrete step-errorconstant as'

    (/osition error constant)

    ( ) ( ), ( )1

     s

     z  If r t Au t then R z A

     z = =

    ( )* * 11

    1

    1

    1lim ( ) lim 11 ( )

    lim1 ( ) 1 lim ( )

     sst z 

     z 

     z 

     z  A

     z e e t z  GH z 

     A A

    GH z GH z  

    →∞ →

    →→

    −= = −+

    = =+ +

    *

    1lim ( ) p  z  K GH z →= 2

    Th A

  • 8/18/2019 module-2 digital control systems

    21/54

    •  Then

    0or due to step input, tends to %ero, asapproaches innity#

    which implies that @(%) must be at leastone pole at % = #

    +tep error constant is meanin&ful only, ifreference input is a step function

     Type of +ystem

    *

    *1 ss

     p

     Ae

     K =

    +*

     sse* pK 

    1 2

    (1 )(1 ) (1 )( ) ( )

    (1 )(1 ) (1 )

    a b m

     j

    n

     K T s T s T sG s H s

     s T s T s T s

    + + +=

    + + +A

    A

    2

    T f i d d b f

  • 8/18/2019 module-2 digital control systems

    22/54

    •  Type of system is dened as number ofpoles of system at ori&in in the s-plane#

     The type of system denes as e1ual to 5

    ( power of the s-term)

    •  Then

    • 0or type system'

    ( )1 11 2

    (1 )(1 ) (1 )( ) 1

    (1 )(1 ) (1 )

    a b m

     j

    n

     K T s T s T sGH z z  

     s T s T s T s

    −+

    + + += −   + + +

    A

    A

    ( )1

    1( ) 1

    in

     K Terms due to

    GH z z   s

    non zero poles s domain

    − + = −

    − −

    22

    ( )

    =+−−=   −

    domain z in poles

     z nontodueTerms z 

     z  K 

     z  z GH 1

    11)(1

    1

    T d t l i d i

  • 8/18/2019 module-2 digital control systems

    23/54

     Terms due to non % = poles in %-domaindoes not contain term (%-) indenominator#

     Thus, for a type-, the discrete step-errorconstant is same as step error constant in

    the continuous type-data system# 2!

    ( ) ( )

    1

    1

    1

    11

    1

    1

    *

    11lim1

    1lim

    )(lim

     K domain z in poles

     z nontodueTerms z  z 

     z  K  z 

     z GH K 

     z  z 

     z 

     p

    =−

    =−+−

    −=

    =

    0or Type system

  • 8/18/2019 module-2 digital control systems

    24/54

    0or Type- system'

    23:

    )(

    )()1()(

    :)(

    )()(1)()(

    :,

    .0)()(

    )(

    )()(

    2

    1

     Method  Fraction arital  Appl!in" 

     s # s

     s $  z  z G

    becomes z G

     s s# s $ 

     se sG sG

    becomes functiontransfer hold order  zerowith

     sat rootsha%enot does s #and  s $ where

     s s#

     s $  sGas plant &onsider 

    Ts

    ho

       

      

     −=

        

        −=

    =

    =

  • 8/18/2019 module-2 digital control systems

    25/54

    26

    ( )

    ( )

    ∞=

    =−++−=

    =

    =+−

    +−−=

    domain z in poles

     z nontodueTerms z  K  z  K 

     z GH  K 

    domain z in poles

     z nontodueTerms z 

     z  K 

     z 

     z  K 

     z  z G

     z 

     z  p

    11)1(lim

    )(lim

    11)1(1)(

    12

    3

    1

    1

    *

    2

    2

    3

    1

       

     

     

     

     

    −++−=   −

    domain sin poles

     zeronontodueTerms s

     K 

     s

     K 

     z  z G3

    2

    31)1()(

    Th f t t t th *

    K

  • 8/18/2019 module-2 digital control systems

    26/54

    •  Thus for system types &reater than ,

    +teady state error due to a *amp input

     Then steady state error obtained as'

     p K   = ∞

    2( ) ( ), ( ) ( 1) s

    Tz  If r t Atu t then R z A

     z = = −

    ( )

