28
1 Introduction to CMOS VLSI Design MOSFETs: The Long Channel, Ideal, or Shockley Model Peter Kogge University of Notre Dame Fall 2015, 2018 Based on material from Prof. Jay Brockman, Joseph Nahas: University of Notre Dame Prof. David Harris, Harvey Mudd College http://www.cmosvlsi.com/coursematerials.html CMOS VLSI Design MOSFETs-A Slide 2 Outline Lecture A IEEE Notation and IV curves MOS Gate Water Model nMOS Ideal Long Channel I-V Model Supplementary Material – More Careful Computation Lecture B Reading the I-V Curves Sample Technologies Load Lines and an NMOS Inverter A CMOS Inverter Lecture C DC Transfer Curves for an Inverter Ideal vs Real Real-World Effects

MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

1

Introduction toCMOS VLSI

Design

MOSFETs:The Long Channel, Ideal, or

Shockley ModelPeter Kogge

University of Notre DameFall 2015, 2018

Based on material fromProf. Jay Brockman, Joseph Nahas: University of Notre Dame

Prof. David Harris, Harvey Mudd Collegehttp://www.cmosvlsi.com/coursematerials.html

CMOS VLSI DesignMOSFETs-A Slide 2

Outline Lecture A

IEEE Notation and IV curves

MOS Gate

Water Model

nMOS Ideal Long Channel I-V Model

Supplementary Material – More Careful Computation

Lecture B Reading the I-V Curves

Sample Technologies

Load Lines and an NMOS Inverter

A CMOS Inverter

Lecture C DC Transfer Curves for an Inverter

Ideal vs Real

Real-World Effects

Page 2: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

2

CMOS VLSI Design

IEEE NotationAnd IV Curves

MOSFETs-A Slide 3

CMOS VLSI Design

IEEE Standard Device Notation Vab = voltage between terminals with

“a” positive and “b” negative.

By definition: Vab = − Vba

Va = voltage at terminal “a” relative to some standard terminal

Ia is current into terminal “a”. Electrons are flowing out.

Denoting dependence on time:

Upper case, V or I, denote time independent (DC) values;

Lower case, v or i, denote time dependent values.

MOSFETs-A Slide 4

b c

a

Vac

+

−+

+

−−

Vab

Vbc

Ia

Ib Ic

Page 3: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

3

CMOS VLSI DesignMOSFETs-A Slide 5

Introduction So far, transistors = ideal switches

Reality: ON transistor passes finite current Depends on terminal voltages

Derived from current-voltage (I-V) relationships

Transistor gate, source, drain also have capacitance I = C (V/t) ➜ t = (C/I) V

Capacitance and current determine speed

Vg, Vs, Vd: voltages as measured from body

nmos nmos4 pmos pmos4

Vgs

Vds?+

-

Vg

+ Body

- (Body)

CMOS VLSI Design

IV Curves: Simple 2-Terminal Devices

MOSFETs-A Slide 6

I V

+

-

V

I

What is curve for Ias a function of V?

Page 4: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

4

CMOS VLSI Design

IV Curves: Switched Resistance

MOSFETs-A Slide 7

I V

+

-

VWhat is curve for Ias a function of Vand switch position?

+

-

D

C

B

Switch has3 Positions:A, B, C, D

A

I

CMOS VLSI Design

IV Curves: Potentiometer

MOSFETs-A Slide 8

VWhat is curve for Ias a function of Vand rotation?

II V

+

-

Page 5: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

5

CMOS VLSI Design

IV Curves: Diode

MOSFETs-A Slide 9

V

II V

+

-Assume resistance R a function of V:• = R1 (large) for V < VT

• = R2 (small) for V > VT

VT

CMOS VLSI Design

IV Curves: Voltage-Sensitive Resistor

MOSFETs-A Slide 10

V

II V

+

-Assume resistance R a function of V:• = R1 (i.e. constant) for V < Vsat

• = V(R1/Vsat) for V > Vsat

Vsat

Vsat/R1

Linear region:I linear function of V

Saturated region:I a constant

Page 6: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

6

CMOS VLSI Design

IV Curves: 3-Terminal Device

MOSFETs-A Slide 11

V

II V

+

-Assume resistance R a function of V:• = R1 (i.e. constant) for V < Vsat

• = V(R1/Vsat) for V > Vsat

AND R1 is a function of Vgs

• Larger Vgs reduces R1

Vsat

Vsat/R1

“Gate”

