62
New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut f ¨ ur Kernphysik Technische Universit¨ at Darmstadt 1

New Frontiers in Nuclear Structure Theory fileNuclear Structure in the 21st Century new frontiers in nuclear structure physics Experiment n fundamental astrophysical ques-tions need

  • Upload
    dominh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

New Frontiers inNuclear Structure TheoryFrom Realistic Interactions to the Nuclear Chart

Robert RothInstitut fur Kernphysik

Technische Universitat Darmstadt

1

Overview

n Motivation

n Nucleon-Nucleon Interactions

n Solving the Many-Body Problem

n Correlations & Unitary Correlation Operator Method

n Applications

2

Nuclear Structure in the 21st Century

new frontiers innuclear structure physics

Experimentn fundamental astrophysical ques-

tions need nuclear input

n possibilities to investigate nucleifar off stability

n new nuclear structure facilities:FAIR@GSI, RIA,...

Theoryn improved understanding of funda-

mental degrees of freedom / QCD

n high-precision realistic nucleon-nucleon potentials

n ab initio treatment of the many-body problem

3

Astrophysical Challenges

4

Theoretical Contextbe

tterr

esol

utio

n/m

ore

fund

amen

tal n finite nuclei

n few-nucleon systemsn nucleon-nucleon interaction

n hadron structure

n quarks & gluonsn deconfinementQ

uant

umC

hrom

oD

ynam

ics

Nuc

lear

Str

uctu

re

5

Theoretical Contextbe

tterr

esol

utio

n/m

ore

fund

amen

tal

Qua

ntum

Chr

omo

Dyn

amic

s

Nuc

lear

Str

uctu

re“solve”

the interacting nuclearmany-body problem

“construct”a realistic nucleon-nucleon

interaction from QCD

6

RealisticNucleon-Nucleon Potentials

7

Nature of the NN-Interaction

∼ 1.6fm

ρ−1/30 = 1.8fm

n NN-interaction is not fundamental

n induced via mutual polarisation of virtualmeson cloud (simple picture)

n analogous to van der Waals interactionbetween neutral atoms

n short-ranged: acts only if the nucleonsoverlap

n genuine NNN-interaction is important

8

How to Construct the NN-Potential?

n QCD input

• symmetries

• meson-exchange picture

• chiral perturbation theory

n short-range phenomenology

• ansatz for short-range behaviour

n experimental two-body data

• scattering phase-shifts & deuteron properties

• reproduced with χ2/datum ≈ 1

ArgonneV18

CD Bonn

NijmegenI/II

Chiral...

9

Argonne V18 Potential

v(r) v(r) ~L2

v(r) S12 v(r) (~L · ~S) v(r) (~L · ~S)2

-100

0

100

.

[MeV

]

0 1 2r [fm]

-100

0

100

.

[MeV

]

0 1 2r [fm]

0 1 2r [fm]

(S, T )

(1, 0)(1, 1)(0, 0)(0, 1)

10

NuclearMany-Body Problem

11

Ab initio Calculations

solve the quantum many-bodyproblem for A nucleons interacting

via a realistic NN-potential

n exact numerical solution possible for small systems at an enormouscomputational cost

n Green’s Function Monte Carlo: Monte Carlo sampling of the A-body wave function in coordinate space; imaginary time cooling

n No-Core Shell Model: large-scale diagonalisation of the Hamilto-nian in a harmonic oscillator basis

12

Green’s Function Monte Carlo

-100

-80

-60

-40

-20E

nerg

y (M

eV)

AV18

IL2 Exp

0+

4He

2+1+0+

0+2+

6He

1+

1+3+2+1+

6Li

5/2−5/2−

3/2−1/2−7/2−5/2−5/2−

7/2−

3/2−1/2−

7Li

1+0+2+

0+2+

8He1+

0+2+4+2+1+

3+4+

0+

2+

3+2+

8Be

9/2−

3/2−5/2−1/2−

7/2−

(3/2−)

(5/2−)

9Be

3+

4+

0+2+2+

(4+)

10Be 3+1+

2+

4+

1+

3+1+2+

10B

3+

1+

2+

4+

1+

3+

1+

2+

0+

12C

Argonne v18With Illinois-2

GFMC Calculations22 June 2004

12C results are preliminary.[S. Pieper, private comm.]

