Notes 1 - Transmission Line Theory

Embed Size (px)

Citation preview

  • 8/20/2019 Notes 1 - Transmission Line Theory

    1/82

    Prof. David R. JacksonDept. of ECE

    Notes 1

    ECE 5317-6351Microwave Enineerin

    Fall

    2011

     !rans"ission #ine !$eor%

    1

  • 8/20/2019 Notes 1 - Transmission Line Theory

    2/82

    & wave'idin str'ct're is one t$at carriesa sina( )or power* fro" one point toanot$er.

     !$ere are t$ree co""on t%pes+

     !rans"ission (ines  ,ier-optic 'ides  ave'ides

    ave'idin /tr'ct'res

    Note+ &n a(ternative to wave'idin str'ct'res is wire(esstrans"ission 'sin antennas. )antenna are disc'ssed inECE 5310.*

    2

  • 8/20/2019 Notes 1 - Transmission Line Theory

    3/82

     !rans"ission #ine

    as two cond'ctors r'nnin para((e(an propaate a sina( at an% fre2'enc% )in t$eor%*eco"es (oss% at $i$ fre2'enc%an $and(e (ow or "oderate a"o'nts of poweroes not $ave sina( distortion4 'n(ess t$ere is (ossa% or "a% not e i""'ne to interference

    oes not $ave E  z  or H  z  co"ponents of t$e e(ds )!EM z *

    Properties

    Coaia( ca(e )coa*

     !win (ead )s$own connected to a +1

    i"pedance-transfor"ina('n*3

  • 8/20/2019 Notes 1 - Transmission Line Theory

    4/82

     !rans"ission #ine )cont.*

    C&! 5 ca(e)twisted pair*

     !$e two wires of t$e trans"ission (ine are twisted to red'ceinterference and radiation fro" discontin'ities.

    4

  • 8/20/2019 Notes 1 - Transmission Line Theory

    5/82

     !rans"ission #ine )cont.*

    Microstrip

    h

    w

    ε r 

    ε r 

    w

    /trip(ine

    h

    rans"ission (ines co""on(% "et on printed-circ'it oards

    Cop(anar strips

    hε r 

    w w

    Cop(anar wave'ide )CP*

    hε r 

    w

    5

  • 8/20/2019 Notes 1 - Transmission Line Theory

    6/82

     !rans"ission #ine )cont.*

     !rans"ission (ines are co""on(% "et on printed-circ'it oards.

    & "icrowave interatedcirc'it

    Microstrip line

    6

  • 8/20/2019 Notes 1 - Transmission Line Theory

    7/82

    ,ier-8ptic 9'ide

    Properties

     :ses a die(ectric rod  Can propaate a sina( at an% fre2'enc% )in t$eor%*  Can e "ade ver% (ow (oss  as "ini"a( sina( distortion  ;er% i""'ne to interference

     Not s'ita(e for $i$ power  as ot$ E  z  and H  z  co"ponents of t$e e(ds

    7

  • 8/20/2019 Notes 1 - Transmission Line Theory

    8/82

    ,ier-8ptic 9'ide )cont.*

     !wo t%pes of er-optic 'ides+

    1* /in(e-"ode er

  • 8/20/2019 Notes 1 - Transmission Line Theory

    9/82

    ,ier-8ptic 9'ide )cont.*

    $ttp+@@en.wikipedia.or@wiki@8ptica(Aer

    i$er inde core reion

    9

  • 8/20/2019 Notes 1 - Transmission Line Theory

    10/82

    ave'ides

    as a sin(e $o((ow "eta( pipe

    Can propaate a sina( on(% at $i$ fre2'enc%+ ω   > ω c$e widt$ "'st e at (east one-$a(f of a wave(ent$

    as sina( distortion4 even in t$e (oss(ess case=""'ne to interferenceCan $and(e (are a"o'nts of power

    as (ow (oss )co"pared wit$ a trans"ission (ine*as eit$er  E  z  or H  z  co"ponent of t$e e(ds )!M z or  !E z *

    Properties

    $ttp+@@en.wikipedia.or@wiki@ave'ideA)e(ectro"anetis"*10

  • 8/20/2019 Notes 1 - Transmission Line Theory

    11/82

     

      Lumped circuits: resistors, capacitors, inductors 

    ne(ect ti"e de(a%s)p$ase*

    acco'nt for

    propaation and ti"ede(a%s )p$ase c$ane*

     !rans"ission-#ine !$eor%

     Distributed circuit elements: transmission lines

    e need trans"ission-(ine t$eor% w$enevert$e (ent$ of a (ine is sinicant co"pared wit$a wave(ent$.

    11

  • 8/20/2019 Notes 1 - Transmission Line Theory

    12/82

    ransmission Line

    2 conductors

    4 per!unit!len"t# parameters:

    C  $ capacitance%len"t# &F/m'

     L $ inductance%len"t# &H/m'

     R $ resistance%len"t# &Ω/m'

    G $ conductance%len"t# &  / m or S/m'      Ω

    ∆ z 

    12

  • 8/20/2019 Notes 1 - Transmission Line Theory

    13/82

    ransmission Line (cont)*

     z ∆

    ( ),i z t 

    + + + + + + +! ! ! ! ! ! ! ! ! !   ( ),v z t 

    13

     R∆ z   L∆ z 

    G∆ z  C ∆ z 

     z 

    v( z +∆ z ,t )

    +

    !

    v( z ,t )

    +

    !

    i( z ,t ) i( z +∆ z ,t )

  • 8/20/2019 Notes 1 - Transmission Line Theory

    14/82

    ( , )( , ) ( , ) ( , )

    ( , )( , ) ( , ) ( , )

    i z t v z t v z z t i z t R z L z  t 

    v z z t  i z t i z z t v z z t G z C z  

    ∂= + ∆ + ∆ + ∆∂

    ∂ + ∆= + ∆ + + ∆ ∆ + ∆

    ransmission Line (cont)*

    14

     R∆ z   L∆ z 

    G∆ z  C ∆ z 

     z 

    v( z +∆ z ,t )

    +

    !

    v( z ,t )

    +

    !

    i( z ,t ) i( z +∆ z ,t )

  • 8/20/2019 Notes 1 - Transmission Line Theory

    15/82

    -ence

    ( , ) ( , ) ( , )( , )