Vgs

Incr

easi

ng

Vg

s

CMOS VLSI Design

MOS Gateand Effect on Channel

MOSFETs-A Slide 12

Page 7: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

7

CMOS VLSI DesignMOSFETs-A Slide 13

CMOS R and CGateCapacitance

InterconnectCapacitanceand Resistance

ChannelOn-Resistance

Source/DrainCapacitance

A

ReqA

CMOS VLSI DesignMOSFETs-A Slide 14

MOS Gate Capacitor

Gate and body form MOS capacitor

Operating modes

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

Accumulation mode:Holes attracted below gate

Depletion

Inversion

Page 8: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

8

CMOS VLSI DesignMOSFETs-A Slide 15

MOS Gate Capacitor

Gate and body form MOS capacitor

Operating modes

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

Accumulation

Depletion Mode:Holes repelled from under gate

Inversion

CMOS VLSI DesignMOSFETs-A Slide 16

MOS Gate Capacitor

Gate and body form MOS capacitor

Operating modes

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

Accumulation

Depletion

Inversion Mode:Holes further repelledFree electrons attracted

VT is the gate voltage at the THRESHOLDbetween Depletion and Inversion

Page 9: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

9

CMOS VLSI DesignMOSFETs-A Slide 17

Channel Current

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

Accumulation

Depletion

Inversion

This Side +This side Gnd

What happens if right side more positive relative to left?

Electrons in Inversion Region leaves channel to right

Replacement electrons enter from left

Current moves from right to left

CMOS VLSI DesignMOSFETs-A Slide 18

Terminal Voltages

Mode of operation depends on Vg, Vd, Vs

Vgs = Vg – Vs

Vgd = Vg – Vd

Vds = Vd – Vs = Vgs - Vgd

Source and drain are symmetric diffusion terminals

By convention, source is terminal at lower voltage (nmos)

Hence Vds 0

Also assume nMOS body is grounded.

Vg

Vs Vd

VgdVgs

Vds+-

+

-

+

-

Page 10: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

10

CMOS VLSI Design

Regions of Operation Assume

nMOS body is grounded.

First assume source is 0 V too.

Three regions of operation

Cutoff

Linear

Saturation

Each region has different relationship between currents and voltages

Based largely on Vgs vs VT

MOSFETs-A Slide 19

Vgs

Vds

+

-

+

-

Id

CMOS VLSI DesignMOSFETs-A Slide 20

Vgs < VT: nMOS Cutoff

No “channel”

Id = Ids (source & body same)

Ids = Id = 0

+-

Vgs = 0

n+ n+

+-

Vgd

p-type body

b

g

s d

Note: source and drain do have “free” electrons

source drain

Page 11: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

11

CMOS VLSI DesignMOSFETs-A Slide 21

Vgs>VT & Vds<(Vgs – VT): nMOS Linear

Channel forms “Inversion” of charges

Vds > 0, but small

Current flows from drain to source e- from source to drain

Ids increases with Vds

As long as Vds < (Vgs – VT)

Similar to linear resistor

+-

Vgs > Vt

n+ n+

+-

Vgd = Vgs

+-

Vgs > Vt

n+ n+

+-

Vgs > Vgd > Vt

Vds = 0

0 < Vds < Vgs-Vt

p-type body

p-type body

b

g

s d

b

g

s dIds

electron flow

CMOS VLSI DesignMOSFETs-A Slide 22

nMOS Saturation

When Vds becomes sufficiently large, channel “pinches off” Vds > Vgs - VT

Id becomes independent of Vds

We say “current saturates”

Similar to current source

Denoted Idsat

+-

Vgs > Vt

n+ n+

+-

Vgd < Vt

Vds > Vgs-Vt

p-type body

b

g

s d IdsIdsat

Page 12: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

12

CMOS VLSI Design

Summary Modes

Cutoff: Vgs < VT

No current flow across channel

Linear: Vgs > VT and Vds > 0 but small Current approximately linear with Vds

Saturation: Vgs > VT and Vds >> 0 Current independent of Vds

MOSFETs-A Slide 23

CMOS VLSI Design

Water Model

MOSFETs-A Slide 24

Page 13: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

13

CMOS VLSI DesignMOSFETs-A Slide 25

Water Model (C. Sequin)

Source/drain each have deep container of fluid Applying positive voltage

lowers top of container

Gate has plunger Starts at height VT above

surface Positive voltage on gate

lowers plunger

VGS

VDSVS = 0

VT

Vgs > 0

CMOS VLSI DesignMOSFETs-A Slide 26

Regions of Operation

VGS < VT VGS > VT VDS < VGS-VT

cutoff no current current linearwith VDS

Page 14: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

14

CMOS VLSI DesignMOSFETs-A Slide 27

Regions of Operation (cont)

VDS = VGS-VT VDS > VGS-VT VGS < VT

“pinch-off” saturated cutoff

CMOS VLSI DesignMOSFETs-A Slide 28

Idealized MOS I-V Characteristics:Different Lines for different Vgs values

IDS

VDS

Vgs > VT

Vgs < VT

Saturation

Cutoff

Page 15: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

15

CMOS VLSI Design

“Long Channel”MOS Mathematical Model

MOSFETs-A Slide 29

CMOS VLSI Design

MOS Device Notation

Vds is the voltage of the drain relative to the source. By definition: Vds = − Vsd

Vgs is the voltage of the gate relative to the source.