75000CPU-hours

13

Our Goal

nuclear structure calculationsacross the whole nuclear chart

based on realistic NN-potentialsand as close as possible to

an ab initio treatment

bound to simpleHilbert spaces for large

particle numbers need to deal withstrong interaction-

induced correlations

14

What are Correlations?

correlations:

everything beyond theindependent particle picture

n the quantum state of A independent (non-interacting) fermionsis a Slater determinant

∣∣ψ⟩

= A (∣∣φ1

⟩⊗

∣∣φ2

⟩⊗ · · · ⊗

∣∣φA

⟩)

n Slater determinants cannot describe correlations by definition

15

Deuteron: Manifestation of Correlations

MS = 01√2(∣∣↑↓

⟩+

∣∣↓↑⟩)

MS = ±1∣∣↑↑⟩,

∣∣↓↓⟩

zn spin-projected two-body

density ρ(2)1,MS

(~r)

n exact deuteron solutionfor Argonne V18 potential

two-body density fullysuppressed at small particle

distances |~r|

central correlations

angular distributiondepends strongly on relative

spin orientation

tensor correlations

16

Central Correlations

-100

0

100

200

300

.

V01(r

)[M

eV]

AV18 – central part(S, T ) = (0, 1)

0 0.5 1 1.5 2 2.5 3r [fm]

0

0.1

0.2

0.3

.

ρ(2)

01(r

)[f

m−

3]

4He

ρ(2)exact(r)

ρ(2)SD (r)

n strong repulsive core in central part ofrealistic interactions

n suppression of the probability den-sity for finding two nucleons within thecore Ô central correlations

“shift”the nucleons out of

the core region

17

Tensor Correlations

2.00 1.56

0.50

-0.56

-1.00

-0.56

0.50

1.562.00

-2.00-1.56

-0.50

0.56

1.00

0.56

-0.50

-1.56-2.00

Vtensor

anti-parallelspins

parallelspins

n analogy with dipole-dipole interaction

Vtensor ∼ −(3

(~σ1~r)(~σ2~r)

r2− ~σ1~σ2

)

n couples the relative spatial orientationof two nucleons with their spin orien-tation Ô tensor correlations

“rotate” nucleonstowards pole or equator

depending on spin

18

Unitary CorrelationOperator Method (UCOM)

19

Unitary Correlation Operator Method

Correlation Operatorintroduce correlations by means of an

unitary transformation with respectto the relative coordinates of all pairs

C = exp[−i G] = exp[− i

i<j

gij

]

g = g(~r,~q; ~σ1, ~σ2, ~τ 1, ~τ 2)G† = GC†C = 1

Correlated States∣∣ψ⟩

= C∣∣ψ

⟩Correlated Operators

O = C† O C

⟨ψ

∣∣ O∣∣ψ′⟩ =

⟨ψ

∣∣ C† O C∣∣ψ′⟩ =

⟨ψ

∣∣ O∣∣ψ′⟩

20

Central and Tensor Correlators

C = CΩCr

Central Correlator Cr

n radial distance-dependent shiftin the relative coordinate of a nu-cleon pair

gr =1

2

[s(r) qr + qr s(r)

]

qr = 12

[~rr

· ~q + ~q · ~rr

]

Tensor Correlator CΩ

n angular shift depending on the orienta-tion of spin and relative coordinate of anucleon pair

gΩ =3

2ϑ(r)

[(~σ1 · ~qΩ)(~σ2 ·~r) + (~r↔~qΩ)

]

~qΩ = ~q − ~rr

qr

s(r) and ϑ(r)encapsulate the physics ofshort-range correlations

21

Correlated States

1 2 3 4 5r [fm]

0

0.05

0.1

0.15

.

