9
Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection of N2, 20 Ne, 36 Ar, 84 Kr, and 130 Xe In comparing the chemistry of telluric planetary atmospheres, several factors must be considered to enable accurate comparisons between different planets. The relative abundances of atmospheric N2 and primordial noble gases can be used to investigate the role of mantle petrology and geochemistry on volcanic degassing, and to place constraints on the similarities and differences during the evolution of the terrestrial planets (Table S1). Here we use the noble gases and nitrogen because Earth’s atmosphere has been terraformed by life 1 , resulting in a CO2poor and O2rich atmosphere, whereas the atmosphere of the lifeless terrestrial planets (Venus and Mars) contain >95% CO2 and only trace quantities of O2 2 . To enable comparative investigations of these planetary atmospheres the data must be selective to avoid effects of biological processes and geology/weathering (i.e. the decay of 40 K to 40 Ar). Most Ar in the atmospheres of Earth and Mars is not primordial, but instead produced through the decay of radiogenic 40 K (with 40 Ar/ 36 Ar ratios of 298 and 1900 ± 300 respectively) 12 , whereas the ratio of primordial to radiogenic Ar in the Venusian atmosphere is anomalously low, with a 40 Ar/ 36 Ar ratio of 1.03 ± 0.04 3 . Therefore, the abundance of total Ar (combined 40 Ar, 38 Ar and 36 Ar) in planetary atmospheres appears to be more a function of the abundance of exposed K to the atmosphere, and not the amount of degassed Ar released through volcanism. Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2271 NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1 © 2014 Macmillan Publishers Limited. All rights reserved.

Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

Supporting  Online  Material  for  

Prediction  of  nitrogen  speciation  in  upper  mantle  fluids  explain  the  origin  of  Earth’s  N2-­‐rich  

atmosphere  

Sami  Mikhail  &  Dimitri  Sverjensky  

S1.  Supplementary  discussion    

S1.1  The  selection  of  N2,  20Ne,  36Ar,  84Kr,  and  130Xe  

  In   comparing   the   chemistry   of   telluric   planetary   atmospheres,   several   factors  must   be   considered   to  

enable  accurate  comparisons  between  different  planets.  The  relative  abundances  of  atmospheric  N2  and  

primordial   noble   gases   can   be   used   to   investigate   the   role   of   mantle   petrology   and   geochemistry   on  

volcanic  degassing,  and  to  place  constraints  on  the  similarities  and  differences  during  the  evolution  of  the  

terrestrial  planets  (Table  S1).    

  Here  we  use  the  noble  gases  and  nitrogen  because  Earth’s  atmosphere  has  been  terraformed  by  life  1,  

resulting  in  a  CO2-­‐poor  and  O2-­‐rich  atmosphere,  whereas  the  atmosphere  of  the  lifeless  terrestrial  planets  

(Venus   and   Mars)   contain   >95%   CO2   and   only   trace   quantities   of   O2   2.   To   enable   comparative  

investigations   of   these   planetary   atmospheres   the   data   must   be   selective   to   avoid   effects   of   biological  

processes  and  geology/weathering  (i.e.  the  decay  of  40K  to  40Ar).  Most  Ar  in  the  atmospheres  of  Earth  and  

Mars  is  not  primordial,  but  instead  produced  through  the  decay  of  radiogenic  40K  (with  40Ar/36Ar  ratios  of  

298   and  1900  ±  300   respectively)   1-­‐2,  whereas   the   ratio   of   primordial   to   radiogenic  Ar   in   the  Venusian  

atmosphere  is  anomalously  low,  with  a  40Ar/36Ar  ratio  of  1.03  ±  0.04  3.  Therefore,  the  abundance  of  total  

Ar   (combined   40Ar,   38Ar   and   36Ar)   in   planetary   atmospheres   appears   to   be   more   a   function   of   the  

abundance   of   exposed   K   to   the   atmosphere,   and   not   the   amount   of   degassed   Ar   released   through  

volcanism.    

Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO2271

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 2: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

  Our  approach  is  to  use  total  atmospheric  N2  relative  to  the  abundance  of  primordial  noble  gases  (20Ne,  

36Ar,  84Kr,  and  130Xe).  This  approach  is  based  on  the  following  factors.  Firstly,  the  ratio  of  surficial  nitrogen  

(biosphere,   sediments   and   oceans)   to   atmospheric   nitrogen   is   only   ~0.0001   4,   therefore   Earth’s  

atmospheric  nitrogen  abundance   is  not   controlled  by   the  biosphere   (contrary   to  CO2,  CH4,  O2  and  H2O).  

Secondly,  the  primordial  noble  gas  abundances  in  the  atmosphere  are  not  fractionated  in  the  biosphere.    

S1.2  The  reason  for  ruling  out  the  role  of  bridgmanite  to  explain  the  data  in  Figure  1  

  Historically,  geochemists  have  assumed  that  they  should  group  nitrogen  with  the  noble  gases  (Ne,  Ar,  

Kr,   Xe).   This   is   because   molecular   nitrogen   (N2)   and   noble   gases   are   inert   gases   within   planetary  

atmospheres   and   are   highly   incompatible   elements   in   common   mantle   minerals   5-­‐6.   However,   recent  

experimental   data   show   this   assumption   to   be   incorrect   regarding   mantle   differentiation.   Molecular  

nitrogen   is   indeed   incompatible   in   silicate   minerals,   but   ammonic   nitrogen   can   be   a   moderately  

compatible   element   in   K-­‐Ca-­‐Na   bearing   silicates   phases,   such   as   phlogopite   and   clinopyroxene   5-­‐6.  

Likewise,  Ne,  Ar  and  Kr  have  been  show  to  be  soluble  in  bridgmanite  (a  recently  named  mineral,  formerly  

known   as   MgSiO3-­‐Perovskite),   whereas   Xe   remains   incompatible   7.   This   means   nitrogen   can   be  

fractionated   from  the  noble  gases,  depending  upon  speciation,  and   theoretically,   the  noble  gases  can  be  

fractionated  from  nitrogen  during  bridgmanite  crystallization.  If  bridgmanite  was  involved  in  the  origin  of  

Earth’s  atmospheric  N2/noble  gas  enrichment  one  would  expect  the  Martian  and  Venusian  atmospheres  to  

show   very   different   results   for   ratios   such   as   Ne/Xe   or   Ar/Xe   because   of   the   large   differences   in  

bridgmanite  modal  abundances  within  the  mantles  of  these  planets.  However,  this  is  certainly  not  the  case  

(Figs.S1  and  1  respectively).    

S1.3  The  reason  for  ruling  out  the  role  of  Earths  magnetic  field  to  explain  the  data  in  Figure  1  

  It  is  theoretically  possible  that  Earths  magnetic  field  has  enabled  more  atmospheric  nitrogen  retention  

relative  to  the  Martian  and  Venusian  atmospheres.  This  shielding  effect  has  certainly  occurred,  but  cannot  

explain  the  data   in  Fig.  1   for  three  reasons.  Firstly,   the  Venusian  atmosphere  contains  more  nitrogen  by  

2 NATURE GEOSCIENCE | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 3: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

mass  relative  to  Earth  (factor  of  3)  3.  Secondly,  one  would  expect  mass-­‐dependent  fractionation  reflected  

from  N  to  Xe  abundances,  and  also  between  light  and  heavy  primordial  noble  gases  during  loss  to  space,  

which   would   be   recorded   within   the   given   planetary   atmosphere   and   is   not   seen   here.   Instead,   the  

20Ne/84Kr  ratio  of  Earth’s  atmosphere  falls  alongside  the  Venusian  and  Martian  values  (Fig.S1).  Finally,  the  

high  40Ar/36Ar  ratio  of  the  Martian  atmosphere  (1900±300)  relative  to  Earth’s  (298)  1-­‐2  has  been  proposed  

to  be  a  function  of  early  loss  of  more  primordial  36Ar  from  a  weak  Martian  atmosphere  relative  to  Earth,  

which  was  followed  by  volcanic  degassing  of  40Ar  produced  by  40K  decay  on  both  planets.  Interestingly,  the  

40Ar/36Ar  ratio  of  the  Venusian  atmosphere  is  ~1  3,  and  shows  comparable  36Ar/primordial  noble  gas  and  

20Ne/primordial   noble   gas   abundances   to   Earth   and   Mars   (Fig.S1   and   1   respectively).   Therefore   the  

shielding   effect   of   Earth’s  magnetic   field   cannot   explain   the   differences   between  Earth’s  N2-­‐enrichment  

and  the  relative,  and  comparable,  N2-­‐depletions  for  Mars  and  Venus.    

