42
Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

Embed Size (px)

Citation preview

Page 1: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

Mu2e Experiment and Issues

Rick Coleman, Fermilab RESMM’12, February 2012

Page 2: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 2

Mu2e talks Today

Now: Mu2e Experiment and Issues Overview, Status of Project, Production & Transport

Solenoids

16:30 Superconducting Magnets of Mu2e- Michael Lamm

17:00 Mu2e Production Solenoid- Vadim Kashikhin

Tuesday 16:00 Radiation Studies for Mu2e Magnets- Vitaly

Pronskikh

Special Thanks to: R. Bernstein, J. Miller, D. Glenzinski, for some material used

2/13/12

Page 3: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 3

Introduction

• Mu2e experiment is a search for Charged Lepton Flavor Violation (CLFV) via the coherent conversion of m-Ne-N

• In wide array of New Physics models CLFV processes occur at rates we can observe with next generation experiments

• The proposed experiment uses current proton source at Fermilab with some modifications

• Target sensitivity has great discovery potential

2/13/12

Page 4: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 4 2/13/12

Page 5: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 5 2/13/12

Page 6: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 6

Beam Intensity and Pulsed Proton Beam

• Deliver high flux m- beam to stopping target • proton flux ~6 x 1012 /sec at 8 GeV (8 kW)• ~2 x 1010 Hz m- , 1018 total, 4 conversion e- at Rme~10-16

• 103 more muons than SINDRUM II previous best limt

• Pulsed Proton beam – Wait 670 ns to reduce prompt background, extinction = 10-10 using Debuncher Ring and oscillating (AC) dipole sweeper in external proton beamline m(Al)=864 ns

2/13/12

Page 7: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 7 2/13/12

Pulsed Beam and Radiative Pion Capture Background

Wait ~ 700 nsreduced 1011

time (ns)

Page 8: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 8

Protons from 8 GeV Booster to Mu2e

New beamline shared by Mu2e and g-2

2/13/12

Steve Werkema

Page 9: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

9R. Coleman

Muon Campus for Mu2e and g-2 with Cryo Plant

Compressed He from existing TeV

compressors

Three TeV refrigeratorsinstalled in MC-1

Cold He lines to experiments

g-2 building (MC-1) has evolved to support needs of g-2 and Mu2e• Low bay is Muon Campus Cryo Building• Medium Bay will house beamline power supplies and equipment.

New transfer line forcompressed He builtfrom recycled parts

2/13/12

Page 10: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 10

Mu2eg-2

2/13/12

Page 11: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

Schedule

R. Coleman 11 2/13/12

Page 12: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 12

MECO at BNL

m/p ~ 10-4 vs

conventional ~10-8

1996-2005

1989

MELC at Moscow

2/13/12

COMET at J-PARC: proposal Nov 2007 & Mu2e at FNAL: proposal Oct 2008

Page 13: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 13

Mu2e Apparatus

• Mu2e experiment consists of 3 solenoid systems

ProductionSolenoid

TransportSolenoid

DetectorSolenoid

ProductionTarget Collimators

StoppingTarget Tracker Calorimeter

(not shown: Cosmic Ray Veto, Proton Dump, Muon Dump, Proton/Neutron absorbers, Extinction Monitor, Stopping Monitor)

2/13/12

Page 14: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 14

Mu2e Apparatus

• Mu2e experiment consists of 3 solenoid systems

ProductionSolenoid

TransportSolenoid

DetectorSolenoid

ProductionTarget Collimators

StoppingTarget Tracker Calorimeter

(not shown: Cosmic Ray Veto, Proton Dump, Muon Dump, Proton/Neutron absorbers, Extinction Monitor, Stopping Monitor)

protons

2.5T~5T

2.0T

1.0T

e-

m-, p-

2/13/12

Page 15: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 15 2/13/12

Goals:—Transport low energy

m- to the detector solenoid —Minimize transport of positive

particles and high energy particles—Minimize transport of neutral particles- curved section—Absorb antiprotons in a thin window—Minimize particles with long transit time

Transport SolenoidInner radius=24 cmLength=13.11 mTS1: L=1 mTS2: R=2.9 mTS3: L=2 mTS4: R=2.9 mTS5: L=1 m