    ( , ) ( , ) ( , )( , )

    v z z t v z t i z t   Ri z t L

     z t 

    i z z t i z t v z z t  Gv z z t C  

     z t 

    + ∆ − ∂= − −∆ ∂

    + ∆ − ∂ + ∆= − + ∆ −

    ∆ ∂

    .o/ let ∆ z →   0:

    v i

     Ri L z t 

    i vGv C 

     z t 

    ∂ ∂= − −∂ ∂

    ∂ ∂= − −

    ∂ ∂

    ele"rap#ers

    uations

    M ransmission Line (cont)*

    15

  • 8/20/2019 Notes 1 - Transmission Line Theory

    16/82

    o combine t#ese, tae t#e deriatie o t#e irst one /it#

    respect to z :2

    2

    2

    2

    v i i R L

     z z z t 

    i i R L z t z 

    v R Gv C 

    v v L G C 

    t t 

    ∂ ∂ ∂ ∂  = − −   ÷∂ ∂ ∂ ∂  

    ∂ ∂ ∂  = − −   ÷∂ ∂ ∂  ∂ = − − −

    ∂ ∂ ∂ − − − ∂ ∂

    /itc# t#e

    order o t#e

    deriaties)

    M ransmission Line (cont)*

    16

  • 8/20/2019 Notes 1 - Transmission Line Theory

    17/82

    ( )

    2 2

    2 2( ) 0

    v v v

     RG v RC LG LC  z t t 

    ∂ ∂ ∂  

    − − + − = ÷∂ ∂ ∂  

    #e same euation also #olds or i.

    -ence, /e #ae:

    2 2

    2 2

    v v v v R Gv C L G C  z t t t ∂ ∂ ∂ ∂ = − − − − − − ∂ ∂ ∂ ∂

    M ransmission Line (cont)*

    17

  • 8/20/2019 Notes 1 - Transmission Line Theory

    18/82

    ( )2

    2

    2( ) ( ) 0

    d V  RG V RC LG j V LC V 

    dz ω ω − − + − − =

    ( )2 2

    2 2( ) 0

    v v v RG v RC LG LC 

     z t t 

    ∂ ∂ ∂  − − + − = ÷

    ∂ ∂ ∂  

    M ransmission Line (cont)*

    ime!-armonic aes:

    18

  • 8/20/2019 Notes 1 - Transmission Line Theory

    19/82

    .ote t#at

    $ series impedance%len"t#

    ( ) ( )2

    2

    2

    ( )d V 

     RG V j RC LG V LC V dz 

    ω ω = + + −

    2( ) ( ) ( ) RG j RC LG LC R j L G j C ω ω ω ω  + + − = + +

     Z R j L

    Y G j C  

    ω 

    ω 

    = +

    = + $ parallel admittance%len"t#

    #en /e can /rite:

    2

    2( )

    d V  ZY V 

    dz =

    M ransmission Line (cont)*

    19

  • 8/20/2019 Notes 1 - Transmission Line Theory

    20/82

    Let

    onention:

    olution:

    2γ   = ZY 

    ( )   z z V z Ae Beγ γ − += +

    [ ]1/2

    ( )( ) R j L G j C γ ω ω = + +

    = principal suare root

    2

    2

    2

    ( )d V 

    V dz 

    γ =

    #en

    M ransmission Line (cont)*

    γ   is called t#e ;propa"ation constant);

    /2 j z z e  θ =

    π θ π − < <

     jγ α β = +

    0, 0α β ≥ ≥

    α 

    β 

    ==attenuationcontant

    p#aseconstant

    20

  • 8/20/2019 Notes 1 - Transmission Line Theory

    21/82

    M ransmission Line (cont)*

    0 0( ) z z j z 

    V z V e V e eγ α β + + − + − −

    = =

    ,orward trave((in wave )a wave trave(in in t$e positive z  direction*+

    ( ){ }

    ( ){ }( )

    0

    0

    0

    ( , ) Re

    Re

    cos

     z j z j t 

     j z j z j t 

     z 

    v z t V e e e

    V e e e e

    V e t z  

    α β ω 

    φ α β ω  

    α  ω β φ 

    + + − −

    + − −

    + −

    =

    =

    = − +

     g λ 

    0t   =

     z 

    0

     z V e   α + −

    2

     g 

    π β 

    λ =

    2 g 

    βλ π =

     !$e wave Brepeats w$en+

    ence+

    21

  • 8/20/2019 Notes 1 - Transmission Line Theory

    22/82

    P$ase ;e(ocit%

     !rack t$e ve(ocit% of a ed point on t$e wave )a point of constant

    p$ase*4 e..4 t$e crest.

    0( , ) cos( ) z v z t V e t z  α  ω β φ + + −= − +

     z 

    v p )p$ase ve(ocit%*

    22

  • 8/20/2019 Notes 1 - Transmission Line Theory

    23/82

    P$ase ;e(ocit% )cont.*

    0

    constantω β 

    ω β 

    ω 

    β 

    − =

    − =

    =

    t z 

    dz 

    dt 

    dz 

    dt 

    /et

    ence  pv  ω 

    β =

    [ ]{ }1/2

    Im ( )( ) p

    v R j L G j C 

    ω 

    ω ω =

    + +

    =n epanded for"+

    23

  • 8/20/2019 Notes 1 - Transmission Line Theory

    24/82

    C$aracteristic ="pedance Z 

    0

    ( )

    ( )

    V z  Z 

     I z 

    +

    +≡

    0

    0

    ( )

    ( )

     z 

     z 

    V z V e

     I z I e

    γ 

    γ 

    + + −

    + + −

    =

    =

    so   00

    0

    V  Z 

     I 

    +

    +=

    +V +( z )

    -

     I + ( z )

     z 

    & wave is trave(in in t$e positive z  direction.

