63
Guided By: - Prof. A. S. Walkey (DEEE) NITTTR, Bhopal Head of Department: - Dr . ( Mrs.) C.S. RAJESHWARI (DEEE) NITTTR, Bhopal Presented By: - Nishant Chaturvedi M.E. (P .S.) 0012EE11ME08

Nishant Final_1.pptx

Embed Size (px)

Citation preview

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 1/63

Guided By:

-

Prof. A.

S. Walkey(DEEE)

NITTTR, Bhopal 

Head of Department:

-

Dr. (Mrs.)

C.S. RAJESHWARI

(DEEE)NITTTR, Bhopal 

Presented By:

-

Nishant

ChaturvediM.E. (P.S.)

0012EE11ME08

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 2/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 3/63

In power generation our main aim is to generate the requiredamount of power with minimum cost.

Economic load dispatch means that the generators real and

reactive power are allowed to vary within certain limits, so asto meet a particular load demand with minimum fuel cost.

This allocation of load are based on some constraints

Equality Constrain Inequality Constrain

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 4/63

Literature Survey 

 

Pluhacek michal et al (2013) a new approach for chaos drive particle swarm optimization (PSO) algorithm is suggested. Two

different chaotic maps are alternatively used as pseudorandom

number generator and switch over during the run of chaos driven

PSO algorithm.

 Rani C. et al (2013) A chotic local search operator is introduced

in the proposed algorithm to avoid premature convergence.

 Park Jong-Bae et al (2010) An improved PSO framework

employing chaotic sequence combined with conventional

linearly decreasing inertia weights and adopting a cross overoperation scheme to increase both exploration and exploitation

capability of the PSO.

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 5/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 6/63

Literature Survey 

 Chaturvedi K. T. Et al (2008) A novel self organizinghierarchical particle swarm optimization ( SOH_PSO) for the

non- convex economic dispatch to handle the problem of

 premature convergence.

 Araujo Ernesto et al (2008) Particle swarm optimization

approach intertwined with lozi map chaotic sequence to obtain

Takagi- Sugeno (TS) fuzzy model for representing dynaic

 behavior are proposed.

 Leandro dos Santos Coelho et al (2008) The use of combining

of particle swarm optimization, Gaussian probability distributionfunction and chaotic sequence.

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 7/63

 

Park Jong- Bae et al (2006) A novel and efficient method forsolving the economic dispatch problem with valve point effect

 by integrating the particle swarm optimization with the chaotic

sequences.

Chuanwen J. et al (2005) Suggested a self  –   adaptive chaotic particle swarm optimization is used to solve the ELD problem in

deregulated environment. Logistic map chaotic sequence to

generate the random number R 1, R 2  and self- adaptive inertia

weight scale in original PSO to improve the performance.

Literature Survey 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 8/63

OBJECTIVE  The main objective of study is to minimize generation cost using partical

swarn optimization (PSO) algorithm for the economic load dispatch (ELD) problem.

The purpose of the economic load dispatch (ELD) problem is to control the

committed generator’s  output such that the total fuel cost is minimized,

while satisfying the power demand and other physical and operational

constraints.

To integrate PSO method with Chaotic map for solving ELD problem

having generated unit with non smooth cost function and multi-fuel.To maximize the power generation by proposing a PSO algorithm to

obtain the optimum scheduling of generator

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 9/63

 METHODOLOGY 

Particle swarm optimization

• Proposed by james kennedy & russell

eberhart in 1995

• Inspired by social behavior of birds

and fishes

• Combines self-experience with social

experience

• Population-based optimization

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 10/63

Concept of PSO

Uses a number of particles that constitute a swarm moving

around in the search space looking for the best solution.Each particle in search space adjusts its “flying” according to its

own flying experience as well as the flying experience of other

 particles.