Page 16: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 16 2/13/12

Charge, Momentum Selection and Rejection of Long-lived Particles

Page 17: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 17

Muon Flux- before and after Transport Solenoid

Negative Muons

Positive Muons

p(MeV)

p(MeV)2/13/12

Page 18: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 18 2/13/12

Muons Reaching the Stopping Target in the Detector Solenoid

Page 19: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 19

Production Solenoid

2/13/12

L= radius

Page 20: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 20 2/13/12

Heat and Radiation Shield Dimensions from Simulation

0.6 m 1.4 m

4 m

See Vitaly Pronskikh’s talktomorrow

25 kW

8 kW

W Cu

W

Cu

Bronze

Page 21: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 21

Some Early Comparisons to MECO (2009)

2/13/12

Page 22: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 22

Muon Yield vs Bmax Production SolenoidGraded Field Bmin =2.5 T

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Bmax (T)

Relative Muon Yield

MECO

Mu2e

Study of Muon Yield vs Maximum Field in Production Solenoid

2/13/12

Page 23: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 23

Target z position Study (2009)

muon yield vs target position in Production Solenoid

0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2 3 4

z (m)

Relative muon yield

Mu2e- g4beamline

MECO GEANT3

2/13/12

Page 24: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 24

0 m

1 m

COMET

MECO

400

1400

5200

Joint Meeting in Berkeley Jan 2009with COMET group- direct comparisonsdifficult due to differing physics models

2/13/12

Page 25: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 25

Sergei Striganov improved fit for Mu2e2009, similar fits by Bob Bernstein

File of pions weighted by HARP data used

2/13/12

Page 26: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 26

Stopped Muon Yield vs Initial Pion Kinetic Energy

1

10

100

1000

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Kinetic Energy (MeV)

Stopped Muons per 1E6 incident protons

Stopped Muon Yield vs Initial Pion Angle

0

50

100

150

200

250

300

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cos angle

Stopped Muons per 1E6 incident protons

Pion Production- what energies and angles are important?

~60% from 20-60 MeV kinetic energy or p = 77- 143 MeV

2/13/12

Page 27: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 27

Increase Field in Short PS from 4T to 5T max field

0

1

2

3

4

5

6

-2000-1000010002000300040005000

z(mm)

Bz(T)

Use HARPStandard PS-5Tmax

Short PS- 4T max Short PS- 5T max

Mu- hitting stoppingtarget

1955 1603 1917

Mu- stopping 1280 970 1109

Relative stopped yield =1.00 0.76 0.87

2/13/12

MECO

Page 28: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 28

Optimize target z position for Stopped muon yield for L= 4m Mu2e PS

2/13/12

With this target location muon yield is down ~ 7%with L=4 m vs L=5.2 m (MECO)

Some cost savings reducing L, but most important feature isDPA requirements can be satisfied in region where proton beam exits PS- see Vitaly’s talk tomorrow

0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.20.4

0.5

0.6

0.7

0.8

0.9

1

z(m)

Page 29: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 29

Production Solenoid- Some Engineering Aspects – Heat Shield

2/13/12

25 kW versionRequires Tungsten $$$Heat Transfer issues

8.3 kW current version

Page 30: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 30

Exploded view showing radiation labyrinths and all parts

Bolt-on rails

13.6 tons 12.4

tons13.2 tons 6.6 tons

L. BartoszekBARTOSZEK

ENGINEERING

The Mu2e All-Bronze Heat and Radiation Shield Design

2/13/12

46 tons total

Page 31: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 31

Status of Heat Shield Engineering

We have to build drawings on all-bronze 8.3 kW

3 cost estimates, very consistent, significant savings in 8.3 kW version over 25 kW version which uses tungsten

Thermal analysis in progress, not expected to be a problem

Need to explore other materials (Copper, Copper/Nickel)

Continue simulations to optimize design

2/13/12

Page 32: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 32

Backup Slides

2/13/12

Page 33: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 33 2/13/12

Page 34: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 34 2/13/12

Page 35: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 35

Electron Flash and Middle-Collimator

All particles

negative muons electrons

e/m ~20 -> 1 & stopped m reduced 20%

2/13/12

Page 36: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 36

e- / - flux entering the Detector Solenoid

e-

-

Momentum (MeV/c)

2/13/12

Page 37: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 37

Time distribution entering Detector Solenoid

-

e-

Time (ns)2/13/12

Page 38: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 38 2/13/125/3/11 38

Time vs p - negative muons reaching stopping target

MECO PS

Mu2e PS

Page 39: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 39

pp=54 MeV scatters to ~0 pitch anglein pbar windowpbar window

TS with gradient

TS without gradient

t= ~900 ns

t= ~200 ns

2/13/12

Page 40: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 40

Study of the Production Solenoid Gradient vs Muon Yield

normal time distribution

positive gradient leads to long times

2/13/12

Page 41: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 41 2/13/12

Page 42: Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012

R. Coleman 42 2/13/12