32
Multilevel Monte Carlo Path Simulation Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance Workshop on Stochastic Computational Methods with Applications in Finance, Insurance and the Life Sciences RICAM, November 17-21, 2008 Multilevel Monte Carlo – p. 1/32

Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel Monte CarloPath Simulation

Mike Giles

[email protected]

Oxford University Mathematical Institute

Oxford-Man Institute of Quantitative Finance

Workshop on Stochastic Computational Methods withApplications in Finance, Insurance and the Life Sciences

RICAM, November 17-21, 2008

Multilevel Monte Carlo – p. 1/32

Page 2: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Generic Problem

Stochastic differential equation with general drift andvolatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

In many finance applications, we want to compute theexpected value of an option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.

Multilevel Monte Carlo – p. 2/32

Page 3: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Standard MC Approach

Euler discretisation with timestep h:

Sn+1 = Sn + a(Sn, tn) h + b(Sn, tn) ∆Wn

Simplest estimator for expected payoff is an average of N

independent path simulations:

Y = N−1N∑

i=1

f(S(i)T/h

)

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path

Multilevel Monte Carlo – p. 3/32

Page 4: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Standard MC Approach

Mean Square Error is O(N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O(ε−2(log ε)2

), by combining

simulations with different numbers of timesteps – sameaccuracy as finest calculations, but at a much lowercomputational cost.

Multilevel Monte Carlo – p. 4/32

Page 5: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

Consider multiple sets of simulations with differenttimesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff Pl

E[PL] = E[P0] +L∑

l=1

E[Pl−Pl−1]

Expected value is same – aim is to reduce variance ofestimator for a fixed computational cost.

Key point: approximate E[Pl−Pl−1] using Nl simulationswith Pl and Pl−1 obtained using same Brownian path.

Yl = N−1l

Nl∑

i=1

(P

(i)l −P

(i)l−1

)

Multilevel Monte Carlo – p. 5/32

Page 6: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

Discrete Brownian path at different levels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P7

P6

P5

P4

P3

P2

P1

P0

Multilevel Monte Carlo – p. 6/32

Page 7: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

each level adds more detail to Brownian path

E[Pl−Pl−1] reflects impact of that extra detailon the payoff

different timescales handled by different levels– similar to different wavelengths being handledby different grids in multigrid

Multilevel Monte Carlo – p. 7/32

Page 8: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

Using independent paths for each level, the variance of thecombined estimator is

V

[L∑

l=0

Yl

]=

L∑

l=0

N−1l Vl, Vl ≡ V[Pl−Pl−1],

and the computational cost is proportional toL∑

l=0

Nl h−1l .

Hence, the variance is minimised for a fixed computationalcost by choosing Nl to be proportional to

√Vl hl.

The constant of proportionality can be chosen so that thecombined variance is O(ε2).

Multilevel Monte Carlo – p. 8/32

Page 9: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V[Pl−P ] = O(hl) =⇒ V[Pl−Pl−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational costwhich is O(ε−2L2) = O(ε−2(log ε)2).

Multilevel Monte Carlo – p. 9/32

Page 10: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < T,

T =1, S(0)=1, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with K =1.

Multilevel Monte Carlo – p. 10/32

Page 11: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)

0 2 4 6−20

−15

−10

−5

0

l

log 2 v

aria

nce

Pl

Pl− P

l−1

0 2 4 6−20

−15

−10

−5

0

l

log 2 |m

ean|

Pl

Pl− P

l−1

Multilevel Monte Carlo – p. 11/32

Page 12: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)

0 2 4 610

2

104

106

108

1010

l

Nl

ε=0.00005ε=0.0001ε=0.0002ε=0.0005ε=0.001

10−4

10−3

10−2

10−1

100

101

ε

ε2 Cos

t

Std MCMLMC

Multilevel Monte Carlo – p. 12/32

Page 13: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and Pl the discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Yl based on Nl Monte Carlo

samples, and positive constants α≥ 12 , β, c1, c2, c3 such that

i) E[Pl − P ] ≤ c1 hαl

ii) E[Yl] =

E[P0], l = 0

E[Pl − Pl−1], l > 0

iii) V[Yl] ≤ c2 N−1l h

βl

iv) Cl, the computational complexity of Yl, is bounded by

Cl ≤ c3 Nl h−1l

Multilevel Monte Carlo – p. 13/32

Page 14: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 thereare values L and Nl for which the multi-level estimator

Y =L∑

l=0

Yl,

has Mean Square Error MSE ≡ E

[(Y − E[P ]

)2]

< ε2

with a computational complexity C with bound

C ≤

c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.