⟨ r∣ ∣ φ

L = 0

1 2 3 4 5r [fm]

0

0.05

0.1

0.15

.

⟨ r∣ ∣ C

r

∣ ∣ φ⟩

1 2 3 4r [fm]

0

0.05

0.1

0.15

0.2

.

[fm

]

s(r)central

correlations

1 2 3 4 5r [fm]

0

0.05

0.1

0.15

.

⟨ r∣ ∣ C

ΩC

r

∣ ∣ φ⟩

L = 2

L = 0

1 2 3 4r [fm]

0

0.02

0.04

0.06

0.08

.

ϑ(r)

tensorcorrelations

ρ(2)1,SM

(~r)

22

Correlated NN-Potential — VUCOM

H = T[1] + (T[2]+V[2]) + (T[3]+V[3]) + · · ·H = T + VUCOM + V[3]UCOM + · · ·

n closed operator expression for the correlated interactionVUCOM in two-body approximation

n correlated interaction and original NN-potential are phaseshift equivalent by construction

n unitary transformation results in a pre-diagonalisation ofHamiltonian

n momentum-space matrix elements of correlated interactionare similar to Vlow−k

23

Simplistic “Shell-Model” Calculation

n expectation value of Hamiltonian (with AV18) for Slater de-terminant of harmonic oscillator states

-10

0

10

20

30

40

50

60

.

E/A

[MeV

]

4He 16O 48Ca 90Zr 132Sn 208Pb

-10

0

10

20

30

40

50

60

.

E/A

[MeV

]

4He 16O 48Ca 90Zr 132Sn 208Pb

Cr

-10

0

10

20

30

40

50

60

.

E/A

[MeV

]

4He 16O 48Ca 90Zr 132Sn 208Pb

Cr

central & tensorcorrelations

essential to obtainbound nuclei

24

Application I

No-Core Shell Model

25

UCOM + NCSM

No-Core Shell Model+

Matrix Elements of CorrelatedRealistic NN-Interaction VUCOM

n many-body state is expanded in Slater determinants of har-monic oscillator single-particle states

n large scale diagonalisation of Hamiltonian within a truncatedmodel space (N~ω truncation)

n assessment of short- and long-range correlations

n NCSM code by Petr Navratil [PRC 61, 044001 (2000)]

26

4He: Convergence

Vbare

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

Nmax

0 2 4

6

8

10121416EAV18

VUCOM

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

residual state-dependentlong-range correlations

27

4He: Convergence

Vbare

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

Nmax

0 2 4

6

8

10121416EAV18

VUCOM

20 40 60 80~ω [MeV]

-20

0

20

40

60

.

E[M

eV]

20 40 60 80

-30

-25

-20

-15

-10

omitted higher-ordercluster contributions

28

Tjon-Line and Correlator Range

-8.6 -8.4 -8.2 -8 -7.8 -7.6E(3H) [MeV]

-30

-29

-28

-27

-26

-25

-24

.

E(4

He)

[MeV

]

AV18Nijm I

Nijm II

CD Bonn

XXX + 3-body

Exp. VUCOM(AV18)

increasingϑ-range

n Tjon-line: E(4He) vs. E(3H)for phase-shift equivalent NN-interactions

n change in correlator range re-sults in shift along Tjon-line

choose correlatorwith energies close to

experimental value, i.e.,minimise net

three-body force

this VUCOMis used in the

following

29

Application II:

Hartree-Fock Calculations

30

UCOM-Hartree-Fock Approach

Standard Hartree-Fock+

Matrix Elements of CorrelatedRealistic NN-Interaction VUCOM

n many-body state is a Slater determinant of single-particlestates obtained by energy minimisation

n correlations cannot be described by Hartree-Fock states

n bare realistic NN-potential leads to unbound nuclei

31

Correlated Argonne V18

-8

-6

-4

-2

0

.

E/A

[MeV

]

4He16O

24O34Si

40Ca48Ca

48Ni56Ni

68Ni78Ni

88Sr90Zr

100Sn114Sn

132Sn146Gd

208Pb1

2

3

4

5

.