    ) Z  is a n'"er4 not a f'nction of  z .*

    24

  • 8/20/2019 Notes 1 - Transmission Line Theory

    25/82

  • 8/20/2019 Notes 1 - Transmission Line Theory

    26/82

    >rom t#is /e #ae:

  • 8/20/2019 Notes 1 - Transmission Line Theory

    27/82

    ( )

    00

    0 0

     j z j  j z 

     z z 

     z   j z V e e

    V z V e V  

    V e e e

    e

    eφ α 

    γ γ 

    β β    φ α −+

    + + −

    −+ + −   +

    +

    +

    = +

    = +

    ( ) ( ){ }

    ( )

    ( )0

    0   cos

    c

    , R 

    os

    e   j t 

     z 

     z 

    V e t 

    v z t V z  

     z 

    V z 

    e

    e t 

    ω 

    α 

    α 

    ω β 

    ω β φ 

    φ − +

    + +

    +

    =

    +

    +

    +

    −=

    .ote:/ae in + z  direction /ae in - z  

    direction

    9enera( Case )aves in ot$Directions*

    27

  • 8/20/2019 Notes 1 - Transmission Line Theory

    28/82

    ?ac/ard!raelin" ae

    0

    ( )

    ( )

    V z  Z 

     I z 

    −   =−   0( )

    ( )

    V z  Z 

     I z 

    −   = −so

    +V -( z )

    -

     I - ( z )

     z 

     @ /ae is traelin" in t#e ne"atie z  direction)

    Note+ !$e reference directions for vo(tae and c'rrentare t$e sa"e as for t$e forward wave.

    28

  • 8/20/2019 Notes 1 - Transmission Line Theory

    29/82

    Aeneral ase

    0 0

    0 0

    0

    ( )1

    ( )

     z z 

     z z 

    V z V e V e

     I z V e V e Z 

    γ γ 

    γ γ 

    + − − +

    + − − += +

    = −

     @ "eneral superposition o or/ard and

    bac/ard traelin" /aes:

    Most "eneral case:

    Note+ !$ereferencedirections forvo(tae and c'rrentare t$e sa"e forforward and

    ackward waves.29

    +V  ( z )

    -

     I  ( z )

     z 

  • 8/20/2019 Notes 1 - Transmission Line Theory

    30/82

    ( )

    ( )

    ( ) ( )1

    2

    12

    0

    0 0

    0 0

    0 0

     z z 

     z z 

    V z V e V e

    V V 

     I z e e Z 

     j R j L G j C 

     R j L

     Z  G j

     Z 

    γ γ 

    γ γ 

    γ α β ω ω  

    ω 

    ω 

    + − − +

    + −− +

    =

    = +

    + = + +

     +=  

    =

    ÷ 

    +

    [ ]2

    m g π 

    λ β 

    =

    [m/s] pv  ω 

    β =

    "uided /aelen"t# ≡ λ  g 

    p#ase elocitB ≡ v p

    ummarB o ?asic L ormulas

    30

  • 8/20/2019 Notes 1 - Transmission Line Theory

    31/82

    #oss(ess Case

    0, 0 R G= =

    [ ]1/ 2

    ( )( ) j R j L G j C 

     j LC 

    γ α β ω ω  

    ω 

    = + = + +

    =

    so 0

     LC 

    α β ω 

    ==

    1/2

    0

     R j L Z 

    G j C 

    ω 

    ω 

     +=    ÷+  

    0

     L Z 

    C =

      1 pv

     LC =

     pv   ω β 

    =

    )indep. of fre2.*)rea( and indep) o re)*31

    ( C

  • 8/20/2019 Notes 1 - Transmission Line Theory

    32/82

    #oss(ess Case)cont.*1

     pv

     LC 

    =

    =n t$e "edi'" etween t$e two cond'ctors is$o"oeneo's )'nifor"* and is c$aracteriFed % )ε 4 µ *4t$en we $ave t$at

     LC    µε =

     !$e speed of (i$t in a die(ectric"edi'" is

    1d c

     µε =

    ence4 we $avet$at

     p d v c=

     !$e p$ase ve(ocit% does not depend on t$e fre2'enc%4 and it isa(wa%s t$e speed of (i$t )in t$e "ateria(*.

    )proof iven

    (ater*

    32

  • 8/20/2019 Notes 1 - Transmission Line Theory

    33/82

    ( )   0 0 z z V z V e V eγ γ + − − += +

    #ere do /e assi"n z = 0C

    #e usual c#oice is at t#e load)

    erminatin" impedance (load*

     @mpl) o olta"e /ae

    propa"atin" in ne"atie z  

    direction at z  = 0.

     @mpl) o olta"e /ae

    propa"atin" in positie z  

    direction at z  = 0.

    erminated ransmission Line

    Note+ !$e (ent$ l "eas'res distance fro" t$e (oad+   z = −(33

    i d i i Li ( *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    34/82

    #at i /e no/

    @V V z + − = −(and

    ( ) ( )0   0V V V e  γ + + + −= = −   ((

    ( ) ( )   ( ) ( )   ( ) z z 

    V z V e V eγ γ − + ++ −= − + −( (( (

    ( ) ( )0V V e   γ − − −− =   ((

    ( ) ( )0 0V V V eγ − − −⇒ = = − ((

    erminated ransmission Line (cont)*

    ( )   0 0 z z 

    V z V e V eγ γ + − − +

    = +

    -ence

    an /e use z  = - l  asa reerence planeC

    erminatin" impedance (load*

    34

    ( *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    35/82

    ( ) ( )   ( ) ( )   ( )( ) ( ) z z V z V e V eγ γ − − − − −+ −= − + −( (( (

    erminated ransmission Line (cont)*

    ( ) ( ) ( )0 0 z z V z V e V eγ γ + − − += +

    ompare:

    Note+ !$is is si"p(% a c$ane of reference p(ane4 fro" z  = 0

    to z  = -l.

    erminatin" impedance (load*

    35

    i t d i i Li ( t *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    36/82

    ( ) 0 0 z z 

    V z V e V e

    γ γ + − − +

    = +

    #at is V (-l )?

