26
Theoretical Theoretical Theoretical Theoretical Theoretical Theoretical Theoretical Theoretical Modeling Modeling Modeling Modeling Modeling Modeling Modeling Modeling of of of of of of of of DNA DNA DNA DNA DNA DNA DNA DNA - - - - - - based based based based based based based based Biomolecular Biomolecular Biomolecular Biomolecular Biomolecular Biomolecular Biomolecular Biomolecular Nanowires Nanowires Nanowires Nanowires Nanowires Nanowires Nanowires Nanowires Rosa Di Felice Rosa Di Felice Rosa Di Felice Rosa Di Felice Rosa Di Felice Rosa Di Felice Rosa Di Felice Rosa Di Felice INFM National Center for nanoStructures and bioSystems at Surfaces (S 3 ), Dipartimento di Fisica, Università di Modena e Reggio Emilia, 41100 Modena, Italy. http://www.s3.infm.it Nanoelectronics Nanoelectronics Nanoelectronics Nanoelectronics Lancaster, January 5 th , 2003 Collaborators Collaborators Collaborators Collaborators Collaborators Collaborators Collaborators Collaborators Arrigo Calzolari (INFM S 3 , Italy) Elisa Molinari (INFM S 3 , Italy) Anna Garbesi (CNR ISOF, Italy) Acknowledgements Acknowledgements Acknowledgements Acknowledgements Acknowledgements Acknowledgements Acknowledgements Acknowledgements Funding: INFM, EU Computer time: CINECA Bologna, CICAIA Modena

Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

TheoreticalTheoreticalTheoreticalTheoreticalTheoreticalTheoreticalTheoreticalTheoretical ModelingModelingModelingModelingModelingModelingModelingModeling of of of of of of of of DNADNADNADNADNADNADNADNA--------basedbasedbasedbasedbasedbasedbasedbasedBiomolecularBiomolecularBiomolecularBiomolecularBiomolecularBiomolecularBiomolecularBiomolecular NanowiresNanowiresNanowiresNanowiresNanowiresNanowiresNanowiresNanowires

Rosa Di FeliceRosa Di FeliceRosa Di FeliceRosa Di FeliceRosa Di FeliceRosa Di FeliceRosa Di FeliceRosa Di FeliceINFM National Center for nanoStructures and bioSystems at Surfaces (S3),

Dipartimento di Fisica, Università di Modena e Reggio Emilia, 41100 Modena, Italy. http://www.s3.infm.it

NanoelectronicsNanoelectronicsNanoelectronicsNanoelectronicsLancaster, January 5th, 2003

CollaboratorsCollaboratorsCollaboratorsCollaboratorsCollaboratorsCollaboratorsCollaboratorsCollaboratorsArrigo Calzolari (INFM S3, Italy)

Elisa Molinari (INFM S3, Italy)

Anna Garbesi (CNR ISOF, Italy)

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsFunding: INFM, EU

Computer time: CINECA Bologna, CICAIA Modena

Page 2: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

OutlineOutlineOutlineOutlineOutlineOutlineOutlineOutline! Towards hybrid and mono-molecular electronics

� Is DNA a viable electrical material?

! Experiments on DNA charge mobility� In the SolidSolidSolidSolid StateStateStateState

� Structure, conductivity

� In Solution Solution Solution Solution ChemistryChemistryChemistryChemistry� Guanine: low ionization potential ⇒ hole traps

! Guanine-rich stacks� Experimental results available, theoretical simulations feasible

� π stacks, H-bonded ribbons, stacked & H-bonded G4

! DFT simulations: band transport contribution?� Energetics, electronic properties

� G4: Flat bands, Effective semiconducting DOS

! Conclusions & Perspectives

HHHH----bondedbondedbondedbondedG G G G ribbonribbonribbonribbon

Page 3: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

ElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsElectronics and and and and and and and and NanoNanoNanoNanoNanoNanoNanoNano--------ElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsElectronics

�Sculpt� frombulk

TOPTOPTOPTOP----DOWNDOWNDOWNDOWN

!ClassicalClassicalClassicalClassicalsemiconductorssemiconductorssemiconductorssemiconductors

Assemble fromnano-scale

building blocks

BOTTOMBOTTOMBOTTOMBOTTOM----UPUPUPUP

!MolecularMolecularMolecularMolecularelectronicselectronicselectronicselectronics