Rch

[fm

]

experiment l VUCOM

32

Missing Pieces

long-rangecorrelations

genuinethree-body forces

three-body clustercontributions

Beyond Hartree-Fock

n improve many-body states such that long-range correla-tions are included

n many-body perturbation theory (MBPT), configurationinteraction (CI), coupled-cluster (CC),...

33

Long-Range Correlations: MBPT

n many-body perturbation theory: second-order energy shift gives esti-mate for influence of long-range correlations

∆E(2) = −1

4

occu.∑

i,j

unoccu.∑

a,b

|⟨φaφb

∣∣ Tint + VUCOM∣∣φiφj

⟩|2

εa + εb − εi − εj

4He16O

24O34Si

40Ca48Ca

48Ni56Ni

68Ni78Ni

88Sr90Zr

100Sn114Sn

132Sn146Gd

208Pb

-8

-6

-4

-2

0

.

E/A

[MeV

]

Nmax = 12

experiment l HF HF+PT2 HF+PT2+PT3

34

Long-Range Correlations: MBPT

13 14 15 16 17 18 19 20 21 22 23 24-10

-8

-6

-4

-2

0

.E/A

[MeV

]

AO

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78-10

-8

-6

-4

-2

0

.

E/A

[MeV

]

ANi

100 104 108 112 116 120 124 128 132-10-8-6-4-20

.

E/A

[MeV

]

ASn

l HF HF+PT2

experiment

35

Missing Pieces

long-rangecorrelations

genuinethree-body forces

three-body clustercontributions

Beyond Hartree-Fockn residual long-range correla-

tions are perturbative

n mostly long-range tensor cor-relations

n easily tractable within MBPT,CI, CC,...

Net Three-Body Forcen small effect on binding ener-

gies for all masses

n cancellation does not work forall observables

n construct simple effectivethree-body force

36

Application III

Fermionic MolecularDynamics (FMD)

37

UCOM-FMD Approach

Gaussian Single-Particle States∣∣q

⟩=

n∑

ν=1

∣∣aν,~bν

⟩⊗

∣∣χν

⟩⊗

∣∣mt

⟨~x∣∣aν ,~bν

⟩= exp

[−

(~x−~bν)2

2 aν

]

aν : complex width χν : spin orientation~bν : mean position & momentum

Slater Determinant∣∣Q

⟩= A

( ∣∣q1

⟩⊗

∣∣q2

⟩⊗ · · · ⊗

∣∣qA

⟩)

Correlated Hamiltonian

H = T + VUCOM + δVc+p+ls

Variation⟨Q

∣∣ H−Tcm∣∣Q

⟩⟨Q

∣∣Q⟩ → min

Diagonalisationin sub-space spannedby several non-ortho-

gonal Slater deter-minants

∣∣Qi

38

Variation: Chart of Nuclei

H2 H3

He3 He4 He5 He6 He7 He8

Li5 Li6 Li7 Li8 Li9 Li10 Li11

Be7 Be8 Be9 Be10Be11Be12Be13Be14

B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22

O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24

F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26

Ne17Ne18Ne19Ne20Ne21Ne22Ne23Ne24Ne25Ne26Ne27Ne28

Na20Na21Na22Na23Na24Na25Na26Na27Na28Na29Na30Na31

Mg20Mg21Mg22Mg23Mg24Mg25Mg26Mg27Mg28Mg29Mg30Mg31Mg32Mg33Mg34

Al24 Al25 Al26 Al27 Al28 Al29 Al30 Al31 Al32 Al33 Al34 Al35 Al36

Si22 Si24 Si25 Si26 Si27 Si28 Si29 Si30 Si31 Si32 Si33 Si34 Si35 Si36 Si37 Si38 Si39