    ( ) 0 0V V e V eγ γ  + − −− = +( ((

    ( )   0 0

    0 0

    V V  I e e

     Z Z 

    γ γ + −

    −− = −( ((

    propa"atin"

    or/ards

    propa"atin"

    bac/ards

    erminated ransmission Line (cont)*

    l  ≡ distance a/aB rom load

    #e current at z  = - l  is t#en

    erminatin" impedance (load*

    36

    i t d i i Li ( t *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    37/82

    ( )   ( )200

    1  LV 

     I e e

     Z 

    γ γ +

    −− = − Γ  ( ((

    ( ) 2000

    0 0 1  V 

    V eV V e   eeV 

    V    γ γ  γ γ  

    +−   −+ − +− =   

    = +  +   ÷( (( ((

    otal olt) at distance l 

    rom t#e load

     @mpl) o olt) /ae prop)

    to/ards load, at t#e load

    position ( z = 0*)

    imilarlB,

     @mpl) o olt) /ae prop)

    a/aB rom load, at t#e

    load position ( z = 0*)

    ( )0 21  LV e eγ γ + −= + Γ ( (

     Γ  L ≡ Load relection coeicient

    erminated ransmission Line (cont)*

     Γ l ≡ election coeicient at z  = - l

    37

    ( *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    38/82

    ( )   ( )

    ( )   ( )

    ( )   ( )( )

    2

    0

    2

    2

    0

    0

    2

    0

    11

    1

    1

     L

     L

     L

     L

    V V e e

    V  I e e

     Z 

    V    e Z Z  I e

    γ γ  

    γ γ  

    γ  

    γ  

    + −

    +

    − = + Γ  

    −    + Γ − = =   ÷− −

    − = − Γ  

    Γ   

    ( (

    (

    (

    (

    (

    ((

    (

    (

    (

    =nput impedance seen looin" to/ards load

    at z  = -l .

    erminated ransmission Line (cont)*

    ( ) Z   −(

    38

    i d i i Li ( *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    39/82

     @t t#e load (l  = 0*:

    ( ) 01

    01

     L L

     L

     Z Z    Z   + Γ 

    =   ÷− Γ   ≡

     

    #us,

    ( )

    20

    0

    0

    20

    0

    1

    1

     L

     L

     L

     L

     Z Z e Z Z 

     Z Z  Z Z 

    e Z Z 

    γ  

    γ  

       −+ ÷ ÷+   ÷− = ÷  −

    − ÷ ÷ ÷+    

    (

    (

    (

    erminated ransmission Line (cont)*

    0

    0

     L L

     L

     Z Z 

     Z Z 

    −⇒ Γ =

    +

    ( )2

    0 2

    1

    1

     L

     L

    e Z Z 

    e

    γ  

    γ  

     + Γ − =   ÷− Γ   

    (

    ((ecall

    39

    i d i i Li ( *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    40/82

    impliBin", /e #ae

    ( )  ( )

    ( )0

    0

    0

    ta!

    ta!

     L

     L

     Z Z  Z Z 

     Z Z 

    γ  

    γ  

     +− =   ÷ ÷+  

    ((

    (

    erminated ransmission Line (cont)*

    ( )  ( ) ( )

    ( ) ( )

    ( ) ( )( ) ( )

    ( ) ( )

    ( ) ( )

    20

    2

    0 0 0

    0 0 2

    2 0 00

    0

    0 00

    0 0

    0

    0

    0

    1

    1

    cos! s"!

    cos! s"!

     L

     L L L

     L L L

     L

     L L

     L L

     L

     L

     Z Z e

     Z Z Z Z Z Z e Z Z Z 

     Z Z Z Z e Z Z e

     Z Z 

     Z Z e Z Z e Z  Z Z e Z Z e

     Z Z  Z 

     Z Z 

    γ  

    γ  

    γ  

    γ  

    γ γ  

    γ γ  

    γ γ  

    γ γ  

    −−

    −−

    + −

    + −

       −+ ÷ ÷  + + + −   ÷− = =   ÷ ÷ ÷   + − −  −    − ÷ ÷ ÷+    

     + + −=   ÷ ÷+ − −  

     +=     + 

    (

    (

    (

    (

    ( (

    ( (

    (

    ( (

    ( (  ÷÷

     

    -ence, /e #ae

    40

    i t d L l i i Li

  • 8/20/2019 Notes 1 - Transmission Line Theory

    41/82

    ( )   ( )

    ( )   ( )

    ( )

    2

    0

    20

    0

    2

    0 2

    1

    1

    1

    1

     j j

     L

     j j

     L

     j

     L

     j

     L

    V V e e

    V  I e e

     Z 

    e Z Z 

    e

    β β 

    β β 

    β 

    β 

    + −

    +−

    − = + Γ  

    − = − Γ  

     + Γ − =   ÷− Γ   

    ( (

    ( (

    (

    (

    (

    (

    (

    =mpedance is periodic

    /it# period λ  g /2

    2

    / 2

     g 

     g 

    β π 

    π 

    π λ 

    λ 

    =

    =

    ⇒ =

    (

    (

    (

    erminated Lossless ransmission Line

     j jγ α β β  = + =

    Note+   ( ) ( ) ( )ta! ta! ta j jγ β β = =( ( (

    tan repeats w$en

    ( )  ( )

    ( )0

    0

    0

    ta

    ta

     L

     L

     Z jZ  Z Z 

     Z jZ 

    β 

    β 

     +− =   ÷ ÷+  

    ((

    (

    41

    i t d L l i i Li

  • 8/20/2019 Notes 1 - Transmission Line Theory

    42/82

    ,or t$e re"ainder of o'r trans"ission (ine disc'ssion we wi((ass'"e t$at t$e trans"ission (ine is (oss(ess.

    ( )   ( )

    ( )   ( )

    ( )  ( )

    ( )

    ( )

    ( )

    2

    0

    20

    0

    2

    0 2

    0

    0

    0

    1

    1

    1

    1

    ta

    ta

     j j

     L

     j j

     L

     j

     L

     j

     L

     L

     L

    V V e e

    V  I e e

     Z 

    V    e Z Z 

     I e

     Z jZ  Z 

     Z jZ 

    β β 

    β β 

    β 

    β 

    β 

    β 

    + −

    +−

    − = + Γ  

    − = − Γ  

    −    + Γ − = =   ÷− − Γ   

     +=   ÷ ÷

    +  

    ( (

    ( (

    (

    (

    (

    (

    ((

    (

    (

    (

    0

    0

    2

     L L

     L

     g 

     p

     Z Z 

     Z Z 

    v

    π λ 

    β 

    ω 

    β 

    −Γ =

    +

    =

    =

    erminated Lossless ransmission Line

    ( ) Z   −(

    42

    Matc#ed Load

  • 8/20/2019 Notes 1 - Transmission Line Theory

    43/82

    Matc$ed (oad+ ( Z  L= Z 0)

    0

    0

    0 L L L

     Z Z 

     Z Z 

    −Γ = =

    +

    >or anB l

    .o relection rom t#e load

     &

    Matc#ed Load

    ( ) Z   −(

    ( ) 0 Z Z ⇒ − =(

    ( )