    [ ]

    2* * 1

    1

    1

    ( 1)lim ( ) lim 1

    1 ( )

    lim( 1) 1 ( )

     sst z 

     z 

    Tz  A z 

    e e t z  GH z 

     AT 

     z GH z 

    →∞ →

    −= = −+

    =− +

    28

    AT

  • 8/18/2019 module-2 digital control systems

    27/54

    et us dene discrete ramp errorconstant as'

    (Belocity error constant)

    C then

    *

    1 1

    1

    lim ( 1) lim( 1) ( )

    1lim( 1) ( )

     ss

     z   z 

     z 

     AT e

     z z GH z 

     A z GH z 

    → →

    =− + −

    =−

    *

    1

    1lim( 1) ( )%

     z 

     K z GH z 

    T  →

    = −

    *

    * ss

    %

     Ae

     K 

    =29

    0 th t b l t* 0 *K

  • 8/18/2019 module-2 digital control systems

    28/54

    • 0or , the must b e1ual toinnity#

    0or which, (%-)@(%) should have at leastone pole at % = #

    Dr in other words, @(%) should have atleast two poles at % = #

    •   meanin&ful only if input is a rampfunction#

    +teady state error due to a /arabolic input

    0 sse   = 

    % K 

    *

    %

     K 

    22

    3( 1)( ) ( ), ( )

    2 2( 1) s

     A T z z  If r t t u t then R z A z 

    += =−

    2:

  • 8/18/2019 module-2 digital control systems

    29/54

    ( )

    [ ]

    2

    3* * 1

    1

    2

    21

    2

    1

    2 2

    1 1

    ( 1)

    2( 1)

    lim ( ) lim 1 1 ( )

    ( 1)

    2lim( 1) 1 ( )

    lim( 1)2lim ( 1) lim( 1) ( )

     ss t z 

     z 

     z 

     z z 

    T z z  A

     z 

    e e t z   GH z 

     AT  z 

     z GH z 

     AT 

     z  z z GH z 

    →∞ →

    → →

    +−

    = = − +

    +

    = − +

    +=− + −

    2<

    A

  • 8/18/2019 module-2 digital control systems

    30/54

    • et us dene the Discrete ParabolicError constant (acceleration errorconstant) as'

    •  Then

    • 0or , should be innity#

    0or which @(%) must be at least three=

    *

    2

    2 1

    1lim( 1) ( )

     ss

     z 

     Ae

     z GH z T    →

    =−

    * 2

    2 1

    1

    lim( 1) ( )a  z  K z GH z T    →= −*

    * ss

    a

     Ae

     K =

    * 0 sse   =  *

    a K 

    !

  • 8/18/2019 module-2 digital control systems

    31/54

  • 8/18/2019 module-2 digital control systems

    32/54

     Typeof

    +ystem

    +tep$nput

    *amp $nput /arabolicinput

    .

    .

    2 .  

    !

    ∞   ∞

    * p K 

    *1 p

     A

     K +

    * sse   * sse* sse*% K    *a K 

    *

    %

     A

     K 

    *

    a

     A K 

    ∞!2

    + bili T

  • 8/18/2019 module-2 digital control systems

    33/54

    +tability Tests  () ?ilinear transformation and Ftended

    *outh stability 4riteria  (2) Gury stability 4riteria

      (!) *oot ocus

    0re1uency Eomain analysis'  (3) /olar /lot

      (6) Hy1uist stability 4riteria

      (8) ?ode /lot (?ilinear transformationMethod)

    !!

