24
Multidimensional continued fractions and Diophantine exponents of lattices UDT 2018, CIRM, Luminy Oleg N. German Moscow State University October 02, 2018 Oleg N. German Multidimensional continued fractions and Diophantine exponents of lattices 1 / 19

Multidimensional continued fractions and Diophantine ... · Multidimensional continued fractions and Diophantine exponents of lattices UDT2018,CIRM,Luminy OlegN.German Moscow State

  • Upload
    others

  • View
    16

  • Download
    1

Embed Size (px)

Citation preview

Multidimensional continued fractions andDiophantine exponents of lattices

UDT 2018, CIRM, Luminy

OlegN.German

Moscow State University

October 02, 2018

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 1 / 19

Irrationality exponent vs Growth of partial quotients

Irrationality exponent θ ∈ R\Q

µ(θ) = sup{γ ∈ R

∣∣∣ ∣∣θ − p/q∣∣ 6 |q|−γ admits ∞ solutions in (q, p) ∈ Z2}

Relation to the growth of partial quotientsIf

θ = [a0; a1, a2, . . .] = a0 +1

a1 +1

a2 + . . .

,pnqn

= [a0; a1, . . . , an],

thenµ(θ)− 2 = lim sup

n→+∞

ln an+1

ln qn

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 2 / 19

Irrationality exponent vs Growth of partial quotients

Irrationality exponent θ ∈ R\Q

µ(θ) = sup{γ ∈ R

∣∣∣ ∣∣θ − p/q∣∣ 6 |q|−γ admits ∞ solutions in (q, p) ∈ Z2}

Relation to the growth of partial quotientsIf

θ = [a0; a1, a2, . . .] = a0 +1

a1 +1

a2 + . . .

,pnqn

= [a0; a1, . . . , an],

thenµ(θ)− 2 = lim sup

n→+∞

ln an+1

ln qn

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 2 / 19

Geometry of continued fractions

y = θ1x

y = θ2x

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnθ1 > 1, −1 < θ2 < 0

θ1 = [a0; a1, a2, . . .]

−1/θ2 = [a−1; a−2, a−3, . . .]

vn =

(qnpn

), vn = anvn−1 + vn−2

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 3 / 19

Geometry of continued fractions

y = θ1x

y = θ2x

a0

a−2

a2a1

a−1

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnθ1 > 1, −1 < θ2 < 0

θ1 = [a0; a1, a2, . . .]

−1/θ2 = [a−1; a−2, a−3, . . .]

vn =

(qnpn

), vn = anvn−1 + vn−2

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 4 / 19

Geometry of continued fractions

y = θ1x

y = θ2x

a0

a0

a−2

a2a1

a−1

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnθ1 > 1, −1 < θ2 < 0

θ1 = [a0; a1, a2, . . .]

−1/θ2 = [a−1; a−2, a−3, . . .]

vn =

(qnpn

), vn = anvn−1 + vn−2

an+1 = int.lenght of [vn−1,vn+1]

an+1 = int.angle α(vn) at vn

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 5 / 19

Geometry of continued fractions

y = θ1x

y = θ2x

a0

a1

a−1

a−2

a2

a0

a1

a−1a−2

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnθ1 > 1, −1 < θ2 < 0

θ1 = [a0; a1, a2, . . .]

−1/θ2 = [a−1; a−2, a−3, . . .]

vn =

(qnpn

), vn = anvn−1 + vn−2

an+1 = int.lenght of [vn−1,vn+1]

an+1 = int.angle α(vn) at vn

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 6 / 19

Geometry of continued fractions

y = θ1x

y = θ2x

a0

a1

a−1

a−2

a2

a0

a1

a−1a−2

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnθ1 > 1, −1 < θ2 < 0

θ1 = [a0; a1, a2, . . .]

−1/θ2 = [a−1; a−2, a−3, . . .]

vn =

(qnpn

), vn = anvn−1 + vn−2

an+1 = int.lenght of [vn−1,vn+1]

an+1 = int.angle α(vn) at vn

|qn| � |vn|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 7 / 19

Geometry of continued fractions

y = θ1x

y = θ2x

a0

a1

a−1

a−2

a2

a0

a1

a−1a−2

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnθ1 > 1, −1 < θ2 < 0

θ1 = [a0; a1, a2, . . .]

−1/θ2 = [a−1; a−2, a−3, . . .]

vn =

(qnpn

), vn = anvn−1 + vn−2

an+1 = α(vn), |qn| � |vn|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 8 / 19

Irrationality exponent in terms of lattice exponents

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 9 / 19

Irrationality exponent in terms of lattice exponents

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

µ(θ1) = lim supq,p∈Z|q|→∞

log(|θ1−p/q|−1

)log |q| =

= 2 + lim supq,p∈Z|q|→∞

log(|q(qθ1−p)|−1

)log |q| =

= 2 + lim supn→+∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 10 / 19

Irrationality exponent in terms of lattice exponents

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

µ(θ2) = lim supq,p∈Z|q|→∞

log(|θ2−p/q|−1

)log |q| =

= 2 + lim supq,p∈Z|q|→∞

log(|q(qθ2−p)|−1

)log |q| =

= 2 + lim supn→−∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 11 / 19

Irrationality exponent in terms of lattice exponents

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

µ(θ1) = 2 + lim supn→+∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

µ(θ2) = 2 + lim supn→−∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 12 / 19