Multilevel Monte Carlo – p. 14/32

Page 15: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Milstein Scheme

The theorem suggests use of Milstein approximation– better strong convergence, same weak convergence

Generic scalar SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T.

Milstein scheme:

Sn+1 = Sn + a h + b ∆Wn + 12 b′ b

((∆Wn)2 − h

).

Multilevel Monte Carlo – p. 15/32

Page 16: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs – trivial

O(ε−2) complexity for more complex cases usingcarefully constructed estimators based on Brownianinterpolation or extrapolation

digital, with discontinuous payoffAsian, based on averagelookback and barrier, based on min/max

Multilevel Monte Carlo – p. 16/32

Page 17: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: European call, exp(−rT ) max(S(T ) − K, 0)

0 2 4 6 8−30

−25

−20

−15

−10

−5

0

l

log 2 v

aria

nce

Pl

Pl− P

l−1

0 2 4 6 8−20

−15

−10

−5

0

l

log 2 |m

ean|

Pl

Pl− P

l−1

Multilevel Monte Carlo – p. 17/32

Page 18: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: European call, exp(−rT ) max(S(T ) − K, 0)

0 2 4 6 810

2

104

106

108

l

Nl

ε=0.00005ε=0.0001ε=0.0002ε=0.0005ε=0.001

10−4

10−3

10−2

10−1

100

101

ε

ε2 Cos

t

Std MCMLMC

Multilevel Monte Carlo – p. 18/32

Page 19: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: Asian option, exp(−rT ) max(T−1∫ T0 S(t) dt − 1, 0)

0 2 4 6 8−30

−25

−20

−15

−10

−5

0

l

log 2 v

aria

nce

Pl

Pl− P

l−1

0 2 4 6 8−20

−15

−10

−5

0

l

log 2 |m

ean|

Pl

Pl− P

l−1

Multilevel Monte Carlo – p. 19/32

Page 20: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: Asian option, exp(−rT ) max(T−1∫ T0 S(t) dt − 1, 0)

0 2 4 6 810

2

104

106

108

l

Nl

ε=0.00005ε=0.0001ε=0.0002ε=0.0005ε=0.001

10−4

10−3

10−2

10−1

100

101

ε

ε2 Cos

t

Std MCMLMC

Multilevel Monte Carlo – p. 20/32

Page 21: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))

0 5 10−30

−25

−20

−15

−10

−5

0

l

log 2 v

aria

nce

Pl

Pl− P

l−1

0 5 10−20

−15

−10

−5

0

l

log 2 |m

ean|

Pl

Pl− P

l−1

Multilevel Monte Carlo – p. 21/32

Page 22: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

MLMC Results

GBM: lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))

0 5 1010

2

104

106

108

l

Nl

ε=0.00005ε=0.0001ε=0.0002ε=0.0005ε=0.001

10−4

10−3

10−2

10−1

100

101

ε

ε2 Cos

t

Std MCMLMC

Multilevel Monte Carlo – p. 22/32

Page 23: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

1) Milstein scheme for vector SDEs

significantly more difficult because it involves Lévyareas defined as

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk−(Wk(t)−Wk(tn)) dWj .