!BiomolecularBiomolecularBiomolecularBiomolecularelectronicselectronicselectronicselectronics

atomic/subatomic scaleatomic/subatomic scaleatomic/subatomic scaleatomic/subatomic scale

classical engineering scaleclassical engineering scaleclassical engineering scaleclassical engineering scale

nano-particles

photo-lithography

1µm

100nm

10nm

1nm1�

chemical synthesis

Page 4: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

BiomolecularBiomolecularBiomolecularBiomolecularBiomolecularBiomolecularBiomolecularBiomolecular ElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsElectronicsthe the the the the the the the exploitationexploitationexploitationexploitationexploitationexploitationexploitationexploitation of of of of of of of of functionalfunctionalfunctionalfunctionalfunctionalfunctionalfunctionalfunctional propertiespropertiespropertiespropertiespropertiespropertiespropertiesproperties of of of of of of of of biomoleculesbiomoleculesbiomoleculesbiomoleculesbiomoleculesbiomoleculesbiomoleculesbiomolecules(DNA, PROTEINS) (DNA, PROTEINS) (DNA, PROTEINS) (DNA, PROTEINS) (DNA, PROTEINS) (DNA, PROTEINS) (DNA, PROTEINS) (DNA, PROTEINS) totototototototo bebebebebebebebe usedusedusedusedusedusedusedused in in in in in in in in hybridhybridhybridhybridhybridhybridhybridhybrid electronicelectronicelectronicelectronicelectronicelectronicelectronicelectronic devicesdevicesdevicesdevicesdevicesdevicesdevicesdevices

! Peculiarities of Biomolecular Devices� Intrinsic Functionality� Self-Assembly� Intrinsically identical building blocks� Natural Nano-meter scale

! Self-assembled few-molecule monolayer� Tens-of-nanometers channel

! Single-molecule Bio-transistor� Few-nanometers channel

! Two-terminal devices are presently the prototype study-case

molecularmolecularmolecularmolecular layerlayerlayerlayer

single single single single moleculemoleculemoleculemolecule

Page 5: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

MolecularMolecularMolecularMolecularMolecularMolecularMolecularMolecular devicedevicedevicedevicedevicedevicedevicedevice schemeschemeschemeschemeschemeschemeschemescheme

DonorDonorDonorDonorDonorDonorDonorDonor

AcceptorAcceptorAcceptorAcceptorAcceptorAcceptorAcceptorAcceptorBridgeBridgeBridgeBridgeBridgeBridgeBridgeBridge

ElectrodeElectrodeElectrodeElectrodeElectrodeElectrodeElectrodeElectrode ElectrodeElectrodeElectrodeElectrodeElectrodeElectrodeElectrodeElectrode

MoleculeMoleculeMoleculeMoleculeMoleculeMoleculeMoleculeMolecule

What is the role of the bridge energylevels in the charge conductionthrough the molecule?

Coupling: electrode-donor, donor-bridge-aceptor, acceptor-electrode

Page 6: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

DNA Structural DNA Structural DNA Structural DNA Structural DNA Structural DNA Structural DNA Structural DNA Structural FeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeatures

! Unique H-bonding base-base coupling� Guanine-Cytosine� Adenine-Thymine� Auto-recognition, Self-assembly

! Inner Core� Base-pair stack� Responsible for electron-hole

mobility

! Outer backbone� Sugar-phosphate bridge

connecting adjacent planes� May host mobile ions

! Protein recognition� Binding at specific sites of the

sequence� Molecular nano-lithography

Page 7: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

SelectedSelectedSelectedSelectedSelectedSelectedSelectedSelected experimentsexperimentsexperimentsexperimentsexperimentsexperimentsexperimentsexperiments on DNA on DNA on DNA on DNA on DNA on DNA on DNA on DNA chargechargechargechargechargechargechargecharge mobilitymobilitymobilitymobilitymobilitymobilitymobilitymobility

! Charge migration in DNA in DNA in DNA in DNA in DNA in DNA in DNA in DNA in SolutionSolutionSolutionSolutionSolutionSolutionSolutionSolution ChemistryChemistryChemistryChemistryChemistryChemistryChemistryChemistry� Donor-to-acceptor long-range electron transfer� Superexchange, hopping, polaron hopping (phonon-assisted)� J.K. Barton: distance independence, wirelike

! Electronic transport in DNA in DNA in DNA in DNA in DNA in DNA in DNA in DNA in devicedevicedevicedevicedevicedevicedevicedevice configurationconfigurationconfigurationconfigurationconfigurationconfigurationconfigurationconfiguration

� DNA as a template

� DNA as a (semi)conductor

� Formation of extended states?