P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41

S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44

Cl31 Cl32 Cl33 Cl34 Cl35 Cl36 Cl37 Cl38 Cl39 Cl40 Cl41 Cl42 Cl43 Cl44 Cl45

Ar32 Ar33 Ar34 Ar35 Ar36 Ar37 Ar38 Ar39 Ar40 Ar41 Ar42 Ar43 Ar44 Ar45 Ar46 Ar47

K35 K36 K37 K38 K39 K40 K41 K42 K43 K44 K45 K46 K47 K48 K49 K50

Ca36Ca37Ca38Ca39Ca40Ca41Ca42Ca43Ca44Ca45Ca46Ca47Ca48Ca49Ca50Ca51Ca52Ca53Ca54

Sc39Sc40Sc41Sc42Sc43Sc44Sc45Sc46Sc47Sc48Sc49Sc50Sc51Sc52Sc53Sc54

Ti41 Ti42 Ti43 Ti44 Ti45 Ti46 Ti47 Ti48 Ti49 Ti50 Ti51 Ti52 Ti53 Ti54 Ti55

V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56

Cr46 Cr47 Cr48 Cr49 Cr50 Cr51 Cr52 Cr53 Cr54 Cr55 Cr56 Cr57

Mn49Mn50Mn51Mn52Mn53Mn54Mn55Mn56Mn57Mn58

Fe50Fe51Fe52Fe53Fe54Fe55Fe56Fe57Fe58Fe59

Co53Co54Co55Co56Co57Co58Co59Co60

Ni48 Ni54 Ni55 Ni56 Ni57 Ni58 Ni59 Ni60 Ni61

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34N

2

4

6

8

10

12

14

16

18

20

22

24

26

28

.

Z

(E − Eexp)/A[MeV]

-0.5

0

0.5

1

1.5

VUCOM+ δVc+p+ls

H2 H3

He3 He4 He5 He6 He7 He8

Li5 Li6 Li7 Li8 Li9 Li10 Li11

Be7 Be8 Be9 Be10 Be11 Be12 Be13 Be14

B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22

O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24

F16 F17 F18 F19 F20 F21 F22 F23

Ne17 Ne18 Ne19 Ne20 Ne21 Ne22 Ne23 Ne24 Ne25 Ne26 Ne27 Ne28

Na20 Na21 Na22 Na23 Na24 Na25 Na26 Na27 Na31

Mg20Mg21Mg22Mg23Mg24Mg25Mg26Mg27Mg28Mg29Mg30Mg31Mg32Mg33Mg34

2 4 6 8 10 12 14 16 18 20 22

2

4

6

8

10

12

oneGaussian

per nucleon

twoGaussiansper nucleon

39

Intrinsic One-Body Density Distributions

ρ(1

)(~x

)[ρ

0]4He 16O 40Ca

9Be 20Ne 24Mg

capable of describing sphericalshell-model as well as intrinsically

deformed and α-cluster states

40

Beyond Simple Variation

n Projection after Variation (PAV)• restore inversion and rotational symmetry by

angular momentum projection

n Variation after Projection (VAP)• find energy minimum within parameter space of

parity and angular momentum projected states

• implementation via generator coordinate method(constraints on multipole moments)

n Multi-Configuration• diagonalisation within a set of different Slater determinants

16O

41

Intrinsic Shapes of 12C

⟨H

⟨T

⟨Vls

⟩√⟨

r2⟩

intrinsic projected-81.4 -81.5

212.1 212.1

-39.8 -40.2

2.22 2.22

intrinsic projected-77.0 -88.5

189.2 186.1

-12.0 -17.1

2.40 2.37

intrinsic projected-74.1 -85.5

182.8 179.0

-5.8 -8.0

2.45 2.42

intrinsic projected-57.0 -75.9

213.9 201.4

0.0 0.0

2.44 2.42

42

Structure of 12C

-95

-90

-85

-80

-75

-70

-65

E@MeVD 0+

0+

2+

4+

3-

0+

2+

4+

0+

2+

1-2-

3-

0+

2+

H0+ L0+

H2+ L1+4+

3-1-2-H2- L

12C

Variation PAVΠ Multi-Config Experiment

E [ MeV] Rch [ fm] B(E2) [e2 fm4]