    • +tability of inear Ei&ital 4ontrol +ystem

  • 8/18/2019 module-2 digital control systems

    34/54

    • +tability of inear Ei&ital 4ontrol +ystem

    ) Iero-state response

    • Dutput of a discrete-data system that is dueto input only is called %ero-state responseJall initial conditions are set to %ero#

    2) Iero-input response

    • Dutput response of a discrete-data systemthat is due to the initial condition only iscalled %ero-input response#

    • >hen a system is sub5ected to both, weapply superposition principle'

    •  Total response =%ero-state response K

    %ero-input response !3

    !) ?ounded input ?ounded state stability (?$?+)

  • 8/18/2019 module-2 digital control systems

    35/54

    !) ?ounded input ?ounded state stability (?$?+)

    +ystem is said to be ?$?+ stable, if, for anybounded input u(k), state (k) is also bounded#

    3) ?ounded input ?ounded otput stability (?$?D)+ystem is said to be ?$?D stable, if, for any

    bounded input u(k), the output y(k) is alsobounded#

    +ince output of a system is a linear combinationof sate variables , system that is ?$?+ stable, isalso a ?$?D stable#

    *everse may or may not be true#$f system has a pole that is cancelled by a %ero,

    then the system can be ?$?D stable but notnecessary ?$?+ stable#

    !6

    6) Iero-$nput stability

  • 8/18/2019 module-2 digital control systems

    36/54

    6) Iero $nput stability

    • +ystem is said to be %ero-input stability, if the %ero-inputresponse y(k) , sub5ected to nite initial conditions,reaches to %ero, as k tend to innity, otherwise the

    system is unstable# i#e#

    • And secondly

    Iero-input stability implies asymptotic stability#

    8) Theorem'

    L0or linear discrete-data system, ?$?D ,%ero-input andasymptotic stability, all re1uire that root of thecharacteristic e1uation be inside the unit circle in the %-plane#

    ( ) ! k M ≤ < ∞

    lim ( ) 0k 

     ! k →∞

    =

    !8

    • ?ilinear Transformation method

  • 8/18/2019 module-2 digital control systems

    37/54

    ?ilinear Transformation method

    (Ftension of use of *outh-@urwit% criteria)

    •  Transformation that is al&ebraic and transform

    the unit circle in %-plane onto vertical line in acomple variable plane (w-plane) are of followin&form'

    Dne such transformation that transform theinterior of unit circle onto left half of w-plane is'

     Then *outh-@urwit% criterion  can be applied tocharacteristic e1uation of system in w-domain in

    normal fashion#

    aw b z 

    cw d 

    +=

    +

    1

    1

    w

     z  w

    +

    = −

    !9

  • 8/18/2019 module-2 digital control systems

    38/54

     Gury’s +tability 4riterion

    • iven a nth order characteristic e1uation of a systemin %-domain

    •where are realconstants#

    +TF/-' 4heck is positive or else it can be made

    positive by chan&in& si&n of all the coecients of the0(%)

    +TF/-2' 0ollowin& Table is made usin& the coecients

    of the 0(%)

    1 2

    1 2 1 0( ) 0n n

    n n F z a z a z a z a z a−

    −= + + + + + =

    na

    0 1 2 1, , , , ,n na a a a and a−A

    !:

  • 8/18/2019 module-2 digital control systems

    39/54

    !<

    Flements in table are dened as'

  • 8/18/2019 module-2 digital control systems

    40/54

    Flements in table are dened as'

    0

    0 1

    1

    0 3 0 1

    0 2

    3 0 3 2

    ;

    n k 

    n k 

    n k 

    n k 

    a ab

    a ab b

    cb b

       ' '

       

    − −

    =

    =

    = =

    M

    3

    • The necessary and sucient condition for

  • 8/18/2019 module-2 digital control systems

    41/54

    •  The necessary and sucient condition forpolynomial 0(%) to have no roots on oroutside the unit circle in z -plane are'

    • And (n-) constraints'

    1) (1) 0

    02) ( 1)

    0

     F 

     for n e%en F 

     for n odd 

    >>

    −   <

    1

    2

    3

    3

    o n

    o n

    o n

    o

    o

    a a

    b b

    c c

       

    ' '

    <

    >

    >

    >

    >

    M

    3

    • +in&ular 4ases of Gury 4riteria

  • 8/18/2019 module-2 digital control systems

    42/54

    +in&ular 4ases of Gury 4riteria

    >hen some or all elements in a row are%ero, tabulation end prematurely#

    +uch situation is known as singular case.