    ( )

    0

    0

    0

     j

     j

    V V e

    V  I e

     Z 

    β 

    β 

    + +

    ++

    ⇒ − =

    − =

    (

    (

    (

    (

    43

    #ort ircuit Load

  • 8/20/2019 Notes 1 - Transmission Line Theory

    44/82

    /$ort circ'it (oad+ ) Z  L = 0*

    ( ) ( )

    0

    0

    0

    0 10

    ta

     L  Z  Z 

     Z jZ    β 

    −Γ = = −+

    ⇒ − =( (

     @l/aBs ima"inarBE.ote:

    2

     g 

    β π 

    λ 

    =(  (

    ( )   sc Z j ⇒ − =(

    )) can become an F))

    /it# a λ  g /# trans) line

    #ort!ircuit Load

    ( )0 ta sc  Z    β =   (

    44

  • 8/20/2019 Notes 1 - Transmission Line Theory

    45/82

  • 8/20/2019 Notes 1 - Transmission Line Theory

    46/82

    ( )

      ( )

    ( )

    0

    00

    ta

    ta

     L

    i! L

     Z jZ d 

     Z Z d Z   Z jZ d 

    β 

    β 

     +

    = − =   ÷ ÷+  

    ( )   i!"H i! "H  

     Z V d V 

     Z Z 

     ⇒ − =   ÷+  

    ample

    >ind t#e olta"e at anB point on t#e line)

    46

    l ( t *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    47/82

    Note+   ( )   ( )02

    1  j

     L

     jV V e e

    β β + −+ Γ =−   ( ((

    0

    0

     L L

     L

     Z Z 

     Z Z −Γ =+

    ( )   ( )20 1 j d j d    i!

    "H 

    i! "H  

     LV d   Z 

     Z 

    e   V 

     Z 

    V e  β β + −− = + Γ  

       =   ÷

    +  

    ( )   ( )2

    2

    1

    1

     j j d i!   L

    "H    j d 

    # "H L

     Z    eV V e

     Z Z e

    β β 

    β 

    −− −

         + Γ − =   ÷   ÷+ + Γ     

    ((

    (

     @t l = d  :

    -ence

    ample (cont)*

    0 2

    1

    1

     j d i!"H    j d 

    i! "H L

     Z V V e

     Z Z e

    β 

    β 

    + −−

         ⇒ =   ÷   ÷+ + Γ     

    47

    ample (cont *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    48/82

    ome al"ebra:   ( )2

    0 2

    1

    1

     j d 

     Li!   j d 

     L

    e Z Z d Z 

    e

    β 

    β 

     + Γ = − =   ÷

    − Γ   

    ( )

    ( ) ( )

    ( )( ) ( )

    ( )

    2

    20 20

    2 22

    0

    0 2

    2

    0

    2

    0 0

    2

    0

    20 0

    0

    1

    11

    1 11

    1

    1

    1

    1

     j d 

     L j d  j d 

     L L

     j d j d  j d 

     L "H L L

    "H  j d  L

     j d 

     L

     j d 

    "H L "H  

     j d 

     L

     j d "H  "H  L

    "H 

    i!

    i! "H  

    e Z 

     Z ee

     Z e Z ee

     Z Z e

     Z e

     Z Z e Z Z 

    e Z 

     Z 

     Z 

     Z Z 

     Z   Z Z e Z Z 

     Z 

    β 

    β β 

    β β β 

    β 

    β 

    β 

    β 

    β 

    −−

    − −−

     + Γ  ÷ + Γ − Γ   ⇒ = =

        + Γ + − Γ  + Γ 

    + ÷− Γ   

    + Γ =

    + + Γ 

    +

    + Γ   =  ÷

    +    −   + Γ    ÷+  

    =  ( )2

    0

    20 0

    0

    1

    1

     j d 

     L

     j d "H  "H  L

    "H 

    e

     Z Z   Z Z e

     Z Z 

    β 

    β 

    + Γ    ÷+    −   − Γ    ÷+  

    ample (cont)*

    48

    ample (cont *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    49/82

    ( )   ( )2

    0

    2

    0

    1

    1

     j j d    L

    "H    j d 

    "H $ L

     Z    eV V e

     Z Z e

    β β 

    β 

    −− −

     + Γ − =   ÷ ÷+ − Γ Γ    

    ((

    (

    20

    2

    0

    1

    1

     j d i!  L

     j d 

    i! "H "H $ L

     Z Z  e

     Z Z Z Z e

    β 

    β 

    −  + Γ =  ÷ ÷+ + − Γ Γ    

    /#ere 0

    0

    "H $ 

    "H 

     Z Z 

     Z Z 

    −Γ =

    +

    ample (cont)*

    #ereore, /e #ae t#e ollo/in" alternatie orm or t#e result:

    -ence, /e #ae

    49

    ample (cont *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    50/82

    ( )   ( )2

    0

    2

    0

    1

    1

     j j d    L

    "H    j d 

    "H $ L

     Z    eV V e

     Z Z e

    β β 

    β 

    −− −

     + Γ − =   ÷ ÷+ − Γ Γ    

    ((

    (

    ample (cont)*

    Holta"e /ae t#at /ould eist i t#ere /ere no relections rom

    t#e load (a semi!ininite transmission line or a matc#ed load*)

    50

    ample (cont *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    51/82

    ( )

    ( )

    ( ) ( ) ( ) ( )

    2 2

    2 2 2 20

    0

    1  j d j d  

     L L $ 

     j d j d j d j d 

    "H L $ L L $ L $  

    "H 

    e e

     Z V d V e e e e Z Z 

    β β 

    β β β β  

    − −

    − − − −

    + Γ + Γ Γ  

      − = + Γ Γ Γ + Γ Γ Γ Γ   ÷   +   +

    ample (cont)*

    ae!bounce met#od (illustrated or l % d  *:

    51

    ample (cont *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    52/82

    ample (cont)*

    ( )( ) ( )

    ( ) ( )

    22 2

    22 2 20

    0

    1

    1

     j d j d 

     L $ L $ 

     j d j d j d 

    "H L L $ L $  

    "H 

    e e

     Z V d V e e e

     Z Z 

    β β 

    β β β 

    − −

    − − −

    + Γ Γ + Γ Γ +    − = + Γ + Γ Γ + Γ Γ + ÷  +   

    +

    Aeometric series:

    2

    0

    11 , 1

    1

    !