! Conductivity through deoxy-guanosine fibers

Page 8: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

DNA in DNA in DNA in DNA in DNA in DNA in DNA in DNA in devicedevicedevicedevicedevicedevicedevicedevice configurationconfigurationconfigurationconfigurationconfigurationconfigurationconfigurationconfiguration! InsulatorInsulatorInsulatorInsulator

� 16-µm-long λ-DNA, 12-16-µm-spaced electrodes, single molecule� Braun et al., Nature 1998.� Template for conducting Ag wires.

� 1.8-µm-long λ-DNA, SFM, single molecule� de Pablo et al., Phys. Rev. Lett. 2000.

! SemiconductorSemiconductorSemiconductorSemiconductor� 10.4-nm-long (30 base pairs) poly(G)-poly(C), 8-nm-spaced electrodes,

single molecule� Porath et al., Nature 2000.

! ConductorConductorConductorConductor� 600-nm-long λ-DNA, bundles in 2-µm holes

� Fink & Schönenberger, Nature 1999.

! SuperconductorSuperconductorSuperconductorSuperconductor (proximity-induced superconductivity)� 16-µm-long λ-DNA, 0.5-µm-spaced electrodes, few molecules

� Kasumov et al., Science 2001.

Page 9: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

ExperimentExperimentExperimentExperimentExperimentExperimentExperimentExperiment: : : : : : : : holeholeholeholeholeholeholehole transfertransfertransfertransfertransfertransfertransfertransfer

E. Meggers et al., J. Am. Chem. Soc. 120120120120, 12950 (1998)

OneOneOneOneOneOneOneOne--------stepstepstepstepstepstepstepstep superexchangesuperexchangesuperexchangesuperexchangesuperexchangesuperexchangesuperexchangesuperexchangeSequentialSequentialSequentialSequentialSequentialSequentialSequentialSequentialhoppinghoppinghoppinghoppinghoppinghoppinghoppinghopping

Page 10: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

MechanismsMechanismsMechanismsMechanismsMechanismsMechanismsMechanismsMechanisms forforforforforforforfor DNA DNA DNA DNA DNA DNA DNA DNA chargechargechargechargechargechargechargecharge motionmotionmotionmotionmotionmotionmotionmotion

One-step tunneling, Marcus & Sutin, Biochim. Biophys. Acta(1985).

Rate k= (1/h) V02 F exp(-βR) [structureless wide 1D barrier]

Multi-step process, transfer of localized charge, slow distancedependence

E. Meggers, JACS 1998. Jortner, PNAS 1998.

Page 11: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

HintsHints

! From experiments in the solid state� Fix constraints on wire variability

� Sequence� Length� Aggregation state

! From experiments in solution chemistry� Outstanding role of the Guanine base

Page 12: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

OurOurOurOurOurOurOurOur approachapproachapproachapproachapproachapproachapproachapproach! InorganicInorganicInorganicInorganic nanonanonanonano----wireswireswireswires

� Starting point: 3D crystal � Delocalized orbitals� Bandstructure

� Confinement in 2 directions� Energy quantization perpendicular to wire axis� Residual band dispersion along wire axis

! ((((BioBioBioBio))))MolecularMolecularMolecularMolecular nanonanonanonano----wireswireswireswires� Starting point: molecular building blocks

� Localized orbitals� Discrete energy levels

� Periodicity in 1 direction → 1D crystal lattice and bandstructure� Orbital delocalization & band dispersion along wire axis?� Under which conditions?

3D3D3D3D 2D2D2D2D 1D1D1D1D

Page 13: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

MotivationsMotivationsMotivationsMotivationsMotivationsMotivationsMotivationsMotivations forforforforforforforfor selectingselectingselectingselectingselectingselectingselectingselecting G4 G4 G4 G4 G4 G4 G4 G4 wireswireswireswireswireswireswireswires! G-aggregates

� Ribbons, tetrads, DNA sequences� Role of G and (G)n in DNA damage and electron

transfer

! Tetrad stacks: well characterized real systems, X-ray and NMR data available

! Very stable in different chemical environments� With and without sugar-phosphate backbone� Stabilized by metal cations in the core� Mechanically resistant (up to ∼ 1 µm)

! Different preparations viable� From single strands and double strands� Properties tuned by metal selectivity