S1.4  The  reason  for  ruling  out  N-­‐rich  cores  for  Mars  and  Venus  relative  to  Earth  to  explain  the  data  in  

Figure  1  

  Another  hypothetical  possibility   is   that  Nitrogen  should  partition   into  a  metallic  phase  during  metal-­‐

silicate  differentiation  under  equilibrium  conditions  8.  However,  because  of  their  similarity  in  size  (within  

5%),  Earth  and  Venus  would   likely  have  had  similar  P-­‐T-­‐fO2  conditions  of  core  formation,  provided  that  

the  giant  moon-­‐forming  impact  and  core  formation  occurred  under  similar  conditions.  Ergo,  Mars  should  

be   an   outlier   to   the   Earth-­‐Venusian   system,   which   is   not   the   case   (assuming   comparable   chemical  

composition  for  the  starting  materials  during  accretion).    Overall   then,   the  partitioning  of  N  during  core  

formation   is  not  adequate   to  explain   the  differences   for   the  atmospheric  N2/primordial  noble  gas  ratios  

for  the  atmospheres  of  Earth  and  Venus  

S1.5   The   reason   for   ruling   out   preferential   primordial   noble   gas   loss   from   Earth   during   the  Moon-­‐

forming  impact  to  explain  the  data  in  Figure  1  

  It  could  be  hypothesized  that  loss  of  Earth’s  early  atmospheric  N2  and  the  primordial  noble  gases  during  

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 4: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

a   large   impact   (i.e.   the  proposed  Moon-­‐forming   impact)  would  be  manifested   as   a   distinct   geochemical  

signature  in  Earths  atmosphere  and  not  in  the  atmospheres  of  Venus  and  Mars.  In  other  words,  we  would  

predict  highly  fractionated  primordial  noble  gas  ratios  relative  to  the  Martian  and  Venusian  atmospheres  

9.  In  fact,  Earth’s  atmosphere  does  show  lower  total  concentrations  of  noble  gases  and  molecular  nitrogen  

relative  to  Venus,  but  there  is  no  indication  of  fractionation  of  the  heavy/light  primordial  noble  gases  (i.e.  

20Ne/36Ar   and   20Ne/83Kr   ratios;  Fig.S1).   This   provides   evidence   that   the   relative   noble   gas   patterns   are  

preserved  through  secondary  loss  processes   (i.e.   the  Moon-­‐forming  Giant  Impact).  Therefore,  major   loss  

of   atmosphere  appears   to  be  possible  without   significantly   fractionating   the   relative  proportions  of   the  

primordial  noble  gases  and  molecular  nitrogen  9.    

There   is   also   the   question   of   how   much   of   the   telluric   planetary   volatiles   were   delivered   by   the   late  

veneer,  which  is  required  to  explain  the  moderate  to  volatile  elements  (such  as  H,  C,  S,  and  Se)  10,  and  the  

HSE  11-­‐12.  The   late  veneer  was  widespread  throughout  the  solar  system  12-­‐13  and  certainly  post-­‐dates  the  

formation   of   the   moon   11-­‐12.   However,   it   is   unlikely   that   Earth   received   its   N2/primordial   noble   gas  

enrichment   from   the   late   veneer,   because   the   Venusian   and   Martian   atmospheres   show   comparable  

N2/primordial  noble  gas  abundances.  The  ‘late  veneer’  cannot  explain  these  data  in  Figs  1a+b  and  S1.  This  

is  because  the  late  veneer  should/would  have  affected  all  planets  in  the  inner  solar  system  as  a  function  of  

size  (surface  area).  Ergo,  the  atmospheres  of  Earth  and  Venus  should  be  comparable,  and  not  different.  In  

addition,   the   late  veneer  would  have  affected   the  atmospheres  of  Mars  and  Venus  differently,   however,  

they   display   comparable   N2/primordial   noble   gas   ratios.   In   fact,   as   shown   in   Fig.1a,   and   S1,   the   three  

planets  exhibit  comparable  primordial  noble  gas/  primordial  noble  gas  ratios   (e.g.   20N/36Ar),   something  

that  would  not  be  predicted  if  the  late  veneer  was  the  explanation  for  the  Earth’s  N2/primordial  noble  gas  

enrichment.    