    !

     z z z z  z 

    =

    = + + + = <−∑   G 

    ( )

    ( )

    ( ) ( ) ( ) ( )

    2 2

    2 2 2 20

    0

    1  j d j d  

     L L $ 

     j d j d j d j d "H L $ L L $ L $  

    "H 

    e e

     Z V d V e e e e Z Z 

    β β 

    β β β β  

    − −

    − − − −

    + Γ + Γ Γ  

      − = + Γ Γ Γ + Γ Γ Γ Γ   ÷   +   +

    2 j d 

     L $  z e  β −= Γ Γ 

    52

    ample (cont *

  • 8/20/2019 Notes 1 - Transmission Line Theory

    53/82

    ample (cont)*

    or 

    ( )2

    0

    20

    2

    1

    1

    1

    1

     j d  L s

    "H 

     j d "H 

     L   j d 

     L s

    e Z V d V 

     Z Z e

    e

    β 

    β 

    β 

    −−

    − Γ Γ    − =   ÷  +   + Γ  ÷− Γ Γ   

    ( )2

    0

    2

    0

    1

    1

     j d 

     L"H    j d 

    "H L s

     Z    eV d V 

     Z Z e

    β 

    β 

    + Γ − =   ÷  + − Γ Γ  

    #is a"rees /it# t#e preious result (settin" l % d  *)

    Note+ !$is is a ver% tedio's "et$od H not reco""ended.

    -ence

    53

    ime! @era"e Io/er >lo/

  • 8/20/2019 Notes 1 - Transmission Line Theory

    54/82

     @t a distance l  rom t#e load:

    ( ) ( ) ( ){ }

    ( ) ( )$

    $

    2

    0 2 2 $ 2

    $

    0

    1Re 1 1

    1 R 

    2

    e2

     L L

    V e e

     Z 

    V I 

    e

     & 

    α γ γ  

    +− −

    − =

    = + Γ − Γ  

    − −

    ( ( (

    ( ( (

    ( )   ( )2

    20 2 #

    0

    11

    2  L

    V  & e e

     Z 

    α α 

    +−− ≈ − Γ  ( ((

    =f Z 0 ≈ rea( )(ow-(osstrans"ission (ine*

    ime! @era"e Io/er >lo/

    ( )   ( )( )   ( )

    2

    0

    20

    0

    1

    1

     L

     L

    V V e e

    V  I e e

     Z 

     j

    γ γ  

    γ γ  

    γ α β 

    + −

    +−

    − = + Γ  − = − Γ  

    = +

    ( (

    ( (

    (

    (

    ( )

    $2 $ 2

    $2 2

     L L

     L L

    e e

    e e

    γ γ  

    γ γ  

    − −

    − −

    Γ − Γ 

    = Γ − Γ  

    =

    ( (

    ( (

     pure imaginary 

    Note+

    54

    ime! @era"e Io/er >lo/

  • 8/20/2019 Notes 1 - Transmission Line Theory

    55/82

    Lo/!loss line

    ( )   ( )2

    20 2 #

    0

    2 2

    20 02 2

    $ $

    0 0

    11

    2

    1 1

    2 2

     L

     L

    V  & d e e

     Z 

    V V e e

     Z Z 

    α α 

    α α 

    +−

    + +−

    − ≈ − Γ  

    = − Γ 

    ( (

    ( (

    1 7< 73 1 7 7 < 7 7 3power inforwardwave power in -ackwardwave

    ( )   ( )2

    20

    0

    11

    2  L

    V  & d 

     Z 

    +

    − = − Γ  

    Lossless line (α  = 0*

    ime @era"e Io/er >lo/

    55

    Juarter!ae ransormer

  • 8/20/2019 Notes 1 - Transmission Line Theory

    56/82

    00

    0

    tata

     L " i! " 

    " L

     Z jZ  Z Z  Z jZ 

    β β 

     +=   ÷+  ((

    2

    # # 2

     g g 

     g 

    λ λ π π β β 

    λ = = =(

    00

    " i! " 

     L

     jZ  Z Z 

     jZ 

     ⇒ =   ÷

     

    0

    2

    00

    0i! i!

     L

     Z Z  Z 

     Z  Z 

    Γ = ⇒ =⇒ =

    Juarter!ae ransormer 

    2

    0" i!

     L

     Z  Z 

     Z =

    so

    [ ]1/2

    0 0" L Z Z Z =

    ence

    #is reuires Z  L to be real)

     Z  L Z 0  Z 0%

     Z i!

    56

    Holta"e tandin" ae atio

  • 8/20/2019 Notes 1 - Transmission Line Theory

    57/82

    ( ) 20 1  L j   j

     LV V e e

    φ    β + −− = + Γ     ((

    ( )   ( )( )

    2

    0

    2

    0

    1

    1   L

     j j

     L

     j j j

     L

    V V e e

    V e e e

    β β 

    φ β β 

    + −

    + −− = + Γ  = + Γ 

    ( (

    ( (

    (

    ( )

    ( )

    ma& 0

    m" 0

    1

    1

     L

     L

    V V 

    V V 

    +

    +

    = + Γ 

    = − Γ 

    ( ) ma&

    m"

    V V 

    =;o(tae /tandin .ave Ratio ;/.R

    Holta"e tandin" ae atio

    1

    1

     L

     L

    + Γ =

    − Γ 

    ;/.R

     z 

      1+  LΓ 

    1

      1- L

    Γ 

    0

    ( )V z 

    V +

    / 2 z    λ ∆ =0 z    =

    57

    oaial able

  • 8/20/2019 Notes 1 - Transmission Line Theory

    58/82

    oaial able

    e we present a Bcase st'd% of one partic'(ar trans"ission (ine4 t$e coaia( ca(

    '

    (   ,r ε σ 

    ,ind C) L) G) R

    e wi(( ass'"e no variation in t$e  z  direction4 and take a (ent$ ofone "eter in t$e  z  direction in order top ca(c'(ate t$e per-'nit-(ent$para"eters.

    58

    ,or a !EM z  "ode4 t$e s$ape of t$e e(ds is independent of fre2'enc%4and $ence we can perfor" t$e ca(c'(ation 'sin e(ectrostatics and"anetostatics.