! Only guanine ⇒ no sequence dependence

! Appealing to study transport properties of guanine-rich self-assembled supramolecular wires

G4G4--DNADNA

Page 14: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

GGGGGGGG--------aggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregates

GuanineGuanineGuanineGuanineGuanineGuanineGuanineGuanineHHHHHHHH--------bondedbondedbondedbondedbondedbondedbondedbonded ribbonribbonribbonribbonribbonribbonribbonribbon

HHHHHHHH--------bondedbondedbondedbondedbondedbondedbondedbonded quartetquartetquartetquartetquartetquartetquartetquartet

PolyPolyPolyPolyPolyPolyPolyPoly((((((((dGdGdGdGdGdGdGdG))))))))--------PolyPolyPolyPolyPolyPolyPolyPoly((((((((dCdCdCdCdCdCdCdC))))))))

Page 15: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

MethodMethodMethodMethodMethodMethodMethodMethod� StructuralStructuralStructuralStructural OptimizationOptimizationOptimizationOptimization

� DFT-GGA (BLYP), ab-initio soft pseudopotentials (M&T), plane wave basis, periodically repeated supercells, BZ sampling along the wire axis

� Atomic displacement until forces vanish (within 0.05 eV/Å)� Suitable to describe structures with long-range order → 1D wires

� C,N,O: hard cores ⇒ many plane waves needed, 50 Ry cutoff� Large supercells (6×103 Å3), 195 atoms, thick vacuum� Tests on isolated G molecules and H-bonded G ribbons

� Relative Relative Relative Relative formationformationformationformation energiesenergiesenergiesenergies� Dependence on the atomic and electronic (EF) chemical potentials

� ElectronicElectronicElectronicElectronic propertiespropertiespropertiesproperties� Bandstructure� Density of States

Page 16: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

Building block: the Building block: the Building block: the Building block: the Building block: the Building block: the Building block: the Building block: the GuanineGuanineGuanineGuanineGuanineGuanineGuanineGuanine basebasebasebasebasebasebasebase

� CarbonCarbonCarbonCarbon, , , , NitrogenNitrogenNitrogenNitrogen, , , , HydrogenHydrogenHydrogenHydrogen, , , , OxygenOxygenOxygenOxygen

� Bond lengths: 2%

� Bond angles: 1%

� HOMO and LUMO: πcharacter

IsolatedIsolatedIsolatedIsolated guanineguanineguanineguanine moleculemoleculemoleculemolecule

Page 17: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

Isolated G: electron statesIsolated G: electron statesIsolated G: electron statesIsolated G: electron statesIsolated G: electron statesIsolated G: electron statesIsolated G: electron statesIsolated G: electron states

HOMO:HOMO:HOMO:HOMO: ππππ charactercharactercharactercharacterLocalized on CLocalized on CLocalized on CLocalized on C----C and C and C and C and CCCC----N bondsN bondsN bondsN bonds

LUMO:LUMO:LUMO:LUMO: ππππ charactercharactercharactercharacterEEEELUMOLUMOLUMOLUMO----EEEEHOMOHOMOHOMOHOMO=4.8 =4.8 =4.8 =4.8 eVeVeVeVLocalized on atoms Localized on atoms Localized on atoms Localized on atoms

SuitableSuitableSuitableSuitableSuitableSuitableSuitableSuitable forforforforforforforfor ππππππππ--------ππππππππ interactionsinteractionsinteractionsinteractionsinteractionsinteractionsinteractionsinteractions in G in G in G in G in G in G in G in G stacksstacksstacksstacksstacksstacksstacksstacks

Page 18: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

GuanineGuanineGuanineGuanineGuanineGuanineGuanineGuanine stacksstacksstacksstacksstacksstacksstacksstacks(DNA-like rot)

Bandstructure along the stacking direction

R. Di Felice et al., Phys. Rev. B 65656565, 045104 (2002)

me/m0∼ 1 me/m0∼ 2 me/m0→∞

Page 19: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

G5

G4

G3

G2

G-2

G-3

G-4

G-5

Top view

Side view

G4G4G4G4G4G4G4G4--------wires: structurewires: structurewires: structurewires: structurewires: structurewires: structurewires: structurewires: structure

G-2/G-3

G-2/G-5

G

G G

G

G

G G

G

G

G G

G

G

G G

G

K+K+

X-Ray Structure UDF062K. Phillips et at., J. Mol. Biol. 1997

Page 20: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

The planar The planar The planar The planar The planar The planar The planar The planar tetradtetradtetradtetradtetradtetradtetradtetrad