PSO ALGORITHM

Basic algorithm of PSO

1. Initialize the swarm form the solution space

2.Evaluate the fitness of each particle

3. Update individual and global bests

4. Update velocity and position of each particle

5. Go to step 2, and repeat until termination condition

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 11/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 12/63

 FLOW CHART OF BASIC PSO

Start 

Define the parameter of PSO Constants

C1, C2 Particle (P), and Dimension (D) 

Initialize particles with random

Position (P) and Velocity vector (V) 

Calculate fitness for each Population 

Update the Population local best 

Update best of local bests as gbest 

Upadate Particle velocity using

eq. (1) and Postion using eq. (2) 

If iteration

Completed

Stop 

No

 Yes

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 13/63

CHOTIC THEORY

 Chaos : a state of disorder and irregularity.

 It describes many physical phenomena with complex behavior by simple laws.

 Dynamical systems : systems that develop in time in a non-trivial manner.

 Determini stic chaos : irregular motion generated by nonlinear

dynamical systems whose laws determine the time evolution of astate of the system from a knowledge of its previous history.

i) Logistic Map 

11  1..

  k k k    f   f   f      

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 14/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 15/63

 

ii) Lozi map

Lozi introduced in a short note, a two-dimensional map the

equations and attractors of which resemble those of the

celebrated h´enon map. Simply, a quadratic term in the

latter is replaced with a piecewise linear contribution in the

former. This allows one to rigorously prove the chaotic

character of some attractors. The lozi map is depicted in fig.The map equations are given below. The parameters used in

this work are: a=1.7 and b=0.5.

nnn

  bY  X a X   

  ||11

nn   X Y    1

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 16/63

  Where a and b are the real non-vanishing parameters. Inside

the region where the orbits remain bounded, the lozi map

may present both regular and chaotic behaviours.The new proposed algorithm utilizes lozi map for the first

 part of the optimization process. When pre-defined number

of iterations is achieved, the lozi map is switched over to

logistic map.

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 17/63

Problem formulation An objective function expresses the main aim of the model

which is either to be minimized or maximized. It is expressed interm of design variable and other problem parameter. In presentwork the goal is to minimize the generation cost of committedgenerating unit i.e three, forty, and ten which are given below

Where,

FT: Total Generating Cost

: Cost Function of ℎ Generating Unit , , : Cost Function of Generator i

Pi: Output Power of Generator i

 N: Number of Generator

 N 

iiiT    P  F  F 

1

iiiii   c P b P a   2

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 18/63

Equality and inequality constraints 

Active power balance equation: for power balance, an

equality constraint should be satisfied. The total generated power should be the same as the total load demand plus

the total line loss.

Where   is the total system load. The total

transmission network loss,   is a function of the unit

 power outputs that can be represented using B coefficients

as follows:

n

i

lossload i   P  P  P 1

n

i

n

 j

n

i

ii jijiloss   B P  B P  B P  P 1 1 1

000

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 19/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 20/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 21/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 22/63

IMPLEMENTATION Pseudo Code for ELD

Input required power (Pd)Initialize the coefficients a, b, c, e and f of all generators.

Select the optimization technique

Initialize the value of a_lozi = 1.7, and b_lozi = 0.5;

Provide the upper bound (UB) and lower bound (LB) constrains on generators

Initialize the PSO coefficients c1 = 2, c2 = 1,  = 0.9,  =0.1,

Configure the PSO running parameters population size ()

= 100 and total iterations (

) = 50Initialize the values of  =0.63 and mu ( ) = 4 for logistic map

Initialize the initial position and velocity matrix to zero

For iter = 1:iter_max

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 23/63

For i = 1:pop_size

For j=1:nvars

If iter = = 1

Generate random number for initial positions (Pij) and velocities (Vij)