V/PAV 81.4 2.36 -VAP α-cluster 79.1 2.70 76.9PAVπ 88.5 2.51 36.3VAP 89.2 2.42 26.8Multi-Config 92.2 2.52 42.8Experiment 92.2 2.47 39.7 ± 3.3

V/PAV VAPα

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

Vπ/PAVπ VAP

-6 -4 -2 0 2 4 6x [fm]

-6

-4

-2

0

2

4

6

y [fm

]

Multi-Config

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

-6 -4 -2 0 2 4 6x [fm]

-6

-4

-2

0

2

4

6

y [fm

]

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

-6 -4 -2 0 2 4 6y [fm]

-6

-4

-2

0

2

4

6

z [fm

]

43

Structure of 12C — Hoyle State

-95

-90

-85

-80

-75

-70

E@MeVD

0+

2+

4+

0+

2+

1-

2-

3-

0+

2+

4+

0+

2+

0+2+

1-

2-

3-

2-

0+

2+

H0+ L0+

H2+ L1+

4+

3-1-2-

H2- L

12C

Multi-ConfigH4L Multi-ConfigH14L Experiment

Multi-Config ExperimentE [ MeV] 92.4 92.2Rch[ fm] 2.52 2.47B(E2, 0+

1 → 2+1 ) [e2 fm4] 42.9 39.7 ± 3.3

M(E0, 0+1 → 0+

2 ) [ fm2] 5.67 5.5 ± 0.2

-5 0 5y [fm]

-5

0

5

z [fm

]

-5 0 5y [fm]

-5

0

5

z [fm

]

-5 0 5y [fm]

-5

0

5

z [fm

]

∣∣⟨ ∣∣0+2

⟩∣∣ = 0.76

∣∣⟨ ∣∣0+2

⟩∣∣ = 0.71

∣∣⟨ ∣∣0+2

⟩∣∣ = 0.50

44

Conclusions

n exciting times for nuclear structure physics!

n realistic NN-potentials & ab initio calculations

n systematic schemes to derive effective interactions

n innovative ways to treat the many-body problem

unified description of nuclearstructure across the whole

nuclear chart is within reach

45

Epilogue

n thanks to my group & my collaborators

• H. Hergert, N. Paar, P. Papakonstantinou, A. ZappInstitut fur Kernphysik, TU Darmstadt

• T. NeffNSCL, Michigan State University

• H. FeldmeierGesellschaft fur Schwerionenforschung (GSI)

supported by the DFG through SFB 634“Nuclear Structure, Nuclear Astrophysics andFundamental Experiments...”

46

Supplements

47

Correlated Operators

Cluster Expansion

O = C† O C = O[1] + O[2] + O[3] + · · ·

Two-Body Approx.OC2 = O[1] + O[2]

ClusterDecomposition Principle

if the correlation range is smallcompared to the mean particle

distance, then higher orders aresmall

operators of allobservables can be and have to be

correlated consistently

48

Correlated NN-Potential — VUCOM

VUCOM =∑

p

12

[vp(r) Op + Op vp(r)

]

O = 1, (~σ1 ·~σ2), ~q2, ~q2(~σ1 ·~σ2), ~L

2, ~L

2(~σ1 ·~σ2),

(~L · ~S), S12(~r,~r), S12(~L, ~L),

S12(~qΩ,~qΩ), qr S12(~r,~qΩ), ~L2(~L · ~S),

~L2S12(~qΩ,~qΩ), . . . ⊗ 1, (~τ1 ·~τ2)

n Cr-transformation evaluated directly

n CΩ-transformation through Baker-Campell-Hausdorff expansion

n vp(r) uniquely determined by bare potential and correlation functions

49

Optimal Correlation Functions

n s(r) and ϑ(r) determined by two-body energy minimisation

n constraint on range of the tensor correlators ϑ(r) to isolate state in-dependent short-range correlations

s(r)

0

0.05

0.1

0.15

0.2

.

[fm

]

(S, T ) = (0, 0)

0 0.5 1 1.5 2 2.5r [fm]

0

0.05

0.1

0.15

0.2

.