HOMOHOMOHOMOHOMO LUMOLUMOLUMOLUMO

Double ring of H-bondsElectronegative inner core, O atomsThermodynamically stableNo in-plane orbital delocalization

Page 21: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

PeriodicPeriodicPeriodicPeriodicPeriodicPeriodicPeriodicPeriodic boundaryboundaryboundaryboundaryboundaryboundaryboundaryboundary conditionsconditionsconditionsconditionsconditionsconditionsconditionsconditions

Many infinite wires

Wire thickness ∼ 10 Å

Avoid inter-wire spurious coupling → large distance

UnitUnitUnitUnit cellcellcellcell

24.3 Å

10.1 Å

Page 22: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

G4 G4 G4 G4 G4 G4 G4 G4 StabilityStabilityStabilityStabilityStabilityStabilityStabilityStability! KKKK----richrichrichrich conditionsconditionsconditionsconditions

� µK = µK(bulk)

� ∆nK = ∆ne = 3 for 3G4/K+

! VariableVariableVariableVariable Fermi Fermi Fermi Fermi levellevellevellevel� Linear dependence� Stable wires� 3G4/K+ favored for EF <

1 eV� Fermi level pinning at the

HOMO (EF = 0) consistent with the presence of cations

! Metal Metal Metal Metal cationscationscationscations stabilizestabilizestabilizestabilizethe the the the extendedextendedextendedextendednanowiresnanowiresnanowiresnanowires

∆∆∆∆EEEEformformformform = = = = ∆∆∆∆EEEEtottottottot ���� ∆∆∆∆nnnnKKKKµµµµKKKK ---- ∆∆∆∆nnnneeeeEEEEFFFF

Page 23: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

G4 G4 G4 G4 G4 G4 G4 G4 ElectronicElectronicElectronicElectronicElectronicElectronicElectronicElectronic PropertiesPropertiesPropertiesPropertiesPropertiesPropertiesPropertiesProperties

BandstructureBandstructureBandstructureBandstructureBandstructureBandstructureBandstructureBandstructure Density of Density of Density of Density of Density of Density of Density of Density of StatesStatesStatesStatesStatesStatesStatesStates! BandstructureBandstructureBandstructureBandstructure

� Flat bands� No dispersion

along wire axis (Γ-A)

� Minibands

! DOSDOSDOSDOS� Peak spreading

from minibands� π-like and σ-like� Effective

semiconductor

A. Calzolari et al., Appl. Phys. Lett. 80808080, 3331 (2002)

Page 24: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

G4 Electron G4 Electron G4 Electron G4 Electron G4 Electron G4 Electron G4 Electron G4 Electron orbitalsorbitalsorbitalsorbitalsorbitalsorbitalsorbitalsorbitals

O6

O6

N7

N7

C8C8

K+

O6

O6

N7

N7

C8C8

K+K+

K+

K+

O6O6N7 N7C8 C8

N3 N3

N2 N2

K+

K+

K+

O6O6N7 N7C8 C8

N3 N3

N2 N2Linear combination of almost degenerate HOMO�s (~20 meV)

Delocalization along wire axis�Channels for charge motions�Through the bases, not through the inner core

Page 25: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

ConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusions

! Stability of G4-based columnar stacks in the presence of K+ ions

! π-π superposition insufficient to induce band dispersion along the wire axis

! Minibands from closely spaced energy levels

! Possible thermal coupling� Combination of orbitals leads to delocalization

! Effective behavior of wide-bandgap semiconductors

! Appealing candidates for biomolecular electronics

Page 26: Nanoelectronics Lancaster, January 5 Theoretical Modeling of … · 2003. 2. 3. · Biomolecular Electronics the exploitation of functional properties of biomolecules (DNA, PROTEINS)

PerspectivesPerspectivesPerspectivesPerspectivesPerspectivesPerspectivesPerspectivesPerspectives!! G4G4G4G4G4G4G4G4: Effects of other metal cations

� Stability

� Electronic properties� Tuning by different metals: effective doping, transport mediation

� Relation between disctrete charge transfer and continuous charge transport

! Other nucleotidenucleotidenucleotidenucleotidenucleotidenucleotidenucleotidenucleotide--------basedbasedbasedbasedbasedbasedbasedbased structures that may function asgood molecular wireswireswireswireswireswireswireswires

! Implementation of methods for ab-initio computation of the quantum conductance and transport characteristics