Ids = Id is the current into the drain terminal.

MOSFETs-A Slide 30

Vgs

Vds

Idd

g

s

b+

− −+

Vgs

Vds

Idd

g

s

b+

− −+

NMOS PMOS

Page 16: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

16

CMOS VLSI Design

MOS Device Notation

NMOS Typically:Vds ≥ 0

Vgs ≥ 0

Id ≥ 0

PMOS TypicallyVds ≤ 0

Vgs ≤ 0

Id ≤ 0

MOSFETs-A Slide 31

Vgs

Vds

Idd

g

s

b+

− −+

Vgs

Vds

Idd

g

s

b+

− −+

NMOS PMOS

CMOS VLSI DesignMOSFETs-A Slide 32

MOS I-V Characteristics

In Linear region, Ids depends on: How much charge is in the channel

How fast is the charge moving

Ids = Qchannel / t t = time for charge to transit channel

Page 17: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

17

CMOS VLSI DesignMOSFETs-A Slide 33

Key Dimensions

tox

W

L

Note: We often define λ asλ = L/2,

when L is smallest possibleOr L = 2λ

CMOS VLSI Design

Calculating MOS I-V Relations Ids = Charge_in_channel

/ Transit time

transit times

Q = charge in transit

μ = electron mobility

Cg = gate capacitance

E = electric field

ε = permittivity of gate dielectric

MOSFETs-A Slide 34

tox

L

Ids

esource drain

Page 18: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

18

CMOS VLSI DesignMOSFETs-A Slide 35

What’s the Charge in the Channel?

MOS gate structure looks like parallel plate capacitor while operating in inversion Gate is “plate” on top

Oxide in middle is dielectric

Channel is other “plate”

Q = ?

n+ n+

p-type body

+

Vgd

gate

+ +

source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

CMOS VLSI DesignMOSFETs-A Slide 36

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel

Qchannel = CV

What’s C?

n+ n+

p-type body

+

Vgd

gate

+ +

source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Page 19: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

19

CMOS VLSI DesignMOSFETs-A Slide 37

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel

Qchannel = CV

C = Cg = oxWL/tox = CoxWL

V = ?

n+ n+

p-type body

+

Vgd

gate

+ +

source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

CMOS VLSI DesignMOSFETs-A Slide 38

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel

Qchannel = CV

C = Cg = oxWL/tox = CoxWL

V = Vgc – Vt

But what’s Vgc?

n+ n+

p-type body

+

Vgd

gate

+ +

source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

Page 20: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

20

CMOS VLSI Design

What is Vgc? (The Simple Version)

On the left of channel, its Vgs

On the right of channel, Vgs = Vds + Vgd or Vgd = Vgs – Vds

Let’s compute the average: (Vgs + (Vgs – Vds))/2 = Vgs – Vds/2

MOSFETs-A Slide 39

n+ n+

p-type body

+

Vgd

gate

+ +

source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

CMOS VLSI DesignMOSFETs-A Slide 40

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel

Qchannel = CV

C = Cg = oxWL/tox = CoxWL

V = Vgc – Vt = (Vgs – Vds/2) – Vt

Q = CoxWL *((Vgs – Vds/2) – Vt )

n+ n+

p-type body

+

Vgd

gate

+ +

source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

Page 21: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

21

CMOS VLSI DesignMOSFETs-A Slide 41

Now Let’s Compute Carrier Velocity

Charge is carried by e-

Electrons move along source-drain E-field lines toward + side

Carrier velocity v proportional to lateral E-field between source and drain

v = E called mobility

tox

L

e-source drain

CMOS VLSI Design

Si Electron and Hole Mobility

MOSFETs-A Slide 42

Electron Mobility 2-3X Hole Mobility

Significant Temperature Sensitivity (mobility drops)

Page 22: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

22

CMOS VLSI DesignMOSFETs-A Slide 43

Carrier velocity

Charge is carried by e-

Carrier velocity v proportional to lateral E-field between source and drain

v = E called mobility

E = ?

tox

L

e-source drain

CMOS VLSI DesignMOSFETs-A Slide 44

Carrier velocity

Charge is carried by e-

Carrier velocity v proportional to lateral E-field between source and drain

v = E called mobility

E = Vds/L

Time for carrier to cross channel: t = ?

