34
1 Nanoelectrochemical Switch for Programmable logic Toshitsugu SAKAMOTO Low-power Electronics Association & Project (LEAP) 2 nd Symposium for Energy Efficient Electronic Systems , 2011

Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

1

Nanoelectrochemical Switch for

Programmable logic

Toshitsugu SAKAMOTO Low-power Electronics Association & Project (LEAP)

2nd Symposium for Energy Efficient Electronic Systems , 2011

Page 2: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

2

Resistive switch technology using electrochemical reaction

Two terminal atom switch

Three terminal atom switch

Programmable cell arrays using atom switches

Performance gap between FPGA and ASIC

Chip size and power reduction

Conclusions

Outline

Page 3: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

3

Ag atom precipitates when positive voltage is biased on Ag.

Formation and annihilation of atomic bridge changes

conductance in units of 2e2/h.

Atomic Switch with nanometer gap

+200

+100

+80

-260mV

Co

nd

ucta

nce

(2e

2/h

)sequence

K.Terabe, et al., REKEN Review 37, 7 (2001)

K.Terabe, et al., Nature 433, 47 (2005)

RT

Ag

Pt

Ag

Switch Off Switch On

Ag2S

Page 4: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

4 Two-terminal Atom Switch

Anode voltage (V) -0.2 0 0.2

10-12

10-10

10-8

10-6

10-4

10-2

Ab

so

lute

cu

rre

nt (A

)

OFF

(Reset)

ON

(SET)

ON

OFF

Appl. Phys. Lett. 82, 3032 (2003)

Anode

Cathode

Page 5: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

5 Three terminal Atom Switch

ON

OFF

Appl. Phys. Lett. 96, 252104 (2010)

Gate voltage, VG (V)

Cur

rent

(A

)

-0.2 -0.1 0 0.1 0.210-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

IG

ID

1mGate(Cu)

Drain(Pt)

Source(Ru)

Cu2S

Gate

Drain

Page 6: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

6 Electrochemical switch in liquid (Triode)

OFF ON

Electrolyte (CuSO4 aq.)

Gate(Cu)

Drain (Pt)

Source (Pt)

S/D : Cu+ + e- → Cu

Gate : Cu → Cu+ + e-

Page 7: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

7 Cycle endurance

VG=0V, VD=10mV, RT

ON

OFF Dra

in c

urr

ent, I

D (

A)

Cycle0 50 100

10-12

10-10

10-8

10-6

10-4

10-2

Appl. Phys. Lett. 96, 252104 (2010)

Page 8: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

8

Issues

Thermal robustness of Cu2S

Process compatibility

2/3 terminal comparison

2 terminal 3 terminal

Ionic condutor Cu2S Cu2S

Integration - -

ON/OFF ratio 106 106

Cycling endurance 104 102

Switching voltage 0.1-0.2V 0.1-0.2V

Switching time ~1usec -

Switching current 1mA < 2uA

Retention 3 months -

Oxide ionic-conductor

Page 9: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

9

Appropriate materials for Si LSI

Ionic conductor : Oxide

Inert electrode : Ru

Active electrode : Cu interconnect

Simple structure

Only two additional mask needed

Implemented in BEOL

M1

M2

M3

M4

M5

switch

90nm CMOS

M.Tada et al., IEEE IEDM (2010)

Page 10: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

10 IV characteristics

M.Tada et al., IEEE IEDM (2010)

Page 11: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

11 Origin of current path

Resistive switching is attributed to formation of Cu bridge.

Pt

Cu Ta2O5

B

HSQ

A

40nm 0 0

Si/Ta Cu

O

Pt

Cu/Ta Cu

Ta/Pt

10 2 4 6 8 Energy (keV)

Inte

nsity (

a.u

.)

A

B

Element analysis by EDX before turning ON

after turning ON

Appl. Phys. Lett. 91, 092110 (2007)

Page 12: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

12 32x32 Xbar switch

Cell-select transistors are placed at each lines (32x2)

(not at each cells- 32x32).

VP applied to programmed cell and 0 or 1/2VP to the others.

VP 1/2VP 1/2VP 1/2VP

0

1/2VP

1/2VP

1/2VP

M.Miyamura, et al.,IEEE ISSCC (2011)

Page 13: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

13 Programmability of Xbar

z Re-programming

X: Signal input

Y:

Sig

na

l o

utp

ut

X: Signal input

Y:

Sig

na

l o

utp

ut [Ω]

1e10

1e9

1e8

1e7

1e6

1e5

1e4

1e3

1e2

M.Miyamura et al.,IEEE ISSCC (2011)

Page 14: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

14 Switching time

M.Tada et al., IEEE IEDM (2010)

Page 15: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

15 Switch comparison

3 terminal 2 terminal

Cu2S Cu2S Oxide

Integration - - OK

ON/OFF ratio 106 106 106

Cycling endurance 102 104 104

Switching voltage 0.1-0.2V 0.1-0.2V 2-5V

Switching time - ~1usec 10nsec

Switching current 0.1uA 1mA 1mA

Retention - 3 months 10years

Page 16: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

16

Application of atom switch

Page 17: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

17 Taxonomy of Nonvolatile memory

Mature

Prototype

Emerging

Charge state Resistive state Magnetic state

STT RAM

PRAM

(Phase change)

ReRAM

- O-vacancy

- Metallic-Bridge

MRAM

(Magnetic Field)

NAND flash

NOR flash

(Floating gate)

SONOS/TANOS

(Charge Trap)

BEOL device

(Atom switch)