S1.6  The  redox  state  of  the  interiors  of  the  terrestrial  planets  

The  Earth’s   upper  mantle   redox   state   (expressed   as   fO2   in   log   units)   can   be   determined   by   studying  

basaltic  glasses  and  mantle  xenoliths.  These  data  show  the  LOGfO2  of  Earth’s  volcanic  sampling  field  to  be  4 NATURE GEOSCIENCE | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 5: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

around   the  QFM   redox   buffer   (average   LOGfO2   =  ΔQFM  0   ±   2)   13.  However,   if   the   data   for   these  mantle  

xenoliths  are   subdivided   into   two  groups,   a   clearer  picture  emerges.  Mantle  xenoliths   from  arc   settings  

above   the  mantle  wedge  are  shown   to  be  more  oxidizing   (LOGfO2  =  ΔQFM  0   to  +2)   relative   to  primitive  

basalts  and  kimberlitic/oceanic  xenoliths  (LOGfO2  =  ΔQFM  0  to  -­‐3)  13-­‐15  ,  which  thermodynamic  data  show  

should  become  even  more  reducing  with  depth  (i.e.  below  ca.  250  km  the  mantle  is  buffered  around  IW,  

not  QFM)   13.  The  LOGfO2  of   the  Martian  mantle  has  been  determined   from  using   the  most  primitive  SNC  

meteorites  to  be  around  ΔQFM  -­‐1  to  -­‐3  16.  Due  to  the  scarcity  of  data,  any  comments  on  the  redox  state  of  

the  Venusian  mantle  are  highly  speculative.  Data  from  landers  Veneras  13  and  14  show  FeO  contents  of  

basaltic  rocks  on  the  Venusian  surface  to  be  between  ca.  8-­‐10  wt.%  17,  these  compositions  are  similar  to  

mid-­‐ocean   ridge   basalts   on   Earth.17.   Because   Venus   and   Earth   are   of   a   comparable   size   and   bulk  

composition,   their   respective   mantles   should   be   dominated   by   bridgmanite,   which   during   core-­‐mantle  

differentiation  forces  the  disproportionation  of  ferrous  iron  into  ferric  iron  plus  metal  18.  This  process  has  

previously   been   described   as   an   ‘oxygen   pump’,  which  would   have   injected   ferric   iron   into   the   Earth’s  

upper  mantle  during  mantle  differentiation  18  thus  raising  the  ambient  redox  state  from  near  IW  towards  

QFM.  This  process  would  not  have  occurred  within  the  Martian  interior  because  of  the  limited  stability  of  

bridgmanite  in  the  smaller  planet  18.  This  explains  the  upper  mantle  redox  discrepancy  between  Earth  and  

Mars,  and  would  imply  the  Venusian  mantle  should  have  a  redox  state  akin  to  the  Earth’s  ambient  mantle.  

Therefore,  we  assume  the  fO2  of  the  Venusian  mantle  is  similar  to  that  of  Earth’s  primitive  mantle  (LOGfO2  

=  ΔQFM  0  to  -­‐3).  

 

 

 

 

 NATURE GEOSCIENCE | www.nature.com/naturegeoscience 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 6: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

S1.7  References  cited  

S1. Porcelli,   D.   &   Pepin,   R.   O.   The   Origin   of   Noble   Gases   and   Major   Volatiles   in   the   Terrestrial   Planets,  

Treatise  on  Geochemistry,  319-­‐347,  (2003)  

S2. Mahaffy   et   al.,   Abundance   and   Isotopic   Composition   of   Gases   in   the   Martian   Atmosphere   from   the  

Curiosity  Rover,  Science,  341,  263-­‐266  (2013)  

S3. Hoffmann,   J.   H.,   Oyama,   V.   I.   &   Zahn,   U.   V.   Measurements   of   the   lower   atmospheric   composition:   A  

comparison  of  Results.  J.  Geophys.  Res.  85,  7871-­‐7881  (1980)  

S4. Canfield,   D.   E.,   Glazer,   A.   N,   &   Farlkowski,   P.   G.   The   evolution   and   future   of   Earth’s   nitrogen   cycle.  