Check for upper and lower bond and modified accordingly

else

assign lastly calculated Pij and Vij

endif

Endfor

Endfor

Endfor

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 24/63

  Now update the variables to satisfy the Pd constrain

while (sum(init_positions (i,:)~=Pd))

temp_Pij = Pd – (sum(init_positions(i,:)) – init_positions(i,j));

temp_vij = init_velocity (i,j);

end

w = w_max– ((w_max

– w_min)/iter_max) * iter;

update the value of w

If (the technique is standard)

calculate w normally

elseif (the technique is previous)calculate the next value from logistic map and use it to modify the w

  =  *    * (1-fkpre);

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 25/63

   = w*    ;

else (the technique is proposed)

if (iter is odd the)

calculate the next value from logistic map and use it to modify the w

  =  *   * (1-fkpre);

 = w *    ;

else

calculate the next value from lozi map and use it to modify the w

lozi_X = 1–

 a_lozi * abs (lozi_X_pre) + b_lozi * lozi _Y_pre; = w * lozi _ X;

end

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 26/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 27/63

init_velocity = w_new * init_velocity + c1 * rand * ( – init_positions)+c2

* rand * ( – init_positions);

calculate the new velocity and positions for all the population and repeat

FLOW CHART

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 28/63

Start 

If mod (Iter,2) ==1

End 

Take Initialization

Parameters 

Define Objective Function 

Define Objective Constrains 

Set Iter = 1 

Generate Initial Population 

Evaluate Objective Function 

Use Lozi Map Use Logistic Map 

Update Velocity and Positions 

Select Best Solution 

If iter == ter_max

FLOW CHART

RESULTS & DISCUSSION

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 29/63

RESULTS & DISCUSSION 

Test System 1: This system comprises of 3 generating unit and the

input data of 3-generating system are given in Here, the total

demand for the system is set to 850MW.

The standard PSO

0 5 10 15 20 25 30 35 40 45 508200

8250

8300

8350

8400

8450

8500

8550

8600

8650

8700

Iterations

        C      o      s       t

 Figure 1: Operating Cost of 3 generating unit using standard PSO 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 30/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 31/63

400

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 32/63

1 2 30

50

100

150

200

250

300

350

400

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w  e  r

  Figure 5: Operating Power of 3 generating unit using PSO 1 

Technique  Minimum Cost 

PSO 1  8.2416e3 

Figure 6: Result window of 3 generating unit using PSO 1

Table 2: Minimum cost of 3 generating unit using PSO 1

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 33/63

400

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 34/63

1 2 30

50

100

150

200

250

300

350

400

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w  e  r

Figure 8: Operating Power of 3 generating unit using PSO 2 

Technique  Minimum Cost 

PSO 2  8.2341e3 

Figure 9: Result window of 3 generating unit using s PSO 2

Table 3: Minimum cost of 3 generating unit using PSO 2

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 35/63

Minimum Operational Cost by all Three Techniques 

0 5 10 15 20 25 30 35 40 45 508200

8250

8300

8350

8400

8450

8500

8550

8600

8650

8700

Iterations

   C   o   s   t

 

PSO

PSO 1

PSO 2

Figure 10 : Comparison of cost minimization vs. iterations for PSO, PSO with chaotic map (PSO 1) and

Proposed PSO (PSO 2) with 2 chaotic maps. 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 36/63

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 37/63

Test System 2: In this case the test system consists of 40

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 38/63

Test System 2: In this case the test system consists of 40-generating units and the input data are given. The totaldemand is set to 10500 MW.

•The standard PSO 

0 5 10 15 20 25 30 35 40 45 501.315

1.32

1.325

1.33

1.335

1.34

1.345

1.35

1.355 x 10

5

Iterations

       C     o     s       t

Figure 13: Operating Cost of 40 generating unit using standard PSO

600

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 39/63

0 5 10 15 20 25 30 35 40 450

100

200

300

400

500

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w  e  r

Figure 14: Operating Power of 40 generating

unit using standard PSO 

Figure 15: Result window of 40 generating unit using

standard PSO 

Table 5: Minimum cost of 40 generating unit using standard PSO  

Technique  Minimum Cost 

PSO  1.3195e5 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 40/63

600

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 41/63

0 5 10 15 20 25 30 35 40 450

100

200

300

400

500

600

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w  e  r

Figure 17: Operating Power of 40 generating unit using PSO 1  Figure 18: Result window of 40 generating unit using PSO 1 