[fm

]

(S, T ) = (0, 1)

(S, T ) = (1, 0)

0 0.5 1 1.5 2 2.5r [fm]

(S, T ) = (1, 1)

ϑ(r)

0

0.02

0.04

0.06

0.08

.

(S, T ) = (1, 0)

0 0.5 1 1.5 2 2.5r [fm]

0

0.02

0.04

0.06

0.08

.

(S, T ) = (1, 1)

50

Correlated NN-Potential — VUCOM

HC2 = T[1] + T[2] + V[2] = T + VUCOM

n closed operator expression for the correlated interactionVUCOM in two-body approximation

n correlated interaction and original NN-potential are phaseshift equivalent by construction

n unitary transformation results in a pre-diagonalisation ofHamiltonian

n momentum-space matrix elements of correlated interactionare similar to Vlow−k

51

Momentum-Space Matrix Elements3S1

02

46

0

2

4

6-40

-20

0

20

02

46

02

46

0

2

4

6-40

-20

0

20

02

46

q [fm−1]

q′

[fm−1]

3S1−3D1

02

46

0

2

4

6

-30

-20

-10

0

02

46

02

46

0

2

4

6

-30

-20

-10

0

02

46

q [fm−1]

q′

[fm−1]

Vbare

VUCOM

⟨q(LS)JT

∣∣ ∣∣q′(L′S)JT

AV18

pre-diagonalisationof Hamiltonian

52

Comparison with Vlowk

-40

-20

0

20

.

[MeV

]

1S0

0 0.5 1 1.5 2 2.5q [fm−1]

-40

-20

0

20

.

[MeV

]

3S1

-10

-8

-6

-4

-2

0

.

[MeV

]

3S1 − 3D1

0 0.5 1 1.5 2 2.5q [fm−1]

0

1

2

3

4

5

.

[MeV

]

3D1

AV18bare

VUCOM(Iϑ = 0.09 fm3)

Vlowk

(Λ = 2.1 fm−1)

53

UCOM / Lee-Suzuki / Vlowk

Lee-Suzukin decoupling of P and Q space by

similarity transformation

n same representation as used inmany-body method

n (state dependent)

Vlowk

n decimation to low-momentum Pspace; Q space discarded

n uses momentum representation

n state independent

n phase-shift equivalent

UCOMn pre-diagonalisation with respect to short-

range correlations

n no specific model-space or representation

n state independent

n phase-shift equivalent

54

Correlated Oscillator Matrix Elements

⟨n(LS)JT

∣∣ C†rC

†Ω H CΩCr

∣∣n′(L′S)JT⟩

=⟨n(LS)JT

∣∣ T + VUCOM∣∣n′(L′S)JT

calculate usinguncorrelated states andoperator form of VUCOM

map correlator onto statesand use bare interaction(avoids BCH expansion)

n Talmi-Moshinsky transformation & recoupling to obtain jj-coupledmatrix elements

n input for all kinds of many-body methods (HF, NCSM, CC,...)

55

Nuclear Matter: Equation of State

0.5 1 1.5 2kF [fm−1]

-20

-15

-10

-5

0

5

.

E/A

[MeV

]

AV18αAV18α + δVc+p+ls

n symmetric nuclear matter

n Slater determinant of plane-wave states |~k| ≤ kF

n correlated momentum spacematrix elements

n saturation point:

(E/A)0 ≈ −16.0 MeV

ρ0 ≈ 0.14 fm−3

K0 ≈ 280 MeV

n HvH theorem fulfilled

56

Parity and Angular Momentum Projection

7Li

0

2

4

6

8

10

12

@MeVD

12-

32-

52-

72-

32-12-

72-

52-

32-12-

72-

52-52-

PAV VAπP Exp.