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    59/82

    oaial able (cont)*

    - ρ * 0

     ρ * 0

    '

    (

    r ε 0 0

    0

    ' '2 2 r 

     E   ρ ρ 

     ρ ρ π ε ρ π ε ε ρ  

       = =   ÷ ÷

         ( (

    ,ind C )capacitance @(ent$*

    Coaia(ca(e

    h = 1  [m]

    r ε 

    >rom Aausss la/:

    0

    0

    2

     B

     AB

     A

    (

    r '

    V V E dr  

    ( E d 

    ' ρ 

     ρ  ρ 

    π ε ε 

    = = ×

     = =   ÷  

    ∫ 

    ∫  (

    59

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    60/82

    - ρ * 0

     ρ * 0

    '

    (

    r ε 

    Coaia(ca(e

    h = 1  [m]

    r ε 

    ( )00

    0

    1

    2 r 

    C V  (

    '

     ρ 

     ρ 

    π ε ε 

    = =       ÷   ÷

       

    (

    (

    ence

    e t$en$ave

    0 F/m2

    [ ]

    r C (

    '

    π ε ε =

      ÷  

    oaial able (cont)*

    60

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    61/82

    '2

     I  H    φ 

    π ρ 

     =   ÷

     

    ,ind L  )ind'ctance @

    (ent$*>rom @mperes la/:

    Coaia(

    ca(e

    h = 1  [m]

    r  µ 

     I 

    0'

    2r 

     I  B   φ µ µ 

    π ρ 

     =   ÷

     

    (1)

    (

    '

     B d φ ψ ρ = ∫ $ 

    h

     I  

     I   z  center cond'ctorMa"netic lu:

    oaial able (cont)*

    61

    .ote: e i"nore internal inductance

    #ere, and onlB loo at t#e ma"netic ield

    between t#e t/o conductors (accurate

    or #i"# reuencB)

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    62/82

    Coaia(

    ca(e

    h = 1  [m]

    r  µ 

     I 

    ( ) 0

    0

    0

    1

    2

    2

    (

    '

    (

    '

     H d 

     I d 

     I (

    '

    φ ψ µ µ ρ  

     µ µ ρ πρ 

     µ µ 

    π 

    =

    =

     =  ÷  

    ∫ ∫ 

    0

    1

    2r 

    ( L

     I '

    ψ  µ µ 

    π 

     = =   ÷  

    0 H/m [ ]2

    r  ( L'

     µ µ 

    π 

     =   ÷  

    ence

    oaial able (cont)*

    62

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    63/82

    0 H/m [ ]2

    r  ( L'

     µ µ 

    π 

     =   ÷  

    8servation+

    0 F/m2

    [ ]

    r C (

    '

    π ε ε =

      ÷  

    ( )0 0 r r  LC    µε µ ε µ ε  = =

     !$is res'(t act'a((% $o(ds for an% trans"ission (ine.

    oaial able (cont)*

    63

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    64/82

    0

    H/m [ ]2

    r    (

     L '

     µ µ 

    π 

     =   ÷  

    ,or a (oss(ess ca(e+

    0

    F/m

    2

    [ ]

    C  (

    '

    πε ε 

    =   ÷  

    0

     L Z  C =

    0 0

    1

    [ ]2

    (

     Z  '

     µ 

    η  ε π 

     

    = Ω ÷  

    00

    0

    *.*0 [ ] µ 

    η ε 

    = = Ω

    oaial able (cont)*

    64

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    65/82

    - ρ * 0

     ρ * 0

    '

    (

    σ 0 0

    0

    ' '2 2 r 

     E   ρ ρ 

     ρ ρ π ε ρ π ε ε ρ  

       = =   ÷ ÷

         ( (

    ,ind G )cond'ctance @(ent$*

    Coaia(ca(e

    h = 1  [m]

    σ 

    >rom Aausss la/:

    0

    0

    2

     B

     AB

     A

    (

    r '

    V V E dr  

    ( E d 

    ' ρ 

     ρ  ρ 

    π ε ε 

    = = ×

     = =   ÷  

    ∫ 

    ∫  (

    oa a ab e (co *

    65

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    66/82

    - ρ * 0

     ρ * 0

    '

    (

    σ   , E σ =

    e t$en$ave

    *e'  I GV 

    =

    [ ]

    0

    0

    (1) 2

    2

    2 2

    *e'-  '

    '

     I , '

    ' E 

    ' '

     ρ   ρ 

     ρ   ρ 

    π 

    π σ 

     ρ π σ  π ε ε 

    =

    =

    =

    =

     =   ÷  

    (

    0

    0

    0

    0

    22

    2

    ''

    G(

    '

     ρ π σ π ε ε 

     ρ 

    π ε ε 

      ÷  =

      ÷  

    (

    (

    2[S/m]

    G(

    '

    πσ =

      ÷  

    or

    ( *

    66

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    67/82

    8servation+

    F/m2

    [ ]

    C (

    '

    πε =

      ÷  

    G C   σ ε 

     =   ÷  

     !$is res'(t act'a((% $o(ds for an% trans"ission (ine.

    2[S/m]

    G(

    '

    πσ =

      ÷  

    0 r ε ε ε =

    ( *

    67

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    68/82

    G C   σ ε 

     =   ÷  

     !o e "ore

    enera(+

    taG

    σ δ 

    ω ωε 

     = = ÷  

    taGC 

    δ ω  =

    Note+ =t is t$e (oss tanent t$at is 's'a((%)approi"ate(%* constant for a "ateria(4 over awide rane of fre2'encies.

    ( *

    &s I'st

    derived4

     !$e (oss tanent act'a((%arises fro" ot$ cond'ctivit%(oss and po(ariFation (oss)"o(ec'(ar friction (oss*4inenera(.