Page 18: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

18 ON/OFF conductance ratio & Trade-off

Cycle Endurance

ON

/OF

F r

ati

o

NOR Switch

ReRAM

10 0 10 2 10 4 10 6 10 8 10 10 >10 16

10 0

10 2

10 4

10 6

10 8

MRAM

SRAM

Page 19: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

19 Switch application

Advantages

Large ON/OFF resistance ratio

BEOL process +2PR

Switch size

Nonvolatile

Issues for programmable switch

Reliability /Switching model

SET/RESET current (~0.5mA)

SET voltage (~3.5V)

Variability

Programmable switch

Page 20: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

20

Requirements for switch application

ON state reliability : pulsed AC current (50uA p-p)

OFF state reliability : DC voltage (1V)

10 years, 105ºC, 0.1%TTF(time to failure)

Reliability requirements for switch

Page 21: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

21 ON state reliability & Trade-off

GON = 5 IReset

Switching current

(ISet or IReset)

ON conductance

(GON)

Allowable current

(IMAX)

Imax = 1.4x10-2 GON

Imax = 0.7x10-2 IReset

@0.1%TTF, 10year, 105oC

0.5mA

2.5mS (400Ω) 37uA@DC

N. Banno, et al., IEEE VLSI Symp., 115 (2010)

Page 22: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

22 OFF state reliability & Trade-off

Set voltage

(VSET)

Allowable voltage

(VMAX)

VSET ≈ 3.5V

M.Tada et al., IEEE IEDM (2010)

Page 23: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

23

Programmable cell arrays

Page 24: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

24

ASIC (Cell based ASIC)

FPGA (Field Programmable Gate Array)

Fixed logic cells

& interconnection

Reconfigurable logic cells

& interconnection

ASIC vs FPGA

Circuit design (HDL)

Mask

Si chip production

Layout (CAD)

Circuit design (HDL)

Buy FPGA and Program it!

Short lead time

Low NRE

Logic

Cell

Logic

Cell

Logic

Cell

Logic

Cell

Logic

Cell

Logic

Cell

Logic

Cell

Logic

Cell

Pro

du

cti

on

flo

w

Str

uc

ture

Small chip

High performance

Large chip

Fair performance

Long lead time

High NRE

Page 25: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

25

Time to Market

low developing cost or NRE (non-recurring engineering) cost

NRE for ASIC > 10M$

Performance gap

Area

Delay

Dynamic Power

SRAM issues

Increasing static power

Variability

Advantage / Disadvantage of FPGA

Net SalesAltera + Xilinx

Net

Sal

es (

bill

ion

$)

Year1996 2000 2004 2008

0

1

2

3

4

(Ref. Annual Rep.)

We accept gap & issues.

Page 26: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

26

Reduced area to program connection

Non-volatility

Essence to narrow the gap

Page 27: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

27 Switch over Logic

Sea of switches

Logic Cell

Logic Cell

Logic Cell

Logic Cell

Logic plane

Switch plane

Proposal Conventional FPGA

SRAM cell Pass tr. wire

SRAM switch Nonvolatile SW

Area:120F2 4F2

Small Cell

(>102F2) Large Cell

(>104F2)

Size:1/10

Page 28: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

28

32x32 programmable cells based on standard cell design

(for reference)

MUX for configurable switch

Programmable logic using CMOS switch

32 x 32

programmable cell

array

Drivers and I/O buffers

M.Miyamura et al.,IEEE ISSCC (2011)

by courtesy of M.Miyamura, NEC

Page 29: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

29

Logic cell

350,000 atom switches replace MUX

72% chip area reduction

70% dynamic power reduction

Programmable cell using atom switches

32 x 32

programmable cell

array

Drivers and I/O buffers

32 x 32 cell

array

Driver & I/O

Dri

ver

& I/O

switch

logic

M.Miyamura et al.,IEEE ISSCC (2011)

by courtesy of M.Miyamura, NEC

Page 30: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

30

Nonvolalilty reduces Static Power.

Small capacitance of switch or interconnection reduce

dynamic power.

Reduction in power consumption

PINT f (CINT + CSW + C0 )

Wire length

Interconnect

M.Miyamura et al.,IEEE ISSCC (2011)

Pst

0 5 10 15 20 0

5

Dyn

am

ic

P [

mW

]

MUX base

AtomSW

Operational frequency (MHz)

~1/2 ~1/10

Page 31: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

31

Boosts performance & functionality of Si chip

Does not affect CMOS integration & properties

Concept of BEOL Device

FE

OL

B

EO

L

45nm 32nm 22nm 15nm 11nm

Technology Node

No

. T

ran

sis

tors

/ C

hip

P

erf

orm

an

ce

, F

un

cti

on

ality

More than Moore

More Moore

BEOL devices

boost performance.

FEOL

BEOL device

Page 32: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

32 Research consortium : LEAP

MRAM

Objective :

“Ultra low voltage device for Low-carbon society”

Member companies :

Ebara, Fujitsu, Fujitsu Semiconductor, Hitachi Kokusai Electric,

Hitachi, Mitsubishi Electric Corp, NEC Corp., Renesas Electronics

Corp., Tokyo Electron Ltd., Toshiba Corp.

PRAM CNT Via

Atom Switch

BEOL

• Shared test chip

• 65nm CMOS Logic

FDFET(SOTB)

Page 33: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

33

Three terminal atom switch reduces the programming

current dramatically.

Two-terminal atom switch successfully embedded into a Cu

interconnect with two additional masks.

Novel switch improves performances of reconfigurable LSI

without scaling down.

72% reduction in chip size

70% reduction in dynamic power

Conclusions

Page 34: Nanoelectrochemical Switch for Programmable logic...32x32 programmable cells based on standard cell design (for reference) MUX for configurable switch Programmable logic using CMOS

34

Munehiro Tada (LEAP)

Makoto Miyamura

Naoki Banno

Koichi Okamoto

Noriyuki Iguchi

Hiromitsu Hada

Acknowledge