Science,  330,  192-­‐196  (2010)  

S5. Watenphul   et   al.,   Ammonium-­‐bearing   clinopyroxene:   A   potential   nitrogen   reservoir   in   the   Earth's  

mantle.  Chem.  Geol.  270,  240-­‐248  (2010)  

S6. Li  et  al.  Nitrogen  solubility  in  upper  mantle  minerals.  Earth  Planet.  Sci.  Lett.  377,  311-­‐232  (2013)  

S7. Shcheka,   S.S.,   &   Keppler,   H.   The   origin   of   the   terrestrial   noble-­‐gas   signature,   Nature,   490,   531-­‐536  

(2012)  

S8. Roskosz   et   al.   Nitrogen   solubility   in   molten   metal   and   silicate   at   high   pressure   and   temperature.  

Geochim.  Cosmochim.  Acta,  121,  15-­‐28  (2013)  

S9. Halliday,  A.  N.  The  origins  of  volatiles  in  the  terrestrial  planets,  Geochim.  Cosmochim.  Acta,    105,  146-­‐

171  (2013)  

6 NATURE GEOSCIENCE | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 7: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

S10.  Wang,  Z,  &  Becker,  H.  Ratios  of  S,  Se  and  Te  in  the  silicate  Earth  require  a  volatile-­‐rich  late  veneer,  Nature,  

328-­‐331  (2013)  

S11. Dale  et  al.,  Late  Accretion  on  the  Earliest  Planetesimals  Revealed  by  the  Highly  Siderophile  Elements,  

Science,  336,  72-­‐75  (2012)  

S12. Day,   J.   M.   D,   et   al.   Late   accretion   as   a   natural   consequence   of   planetary   growth.   Nat.   Geo.,   5,   614-­‐617  

(2012)    

S13. Frost,  D.   J,  &  McCammon,   C.  M.  The  Redox   State   of   Earth's  Mantle.  Annu.  Rev.  Earth  Planet.  Sci.   36,  

389-­‐420  (2008)  

S14. Wood,   B.   J.,  Bryndzia,   L.   T.  &  Johnson,   K.   E.  Mantle   oxidation   state   and   its   relationship   to   tectonic  

environment  and  fluid  speciation.  Science  248,  337–345  (1990)  

S15. Parkinson,   I.   J.  &  Arculus,   R.   J.  The   redox   state   of   subduction   zones:   insights   from   arc-­‐

peridotites.  Chem.  Geol.  160,  409–423  (1999)  

S16. Herd,  C.  D.  K.,  et  al.  Oxygen  fugacity  and  geochemical  variations  in  the  Martian  basalts:   implications  

for   Martian   basalt   petrogenesis   and   the   oxidation   state   of   the   upper   mantle   of   Mars.   Geochim.  

Cosmochim.  Acta,  66,  2025-­‐2036  (2002)  

S17. Hunten  et  al.,  Venus,  University  of  Arizona  press,  1983  

S18. Wade,  J.  &  Wood,  B.  J.  Core  formation  and  the  oxidation  state  of  the  Earth.  Earth  Planet.  Sci.  Lett.  236,  

78-­‐95  (2005)  

 

 

 NATURE GEOSCIENCE | www.nature.com/naturegeoscience 7

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 8: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

S2.  Supplementary  data  

 

Table  S1:  Data  used  in  this  study  for  the  atmospheres  of  Earth  1,  Mars  1-­‐2  and  Venus  1,3,  17.    

8 NATURE GEOSCIENCE | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.

Page 9: Nitrogen speciation in upper mantle fluids and the origin ......origin of Earth’s N2-‐rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection

 

 

Figure  S1:  The  abundances  of  atmospheric  20Ne  relative  to  the  abundance  of  molecular  nitrogen  and  the  

primordial   noble   gases   of   Earth   1,   Mars   1-­‐2   and   Venus   1,3.   Molecular   nitrogen   and   the   primordial   noble  

gases  are  listed  in  order  of  their  relative  abundances  ref.1.  

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 9

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NGEO2271

© 2014 Macmillan Publishers Limited. All rights reserved.