O(h) strong convergence if Lévy areas are simulatedcorrectly – expensive

O(h1/2) strong convergence in general if Lévy areas areomitted, except if a certain commutativity condition issatisfied (useful for a number of real cases)

Lipschitz payoffs can be handled well using antitheticvariables

Multilevel Monte Carlo – p. 23/32

Page 24: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

2) Quasi-Monte Carlo

standard Monte Carlo has a random sampling errorproportional to N−1/2

Quasi-Monte Carlo uses a deterministic choice ofsample “points” to achieve an error which is nearlyO(N−1) in the best cases

Not much applicable theory because financial payoffsdon’t have required smoothness

In practice, get great results using rank-1 lattice rulesdeveloped by Ian Sloan’s group at UNSW

Haven’t yet tried Sobol sequences

Multilevel Monte Carlo – p. 24/32

Page 25: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

3) Numerical Analysis

Finance & Stochastics paper with Des Higham andXeurong Mao (Strathclyde) on analysis of Eulerdiscretisation with complex options

Rainer Avikainen (Jyväskylä) has a paper in the sameissue with a tighter bound for the digital option

Klaus Ritter (Darmstadt) and Thomas Müller-Gronbach(Magdeburg) have generalised analysis of Eulerdiscretisation to path dependent options with a Lipschitzproperty

more work needed to analyse Milstein approximation

Multilevel Monte Carlo – p. 25/32

Page 26: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

4) “Greeks”

this is the name given to derivatives such as∂

∂S0E[P ]

under certain circumstance, this is equal to E

[∂P

∂S0

]

– this leads to the pathwise differentiation approach

the multilevel approach should again work well but nottried yet

can also incorporate the adjoint approach developedwith Paul Glasserman – more efficient when manyGreeks are wanted for one payoff function

Multilevel Monte Carlo – p. 26/32

Page 27: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

5) “vibrato” Monte Carlo

problem with discontinuous payoffs is that smallchanges in path can lead to a big change in the payoff

so far, have treated digital options using a “trick” in PaulGlasserman’s book, taking the conditional expectationone timestep before maturity, which effectively smoothsthe payoff

the “vibrato” Monte Carlo idea generalises this to casesin which the conditional expectation is not known inclosed form

Multilevel Monte Carlo – p. 27/32

Page 28: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

6) American options

with European options, the buyer can only exercise theoption at maturity, the final time T

with American options, the buyer can exercise at anytime, leading to an optimal control problem

in PDE approaches, this is solved using a linearcomplementarity approach which marches backwardsin time

modifying Monte Carlo methods is much harder – anactive research topic

I have some ideas on how to incorporate the multilevelapproach – hope to start a project on this soon

Multilevel Monte Carlo – p. 28/32

Page 29: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

7) Adaptive time integration

Raul Tempone and Anders Szepessy (KTH) arecombining their adaptive timestepping methods (basedon adjoint-weighted error indicators) with the multilevelmethod

Have applied it very successfully to first exit timeapplications

Should also be very good for CIR and Heston modelswhich involve a

√v singularity

Multilevel Monte Carlo – p. 29/32

Page 30: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

8) SPDEs (stochastic PDEs)

working with a colleague Christoph Reisinger on afinancial SPDE which is a convection-diffusion PDEwith a stochastic convection “velocity”:

dv = −µ∂v

∂xdt +

1

2

∂2v

∂x2dt −√

ρ∂v

∂xdW

working with Rob Scheichl (Bath) on an elliptic SPDEwhere the diffusivity is a log-normal stochastic field:

∇ ·(κ(x)∇p

)= 0.

Klaus Ritter and others are also using multilevelapproach for SPDE’s

Multilevel Monte Carlo – p. 30/32

Page 31: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Extensions

9) CUDA implementation on NVIDIA graphics cards

advances in computer hardware/software are importantas well as advances in mathematics

graphics cards are very powerful parallel processors,with up to 240 cores per graphics chip (GPU)

2 years ago, NVIDIA introduced the CUDA developmentenvironment which uses minor extension to C/C++

with a visiting student, Xiaoke Su, achieved 100×speedup on a Monte Carlo application using 128 cores

(more recently, achieved 50× speedup for simple PDEapplications, including implicit ADI time-marching)

Multilevel Monte Carlo – p. 31/32

Page 32: Multilevel Monte Carlo Path Simulation · Multilevel Monte Carlo Path Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute

Conclusions

Multilevel Monte Carlo method has already achieved

improved order of complexity

significant benefits for model problems

but much more research is needed, both theoretical andapplied.

Acknowledgements:

Paul Glasserman, Mark Broadie, Terry Lyons for earlydiscussions

Microsoft, EPSRC, Oxford-Man Institute for funding

Multilevel Monte Carlo – p. 32/32