    68

    #is is t#e loss tan"ent t#at /ould

    arise rom conductiitB eects)

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    69/82

    9enera( epression for (oss

    tanent+

    ( )

    c

    c c

     j

     j j

     j

    σ ε ε 

    ω 

    σ ε ε 

    ω ε ε 

     = −   ÷  

     ′ ′′= − −   ÷  

    ′ ′′= −

    ta c

    c

    σ ε 

    ε    ω δ 

    ε ε 

     ′′+ ÷′′  ≡ =′′

    E?ective per"ittivit% t$at acco'nts for cond'ctiv

    #oss d'e to "o(ec'(ar friction #oss d'e to cond'ctivit%

    ( *

    69

    oaial able (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    70/82

    ,ind R )resistance @ (ent$*

    Coaia(ca(e

    h = 1  [m]

    ( *

    ,( r(σ µ 

    '

    (

    σ 

    ,' r'σ µ 

    ' ( R R R= +

    1

    2' s' R R

    'π 

     =   ÷  

    1

    2( s( R R

    (π 

     =   ÷  

    1

     s'' ' R σ δ =

      1

     s(( ( R σ δ =

    0

    2'

    r' '

    δ ωµ µ σ 

    =0

    2(

    r( (

    δ ωµ µ σ 

    =

     R s = s'rface resistance of "eta(

    70

    Aeneral ransmission Line >ormulas

  • 8/20/2019 Notes 1 - Transmission Line Theory

    71/82

    taG

    C δ 

    ω =

    ( )0 0 r r  LC    µε µ ε µ ε  ′ ′= =

    0

    *.ss*ess L  Z 

    = = c$aracteristic i"pedance of (ine )ne(ectin (oss*)1*

    )

  • 8/20/2019 Notes 1 - Transmission Line Theory

    72/82

    Aeneral ransmission Line >ormulas (cont)*

    ( ) taG C ω δ =

    0

    *ss*ess L Z    µε ′=

    0/*ss*essC Z  µε ′=

     R R=

    &( fo'r per-'nit-(ent$ para"eters can e

    fo'nd fro"

    0 ,*.ss*ess Z R

    72

    ommon ransmission Lines

  • 8/20/2019 Notes 1 - Transmission Line Theory

    73/82

    0 0

    1

    [ ]2

    *.ss*ess   r 

    (

     Z  '

     µ 

    η  ε π 

     = Ω ÷  

    Coa

     !win-(ead

    100 cos! [ ]

    2

    *.ss*ess   r 

    h Z 

    '

    η    µ 

    π ε 

    −    = Ω ÷  

    2

    1 2

    1

    2

     s

    h

    ' R R

    ' h

    '

    π 

      ÷  =   − ÷

     

    1 1

    2 2 s' s( R R R

    ' (π π 

     = + ÷ ÷  

    '

    (

    ,r r ε µ 

    h

    ,r r ε µ 

    ' '

    73

    ommon ransmission Lines (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    74/82

    ( *

    Microstrip

    ( ) ( )  ( )

    ( )

    ( )

    ( )0 0

    1 00

    0 1

    e// e//    

    r r 

    e// e//    

    r r 

     /   Z / Z 

     /  

    ε ε 

    ε ε 

     −=   ÷ ÷−  

    ( )( ) ( ) ( )( )

    0

    1200

    0 / 1. 0.++* / 1.###e//  r 

     Z 

    w h w h

    π 

    ε 

    = ′ ′+ + +

    ( / 1)w h ≥

    21

    t hw w

    t π 

       ′ = + +   ÷ ÷

       

    h

    w

    ε r 

    74

    ommon ransmission Lines (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    75/82

    Microstrip

    ( / 1)w h ≥

    h

    w

    ε r 

    ( )

    2

    1.

    (0)(0)

    1 #

    e//  

    r r e// e//    

    r r  /   0 

    ε ε ε ε  −

     − ÷= + ÷+  

    ( )( )

    1 1 11 /0

    2 2 #.+   /1 12 /

    e//     r r r r 

    t h

    w hh w

    ε ε ε ε 

     + − −       ÷= + − ÷ ÷   ÷ ÷  +      

    2

    0

    # 1 0. 1 0. 1r h w

     0 h

    ε λ 

             = − + + + ÷ ÷   ÷ ÷ ÷          

    75

    Limitations o ransmission!Line #eorB

  • 8/20/2019 Notes 1 - Transmission Line Theory

    76/82

    &t $i$ fre2'enc%4 discontin'it% e?ects can eco"e

    i"portant.

    end

    incident

    re>ected

    trans"itted

     !$e si"p(e !# "ode( does not acco'nt for t$e end. Z "H 

     Z  L Z 0K-

    76

    Limitations o ransmission!Line #eorB (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    77/82

    &t $i$ fre2'enc%4 radiation e?ects can eco"e

    i"portant.

    $en wi(( radiationocc'rL

    e want ener% to trave( fro" t$e enerator to t$e (oad4 wit$o'tradiatin.

     Z "H 

     Z  L Z 0K-

    77

    Limitations o ransmission!Line #eorB (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    78/82

    r ε  '

    ( z 

     !$e coaia( ca(e is aperfect(% s$ie(ded s%ste" Ht$ere is never an% radiationat an% fre2'enc%4 or 'nderan% circ'"stances.

     !$e e(ds are conned to t$ereion etween t$e twocond'ctors.

    78

    Limitations o ransmission!Line #eorB (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    79/82

     !$e twin (ead is an open t%pe of

    trans"ission (ine H t$e e(ds etend o'tto innit%.

     !$e etended e(ds "a%ca'se interference wit$

    near% oIects. )!$is "a%e i"proved % 'sinBtwisted pair.*

    K -

    n e(ds t$at etend to innit% is not t$e sa"e t$in as $avin radiation4 $owe

    79

    Limitations o ransmission!Line #eorB (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    80/82

     !$e innite twin (ead wi(( not radiate % itse(f4 reard(ess of

    $ow far apart t$e (ines are.

    h

    incident

    re>ected

     !$e incident and re>ected waves represent an eactso('tion to Mawe((s e2'ations on t$e innite (ine4 at an%fre2'enc%.

    ( )$1

    'Re H 02

     & d$  ρ   = × × = ÷  ∫ 

    No atten'ation on an innite (oss(ess (ine

    80

    Limitations o ransmission!Line #eorB (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    81/82

    & discontin'it% on t$e twin (ead wi(( ca'se radiation to occ'r.

    Note+ Radiatione?ects increase as

    t$e fre2'enc%increases.

    h

    =ncident wavepipe

    8stac(e

    Re>ected wave

    end h

    =ncident wave

    end

    Re>ected wave 81

    Limitations o ransmission!Line #eorB (cont)*

  • 8/20/2019 Notes 1 - Transmission Line Theory

    82/82

     !o red'ce radiation e?ects of t$e twin (ead at

    discontin'ities+

    h

    1* Red'ce t$e separation distance h (keep h 11 λ ).