    $t can remedied by epandin& orcontractin& unit circle innitesimally#

    F1uivalent to movin& %eros of 0(%) o7 theunit circle#

     Transformation for this purpose is'

      = very small realnumber#

      , radius of circle epands#

      , radius of unit circle reduces#

    ( )1 , z z whereε ε = +0ε  >0ε  <

    32

    • Ei7erence between the number of %eros

  • 8/18/2019 module-2 digital control systems

    43/54

    Ei7erence between the number of %erosfound inside (or outside) the circle whenthe circle is epanded or contracted by is

    the number of %eroes on the circle#•  Transformation of can be

    simplify as'

      for positiveor ne&ative #

    C 4oecient of the term is multiplied by#

    ( )1 z z ε = +

    ( ) ( )1 1n n n z n z ε ε + ≈ +   ε 

    n z    ( )1   nε +

    3!

    * t f Ei it l t l t

  • 8/18/2019 module-2 digital control systems

    44/54

    *oot ocus of Ei&ital control system

    • iven the loop transfer function of a

    di&ital control system, @(%) or (%)@(%),havin& the variable parameter . asmultiplyin& factor#

     Then the characteristic e1uation become'

    •   is part of loop transfer

    function which does not contains .#

    •  Then loci of points which are roots of

    above e1uation, as . varies from innity

    11 . ( ) 0 K GH z + =

    1 ( )GH z 

    1

    1( )GH z 

     K 

    = −

    33

    • ) Condition on Magnitude

  • 8/18/2019 module-2 digital control systems

    45/54

    ) Condition on Magnitude

    • 2) Condition on Angle

    0irst condition is used to nd the values of .on the loci# +econd one are used to nd the

    points on the root loci#  $n the all procedure of root-locus, all the

    an&le are measured in the counter-clock wisedirection with positive -ais as the reference

    1

    1( )GH z 

     K =

    ( )

    ( )

    1

    1

    0, ( ) (2 1)

    0, ( ) 2

    0,1, 2, 3...( interger)

      for K GH z k 

      for K GH z k 

    where k an!

    π  

    π  

    ≥ ∠ = +

    < ∠ =

    =

    36

    • 0ollowin& are properties of the root loci in

  • 8/18/2019 module-2 digital control systems

    46/54

    0ollowin& are properties of the root loci inthe %-plane for (useful insketchin& the root loci without solvin& for

    the roots of the characteristics e1uationas . varies#

    ) +tartin& and Termination /oints of root

    loci(a) . = points (+tartin& points)

      These points on the roots loci are at

    poles of loop transfer function# The polesincludes those at innity# This are openloop poles#

    (b) . = points (Termination points)

    0   K ≤ < ∞

    38

    2) Humber of separate root loci ' e1ual to

  • 8/18/2019 module-2 digital control systems

    47/54

    2) Humber of separate root loci ' e1ual tonumber of poles or %eros of @(%),whichever is &reater#

    !) +ymmetry' root loci are symmetrical withrespect to real-ais of %-plane#

    3) root loci on real-ais'

    •   loci are found on a &iven section of thereal ais of the %-plane only if the totalnumber of real pole and real %eros of

    @(%) to the ri&ht of the section is odd#6) Asymptotes' 0or lar&er value of %, root

    loci are asymptotic to the strai&ht lines

    which make an&le with real ais, &iven by'.1)(,...,2,1,0,

    )(

    )12(−−=

    +=   mnk where

    mn

      π θ 39

    • >here the n and m are number of nite

  • 8/18/2019 module-2 digital control systems

    48/54

    >here the n and m are number of nitepoles and %eros of @(%) respectively#

    • Humber of asymptotes = (n-m)