tox

L

e-source drain

Page 23: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

23

CMOS VLSI DesignMOSFETs-A Slide 45

Carrier velocity

Charge is carried by e-

Carrier velocity v proportional to lateral E-field between source and drain

v = E called mobility

E = Vds/L

Time for carrier to cross channel: t = L / v

tox

L

e-source drain

CMOS VLSI Design

Linear Region: Putting It All Together

Ids = Qchannel / t Qchannel = CV

• C = oxWL/tox

• V = Vgs – Vt – Vds/2

t = L / v• v = E

• E = Vds/L

Thus: Ids = (oxWL/tox)*(Vgs – Vt – Vds/2 )/(L/(Vds/L))

Or: Ids = (ox*/tox)*(W/L)*(Vgs – Vt – Vds/2 )Vds

Or: Ids = β(VGT – Vds/2 )Vds

MOSFETs-A Slide 46

β VGT

Valid for:• Vgs > Vt

• But Vds relatively small

Where:• β = Cox**(W/L)• VGT = Vgs – Vt

Page 24: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

24

CMOS VLSI Design

Saturation Region

Vdsat: Drain Saturation Voltage Vds value where channel no longer inverted in vicinity of drain

Saturation typically when Vds = VGT = Vgs - Vt

Thus, Vdsat: = VGT = Vgs – Vt

Substituting in prior equation: Idsat = β(VGT – Vdsat/2 )Vdsat )

Or: Idsat = βVGT2 / 2

MOSFETs-A Slide 47

Where:• Cox = εox / tox

• β = (ox*/tox)*(W/L) = Cox**W/L• VGT = Vgs – Vt

• Vdsat = VGT

CMOS VLSI Design

Summary: Long Channel Model

MOSFETs-A Slide 48

0, Vgs < Vt Cutoff

β(VGT – Vds/2 )*Vds, Vgs > Vt and Vds < Vdsat Linear

βVGT2 / 2, Vds > Vdsat Saturation

Ids =

Where:• Cox = εox / tox

• β = (ox*/tox)*(W/L) = Cox**W/L• VGT = Vgs – Vt

• Vdsat = VGT

William Shockley 1st order transistor models1952 A Unipolar Field Effect Transistor

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9

polysilicongate

Page 25: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

25

CMOS VLSI DesignMOSFETs-A Slide 49

CMOS VLSI Design

Knobs for Designers to Change

Typically logic designer has no control over εox : thin ox permittivity

tox: thickness of oxide

: mobility

Vt : threshold voltage

Only knobs left to change Overall Vdd: but usually selected at system level

L: length – but there is a minimum (2λ)

W: width

MOSFETs-A Slide 50

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Page 26: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

26

CMOS VLSI Design

Example: Doubling W Approximately Doubles Current

MOSFETs-A Slide 51

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6

Ids (uA)

Vds (Volts)

NMOS Device 5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

W = 2* LengthW = Length

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6

Ids (uA)

Vds (Volts)

NMOS Device 5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

CMOS VLSI Design

Supplementary Material

MOSFETs-A Slide 52

Page 27: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

27

CMOS VLSI DesignMOSFETs-A Slide 53

More Careful Accounting for Channel Voltage Variation

DSVTGS VV

)(xVdQ,dV ,dx

dQ Wdx

tox

VGS VT V x

dx

dx

dVdx

dx 2

dV

I dQ

Wdx

tox

VGS VT V x dV

dx 2

CMOS VLSI DesignMOSFETs-A Slide 54

Accounting for Channel Voltage Variation

DSVTGS VV

)(xVdQ,dV ,dx

I0

L

dx W

tox

VGS VT V dV0

VDS

IL W

tox

VGS VT VDS VDS

2

2

I WtoxL

VGS VT VDS VDS

2

2

I is independent of x

The Shockley Equation

Page 28: MOSFETs: The Long Channel, Ideal, or Shockley Modelkogge/courses/cse40462-VLSI-fa18/www/Publ… · MOS Gate Water Model nMOS Ideal Long Channel I-V Model ... Sample Technologies Load

28

CMOS VLSI DesignMOSFETs-A Slide 55

Re-writing the Schockley Equation

DSVTGS VV

)(xVdQ,dV ,dx

I WtoxL

VGS VT VDS VDS

2

2

I k'W

LVGS VT VDS

VDS2

2

I VGS VT VDS VDS

2

2

CMOS VLSI DesignMOSFETs-A Slide 56

nMOS I-V Summary(The Same Equations as Before)

2

cutoff

linear

saturatio

0

2

2n

gs t

dsds gs t ds ds dsat

gs t ds dsat

V V

VI V V V V V

V V V V

William Shockley 1st order transistor models 1952 A Unipolar Field Effect Transistor

d