Irrationality exponent in terms of lattice exponents

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

µ(θ1) = 2 + lim supn→+∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

µ(θ2) = 2 + lim supn→−∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

max(µ(θ1), µ(θ2)) = 2 + 2ω(Λ)

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 13 / 19

Irrationality exponent in terms of lattice exponents

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

µ(θ1) = 2 + lim supn→+∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

µ(θ2) = 2 + lim supn→−∞

log(|L1(vn)·L2(vn)|−1

)log |vn|

max(µ(θ1), µ(θ2)) = 2 + 2ω(Λ)

ω(Λ) = lim supx=(x1,x2)∈Λ|x|→∞

log(|x1x2|−1/2

)log |x|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 14 / 19

Reformulation

y = θ1x

y = θ2x

v0

v−2

v−1v−3

K1

K2

µ(θ1)− 2 = lim supn→+∞

ln an+1

ln qnL1(q, p) = qθ1 − p, L2(q, p) = qθ2 − p

Λ ={(L1(z), L2(z)

) ∣∣∣ z ∈ Z2}

ω(Λ) = lim supx=(x1,x2)∈Λ|x|→∞

log(|x1x2|−1/2

)log |x|

ω(Λ) = 12 lim sup

|v|→∞v∈V(K1)∪V(K2)

log(α(v))

log |v|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 15 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, det Λ = 1

Π(x) = |x1 . . . xd|1/d for x = (x1, . . . , xd) ∈ Rd

Lattice exponent

ω(Λ) = lim supx∈Λ|x|→∞

log(Π(x)−1

)log |x|

= sup{γ ∈ R

∣∣∣Π(x) 6 |x|−γ for infinitely many x ∈ Λ}

O an orthant

Klein polyhedron

K = conv(O ∩ Λ\{0}

)

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 16 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, det Λ = 1

Π(x) = |x1 . . . xd|1/d for x = (x1, . . . , xd) ∈ Rd

Lattice exponent

ω(Λ) = lim supx∈Λ|x|→∞

log(Π(x)−1

)log |x|

= sup{γ ∈ R

∣∣∣Π(x) 6 |x|−γ for infinitely many x ∈ Λ}

O an orthant

Klein polyhedron

K = conv(O ∩ Λ\{0}

)OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 16 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, det Λ = 1

Klein polyhedron

K = conv(O ∩ Λ\{0}

)

Determinant of a face FLet v1, . . . ,vk be the vertices of F . Then

detF =∑

16i1<...<id6k

|det(vi1 , . . . ,vid)|

Determinant of an edge star StvLet r1, . . . , rk be the primitive vectors parallel to the edges incident to v. Then

detStv =∑

16i1<...<id6k

|det(ri1 , . . . , rid)|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 17 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, det Λ = 1

Klein polyhedron

K = conv(O ∩ Λ\{0}

)Determinant of a face FLet v1, . . . ,vk be the vertices of F . Then

detF =∑

16i1<...<id6k

|det(vi1 , . . . ,vid)|

Determinant of an edge star StvLet r1, . . . , rk be the primitive vectors parallel to the edges incident to v. Then

detStv =∑

16i1<...<id6k

|det(ri1 , . . . , rid)|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 17 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, K1, . . . ,K2d its Klein polyhedra, V(Ki) set of vertices

Two-dimensional statement

ω(Λ) = 12 lim sup

|v|→∞v∈V(K1)∪V(K2)

log(detStv)

log |v|

Question, arbitrary dimension

Is it true that ω(Λ) � lim sup|v|→∞

v∈⋃

i V(Ki)

log(detStv)

log |v|?

E.Bigushev, O.G., 2018

For d = 3 we have ω(Λ) 6 23 lim sup|v|→∞

v∈⋃

i V(Ki)

log(detStv)

log |v|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 18 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, K1, . . . ,K2d its Klein polyhedra, V(Ki) set of vertices

Two-dimensional statement

ω(Λ) = 12 lim sup

|v|→∞v∈V(K1)∪V(K2)

log(detStv)

log |v|

Question, arbitrary dimension

Is it true that ω(Λ) � lim sup|v|→∞

v∈⋃

i V(Ki)

log(detStv)

log |v|?

E.Bigushev, O.G., 2018

For d = 3 we have ω(Λ) 6 23 lim sup|v|→∞

v∈⋃

i V(Ki)

log(detStv)

log |v|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 18 / 19

Higher dimensions: lattice exponents and Klein polyhedra

Λ a lattice in Rd, K1, . . . ,K2d its Klein polyhedra, V(Ki) set of vertices

Two-dimensional statement

ω(Λ) = 12 lim sup

|v|→∞v∈V(K1)∪V(K2)

log(detStv)

log |v|

Question, arbitrary dimension

Is it true that ω(Λ) � lim sup|v|→∞

v∈⋃

i V(Ki)

log(detStv)

log |v|?

E.Bigushev, O.G., 2018

For d = 3 we have ω(Λ) 6 23 lim sup|v|→∞

v∈⋃

i V(Ki)

log(detStv)

log |v|

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 18 / 19

Thank you!

OlegN.German Multidimensional continued fractions and Diophantine exponents of lattices 19 / 19