Table 6: Minimum cost of 40 generating unit using PSO

Technique  Minimum Cost 

PSO 1  1.3093e5 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 42/63

•The PSO with double (alternative) chaotic operation 

0 5 10 15 20 25 30 35 40 45 501.27

1.28

1.29

1.3

1.31

1.32

1.33

1.34

1.35

1.36x 10

5

Iterations

      C     o     s      t

Figure 19: Operating Cost of 40 generating unit using PSO 2 

600

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 43/63

0 5 10 15 20 25 30 35 40 450

100

200

300

400

500

Generator Number

 

Figure 20: Operating Power of 40 generating unit using PSO 2  Figure 21: Result window of 40 generating unit using PSO 2 

Table 7: Minimum cost of 40 generating unit using PSO 2 

Technique  Minimum Cost 

PSO 2  1.2717e5 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 44/63

  Minimum Operational Cost by all Three Techniques 

0 5 10 15 20 25 30 35 40 45 501.28

1.29

1.3

1.31

1.32

1.33

1.34

1.35

1.36x 10

5

Iterations

      C

     o     s      t

 

PSO

PSO 1

PSO 2

Figure 22 : Comparison of cost minimization vs. iterations for PSO, PSO with chaotic map

(PSO 1) and Proposed PSO (PSO 2) with 2 chaotic maps 

600

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 45/63

0 5 10 15 20 25 30 35 40 450

100

200

300

400

500

Generator Number

   O  p

  e  r  a   t   i  n  g   P  o  w  e  r

 

PSO

PSO 1

PSO 2

Figure 23: Comparison of optimum operational condition for 40 generator units for

PSO, PSO with chaotic map (PSO 1) and Proposed PSO (PSO 2) with 2 chaotic maps. 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 46/63

Figure 24: Result window for comparison of 40 generating unit for PSO, PSO with chaotic map

(PSO 1) and Proposed PSO (PSO 2) with 2 chaotic maps.  

Technique  Minimum cost 

PSO  1.3017e5 

PSO 1  1.2932e5 

PSO 2  1.2839e5 

Table 8: Minimum Operational Cost for 40 generating unit by all Three Techniques 

T S M l i F l i h V l P i Eff Th

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 47/63

Test System 3: Multi-Fuels with Valve-Point Effect The testsystem consists of 10-generating units considering multi-fuels

 with valve-point effects. The total system demand is set to 2700

MW.•The standard PSO 

0 5 10 15 20 25 30 35 40 45 50300

400

500

600

700

800

900

1000

Iterations

       C     o     s       t

  Figure 25: Operating Cost of 10 generating unit using standard PSO 

450

500

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 48/63

1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

350

400

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w  e  r

 Figure 26: Operating Power of 10 generating unit using

standard PSOFigure 27: Result window of 10 generating unit using standard PSO

Table 9: Minimum cost of 10 generating unit using standard PSO

Technique  Minimum Cost 

PSO 318.4248 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 49/63

•The PSO with single chaotic operation 

0 5 10 15 20 25 30 35 40 45 50200

300

400

500

600

700

800

900

1000

Iterations

      C     o     s      t

  Figure 28: Operating Cost of 10 generating unit using PSO 1 

450

500

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 50/63

1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

350

400

450

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w  e

  r

Figure 29: Operating Power of 10 generating unit using PSO 1  Figure 30: Result window of 10 generating unit using PSO 1