    8) $ntersection of the asymptotes '

    • $ntersection point always lie on the realais of the %-plane#

    • the intersection point is &iven by'

    )(

    )((

    )((

    1mn

     z GH of   zerosof   part real 

     z GH of   polesof   part real 

          −      = ∑∑σ  

    3:

    9) ?reakaway or ?reak-in /oints

  • 8/18/2019 module-2 digital control systems

    49/54

    9) ?reakaway or ?reak in /oints

    Fither lie on real ais or occur on complecon5u&ate pairs#

     These points on the loci are points at whichmultiple-order roots lie#

    $f the characteristic e1uation is &iven by'

     Then the break-away or break-in points can bedetermined from the roots of followin&

    e1uation'

    )()(

    0)(

    )(1

    0)(1

     z  ( z  A K or 

     z  A

     z  ( K or 

     z  F 

    −=

    =+=+

    3<

    0)(')()()('

    −  z  ( z  A z  ( z  AdK 

  • 8/18/2019 module-2 digital control systems

    50/54

    where the prime denotes the di7erentiation with

    respect to %#

    $f root locus lies between the two ad5acent openloop poles, then there eists at least one

    breakaway point between the two poles#$f root locus lies between the two ad5acent open

    loop %eros (one %ero may be at minus innity) ,then there eists at least one break-in point

    between the two %eros#$f root locus lies between a open loop pole and a

    open loop %ero, then there may eists no onebreak-in or break-away point or both may eists#

    0)(

    )()()()(2

      =

     −=

     z  (dz 

    6

    Then nd the valve of . correspond to the

  • 8/18/2019 module-2 digital control systems

    51/54

     Then nd the valve of . correspond to theroots of e1uation d.;d% = ,

    And if resultant . is positive then the point is

    an actual break-away or a break-in point#Flse the point is neither a breakaway or a

    break-in points#

    (:) An&le of Arrival ( or An&le of Eeparture) To nd the direction of root loci near the

    comple poles or near comple %eros#

    An&le of departure is &iven by'

    = :- ( sum of an&le contribution of all otherpoles and %eros at the concerned complepole, with appropriate si&ns included)#

    6

    An&le of arrival is &iven by'

  • 8/18/2019 module-2 digital control systems

    52/54

    An&le of arrival is &iven by'

    = :- ( sum of an&le contribution of allother poles and %eros at the concerned

    comple %ero, with appropriate si&nsincluded)#

    0ollowin& &ure shows an&le of departure

    calculated at a comple pole'

    62

  • 8/18/2019 module-2 digital control systems

    53/54

    ) & yais

    /ut % = 5v in the characteristic e1uation'

    +olve for v and . by e1uatin& the real andima&inary part to %ero#

     The value of v &ives the location at which root loci

    cross the ima&inary ais in the %-plane # The value of . obtained &ives the value of the

    correspondin& &ain#

    ) $ntersection of root loc with the unit circleC /articular value of % and . at an intersect of the

    root loci with unit circle can be determined byusin& etended *outh-@urwit% (?ilinear

     Transformation criteria) or by Gury‘s Test#

    0)(1 1   =+   j% F  K 

    6!

    ) Balues of . on the roots loci

  • 8/18/2019 module-2 digital control systems

    54/54

    ) Balues of . on the roots loci

    Balues of . can be obtained from thema&nitude condition

    • A particular point on the root loci will bea closed pole with a particular value of&ain .#

       

     

          =

    ++++++

    ==

    point,...,,

    Product

     point,...,,

    Product

    ))...()((

    ))...()((

    )(

    1

    21

    21

    21

    1

    concernedtozzzzerosthe

      fromdrawn%ectorsof  len"thof  

    concerned to p p p polesthe

      fromdrawn%ectorsof  len"thof  

     z  z  z  z  z  z 

     p z  p z  p z 

     z  F  K 

    n

    m

    n