-32.0 -34.4 -39.2

-4 -2 0 2 4x [fm]

-4

-2

0

2

4

y [fm

]

0.00

1

0.00

1

0.001

0.01

0.01

0.1

0.1

0.5

1.0

-4 -2 0 2 4x [fm]

-4

-2

0

2

4

y [fm

]

7Li

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

0.001

0.01

0.10.2

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

7Li

-4 -2 0 2 4x [fm]

-4

-2

0

2

4

y [fm

]

0.001

0.001

0.00

1

0.01

0.01

0.1

0.1

0.5

-4 -2 0 2 4x [fm]

-4

-2

0

2

4

y [fm

]

7Li

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

0.001

0.01

0.1

0.2

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

7Li

20Ne

0

1

2

3

4

5

6

@MeVD

0+

2+

2+

4+

0+

0+

2+

2+

2+

3+

4+

4+

4+

1-

2-

3-

3-

0+

2+

4+

PAV VAπP Exp.

-153.9 -157.2 -160.6

-4 -2 0 2 4x [fm]

-4

-2

0

2

4

y [fm

]

0.001

0.001

0.01

0.01

0.01

0.1

0.1

0.1

0.5

0.5

1.01.

0

1.0

-4 -2 0 2 4x [fm]

-4

-2

0

2

4

y [fm

]

20Ne

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

0.001

0.01

0.1

0.2

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

20Ne

-4 -2 0 2 4x [fm]

-4

-2

0

2

4y

[fm]

0.001

0.001

0.01

0.01

0.1

0.1

0.5

0.5

1.0

1.0 1.0

-4 -2 0 2 4x [fm]

-4

-2

0

2

4y

[fm]

20Ne

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

0.001

0.01

0.1

0.2

-3 -2 -1 0 1 2 3kx [fm

-1]

-3

-2

-1

0

1

2

3

k y [f

m-1]

20Ne

57

Helium Isotopes: Energies & Radii

He4 He5 He6 He7 He8

-32

-30

-28

-26

-24

-22

@MeVD 0+32-

0+32-

0+

0+

32-

0+

32-

0+0+

32-

0+32-

0+

PAVΠ

Multi-ConfigExperiment

Binding energies

He4 He5 He6 He7 He8

1.5

2.0

2.5

3.0

3.5

@fmD

0+

ch

0+

ch

0+

0+

ch

32-0+

ch

32-0+

ch

0+

ch

32-

0+

ch

32-0+

ch

Matter & charge radii

58

Helium Isotopes: Density Profiles

0 2 4 6 8 10r [fm]

10-4

10-3

10-2

10-1

1

ρ(r)

[ρ0]

0 2 4 6 8 10r [fm]

10-4

10-3

10-2

10-1

1

ρ(r)

[ρ0]

8He

totalneutronproton

0 2 4 6 8 10r [fm]

10-4

10-3

10-2

10-1

1

ρ(r)

[ρ0]

0 2 4 6 8 10r [fm]

10-4

10-3

10-2

10-1

1

ρ(r)

[ρ0]

6He

totalneutronproton

0 2 4 6 8 10r [fm]

10-4

10-3

10-2

10-1

1

ρ(r)

[ρ0]

0 2 4 6 8 10r [fm]

10-4

10-3

10-2

10-1

1

ρ(r)

[ρ0]

4He

totalneutronproton

neutronhalo

59

Summary

n Unitary Correlation Operator Method (UCOM)

• short-range central and tensor correlations treated explicitly

• long-range correlations have to be accounted for by model space

n Correlated Realistic NN-Potential VUCOM

• low-momentum / phase-shift equivalent / operator representation

• robust starting point for all kinds of many-body calculations

60

Summary

n UCOM + No-Core Shell Model• dramatically improved convergence

• tool to assess long-range correlations & higher-order contributions

n UCOM + Hartree-Fock• closed shell nuclei across the whole nuclear chart

• basis for improved many-body calculations

n UCOM + Fermionic Molecular Dynamics• clustering and intrinsic deformations in p- and sd-shell

• projection / multi-config provide detailed structure information

61

Outlook

n residual “long-range” correlations• many-body perturbation theory

• configuration interaction & coupled-cluster calculations

• pairing correlations, Hartree-Fock-Bogoliubov

n collective excitations• random phase approximation (RPA, SRPA, QRPA)

n make contact to experiment!!!

62