Table 10: Minimum cost of 10 generating unit using PSO 1 

Technique  Minimum Cost 

PSO 1  294.1963 

•The PSO with double (alternative) chaotic operation

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 51/63

•The PSO with double (alternative) chaotic operation 

0 5 10 15 20 25 30 35 40 45 50200

300

400

500

600

700

800

900

1000

Iterations

      C     o     s      t

Figure 31: Operating Cost of 10 generating unit using PSO 2

300

350

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 52/63

1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

Generator Number

   O  p  e  r  a   t   i  n  g   P  o  w

  e  r

Figure 32: Operating Power of 10 generating unit using PSO 2   Figure 33: Result window of 10 generating unit using PSO 2 

Table 11: Minimum cost of 10 generating unit using PSO 2  

Technique  Minimum Cost 

PSO 2  239.8838 

Minimum Operational Cost by all Three Techniques 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 53/63

p y q

0 5 10 15 20 25 30 35 40 45 50200

300

400

500

600

700

800

900

1000

Iterations

   C   o   s   t

 

PSO

PSO 1

PSO 2

Figure 34: Comparison of cost minimization vs. iterations for PSO, PSO with chaotic map

(PSO 1) and Proposed PSO (PSO 2) with 2 chaotic maps 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 54/63

1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

350

400

450

500

Generator Number

   O   p

   e   r   a   t   i   n   g   P   o   w   e   r

 

PSO

PSO 1

PSO 2

Figure 35: Comparison of optimum operational condition for 10 generator units for

PSO, PSO with chaotic map (PSO 1) and Proposed PSO (PSO 2) with 2 chaotic maps. 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 55/63

Figure 36: Result window for comparison of 10 generating unit for

PSO, PSO with chaotic map (PSO 1) and Proposed PSO (PSO 2) with 2 chaotic maps. 

Table 12: Minimum Operational Cost for 10 generating

unit by all Three Techniques 

Technique  Minimum Cost 

PSO  317.5348 

PSO 1  302.1667 

PSO 2  247.6402 

CONCLUSION AND FUTURE SCOPE

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 56/63

CONCLUSION AND FUTURE SCOPE 

This work presents an efficient approach for enhancing the

 performance of standard PSO algorithm by alternative use of twodifferent chaotic maps for velocity updation and applied to the ELD

 problem and tested for three different systems and objectives. The

simulation results shows the superiority of the proposed algorithm

over the previously proposed single chaotic map based PSO algorithm

and support the idea that switching over of chaotic pseudorandom

number generators in the PSO algorithm improves its performance

and the optimization process.

CONCLUSION AND FUTURE SCOPE

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 57/63

The results for three different experiments are collected with different

settings and results compared with other methods which show that the

 proposed algorithm improves the results by at least 10% for all three

cases. Although the result has improved we can further develop the

algorithm by utilizing multiple maps and optimizing the chaotic maps parameters however these considerations are leaved for future

enhancements.

CONCLUSION AND FUTURE SCOPE 

REFERENCES 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 58/63

[1] J. Kennedy, “The Particle Swarm Optimization: Society Adaptation of Knowledge”, 

in Proc. 4th IEEE Cong. Evolutionary Computation, pp. 303-308, 1997.

[2] Michal Pluhacek, Roman Senkerik and Ivan Zelinka,Donald Davendra, “Chaos PSO

Algorithm Driven Alternately by two Different Chaotic Map  –   an Initial Study”, 

Congress on Evolutionary Computation Cancun Mexico, IEEE 2013, June 20-23, pp.

2444-2449.

[3]C. Rani, D. P. Kothari, and K. Busawon, “Chaotic  Self Adaptive Particle Swarm

Approach for Solving Economic Dispatch Problem with Valve-Point Effect.” 

International Conference on Power Energy and Control, ICPEC IEEE 2013, pp. 405-

410.

REFERENCES 

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 59/63

[4] A. Jaini, I. Musirin, N. Aminudin, M. M. Othman and T. K. A Raman, “Particle 

Swarm Optimization (PSO) Technique in Economic Power Dispatch Problems “The 4th

International Power Engineering and Optimization Conf., Shah Alam, Selangor, IEEE,

Malaysia: 23-24 June 2010.pp. 308-312

[5] Tao Zhang and Cai Jin-Ding, “ A new Chaotic PSO with Dynamic Inertia Weight for

Economic Dispatch Problem”, IEEE, 2009. April 6-7, pp.1-6.

[6] K.T.Chaturvedi, Manjaree Pandit “Self -Organizing Hierarchical Particle Swarm

Optimization for Nonconvex Economic Dispatch”  IEEE transactions on power

system,vol.23,august 2008.

[7] Ernesto Araujo and Leandro dos S. Coelho, “  Particle Swarm Approaches usingLozi map Chaotic Sequences to Fuzzy Modelling of an Experimental Thermal-Vacuum

System”, Applied Soft Computing, Vol.8 (2008), pp.1354-1364.

REFERENCES 

[8] L d d S C lh d Ch Sh L “S l i E i L d Di h

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 60/63

[8] Leandro dos Santos Coelho and Chu-Sheng Lee, “Solving Economic Load Dispatch

Problems in Power Systems using Chaotic and Gaussian Particle Swarm Optimization

Approaches”, Electrical Power and Energy Systems, Vol. 30 (2008), pp. 297-307.

[9] Jong-Bae Park, Yun-Won Jeong, Hyun-Houng Kim and Joong-Rin Shin “An 

Improved Particle Swarm Optimization for Economic Dispatch with Valve-Point

Effect” International Journal of Innovations in Energy Systems and Power, Vol. 1, no. 1

(November 2006).

[10] Jiang Chuanwen and Etorre Bompard, “ A Self-Adaptive Chaotic Particle Swarm

Algorithm for short time Hydroelectric System Scheduling in Deregulated

Environment”,  Energy Conservation and Management,

Vol.46,Issue.17,Oct.2005,pp.2689-2696.

REFERENCES 

[11] K M H G W Zh Y D d Kit P W “Q t

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 61/63

[11] Ke Meng, Hong Gang Wang, Zhao Yang Dong and Kit Po Wong, “Quantum-

Inspire Particle Swarm Optimization for Valve-Point Economic Load Dispatch”, 

Transactions on Power systems, IEEE, vol. 25, no. 1, February 2010.

[12] Jong-Bae Park, Yun-Won Jeong, Woo-Nam Lee, Joong-Rin Shin power

engineering society general meeting, 2006 IEEE.

[13] N.Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary  programming

techniques for economic load dispatch,”  IEEE Trans. On  Evolutionary Computations,

Vol. 7, No. 1, pp. 83-94, Feb. 2003.

[14] C.L. Chiang, “Improved genetic algorithm for power economic dispatch of units

with valve-point effects and multiple fuels.” IEEE Trans. Power Syst., vol. 20. no.4, pp.1690-1699, Nov. 2005.

List of Publications  Nishant Chaturvedi, A. S. Walkey and N. P. Patidar, “ A Modified PSO Based

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 62/63

, y ,

Solution Approach for Economic Load Dispatch Problem in Power System.

International Journal of scientific and engineering Research. ISSN : 2229-5518,

Vol. 5, Issue 4,pp. 292-300, April 2014.

 Nishant Chaturvedi and A. S. Walkey, “ A Survey on Economic Load Dispatch

Problem using Particle Swarm Optimization technique”  International Journal of

emerging Technology and Advanced Engineering. ISSN: 2250-2459, ISO 9001:

2008, Vol. 4, Issue 3, pp. 188-193, March 2014.

 Nishant Chaturvedi and A. S. Walkey, “ A Noval Approach for Economic Load

Dispatch Problem Based on GA and PSO” , International Journal of Engineering

Research and Application. ISSN: 2248-9622, Vol. 4, Issue 3 (Version 2), March

2014, pp. 24-31.

8/10/2019 Nishant Final_1.pptx

http://slidepdf.com/reader/full/nishant-final1pptx 63/63