17
Notes for Remote Sensing of the Cryosphere Nick Barrand School of Geography, Earth and Environmental Sciences University of Birmingham RS 1: PRINCIPLES OF VISIBLE AND RADAR REMOTE SENSING AND SENSORS 1. Overview Over the past several decades, remote sensing has increasingly become a crucial resource for glaciologists. New technologies, algorithms, and processing methodologies, along with a coincident rise in the number and quality of Earthobserving sensors have revolutionised our ability to observe and to understand the cryosphere. The goal of this document (and of this series of lecture materials) is to introduce the topic of remote sensing of the cryosphere, and particularly remote sensing of glaciers. It will begin by introducing remote sensing (lecture 1: Principles of visible and radar remote sensing and sensors). The second section will describe the derivation of several important glaciological and physical parameters from remote sensing data (lecture 2: Deriving glaciological products from remote sensing). The final section describes the derivation of geodetic glacier mass balance from remote sensing data (lecture 3: Glacier mass balance from remote sensing). It is hoped that these materials will offer a primer in glaciological remote sensing, and that the references included herein will provide further comprehensive information to the reader. 2. Remote sensing: defined Remote sensing can be briefly defined as ‘The art and science of gathering information about an object without being in contact with it’ (David J. Schneider, MTU), or more technically as ‘the use of instruments or sensors to capture the spectral and spatial relations of objects and materials observable from a distance – typically from above them’. The components of a remote sensing system include: i) an energy source, ii) radiation and atmospheric interactions, iii) interaction with the target, iv) the energy recorded by the sensor, v) tranmission, recording and processing of that energy / signal, vi) interpretation and analysis, and vii) application of the information recorded (Figure 1) Figure 1: Primary components of a remote sensing system

Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

Notes  for  Remote  Sensing  of  the  Cryosphere    

Nick  Barrand  School  of  Geography,  Earth  and  Environmental  Sciences  

University  of  Birmingham        RS  1:  PRINCIPLES  OF  VISIBLE  AND  RADAR  REMOTE  SENSING  AND  SENSORS    1.  Overview    Over   the   past   several   decades,   remote   sensing   has   increasingly   become   a   crucial  resource  for  glaciologists.  New  technologies,  algorithms,  and  processing  methodologies,  along  with  a  coincident  rise  in  the  number  and  quality  of  Earth-­‐observing  sensors  have  revolutionised  our  ability  to  observe  and  to  understand  the  cryosphere.  The  goal  of  this  document   (and   of   this   series   of   lecture  materials)   is   to   introduce   the   topic   of   remote  sensing  of   the  cryosphere,   and  particularly   remote   sensing  of  glaciers.   It  will  begin  by  introducing   remote   sensing   (lecture   1:   Principles   of   visible   and   radar   remote   sensing  and   sensors).   The   second   section   will   describe   the   derivation   of   several   important  glaciological   and   physical   parameters   from   remote   sensing   data   (lecture   2:   Deriving  glaciological  products   from  remote  sensing).  The   final  section  describes   the  derivation  of   geodetic   glacier   mass   balance   from   remote   sensing   data   (lecture   3:   Glacier   mass  balance   from   remote   sensing).   It   is   hoped   that   these  materials   will   offer   a   primer   in  glaciological   remote   sensing,   and   that   the   references   included   herein   will   provide  further  comprehensive  information  to  the  reader.      2.  Remote  sensing:  defined    Remote   sensing   can  be  briefly  defined  as   ‘The  art  and  science  of  gathering  information  about   an   object   without   being   in   contact   with   it’   (David   J.   Schneider,   MTU),   or   more  technically   as   ‘the   use   of   instruments   or   sensors   to   capture   the   spectral   and   spatial  relations   of   objects   and   materials   observable   from   a   distance   –   typically   from   above  them’.   The   components   of   a   remote   sensing   system   include:   i)   an   energy   source,   ii)  radiation   and   atmospheric   interactions,   iii)   interaction  with   the   target,   iv)   the   energy  recorded  by  the  sensor,  v)  tranmission,  recording  and  processing  of  that  energy  /  signal,  vi)  interpretation  and  analysis,  and  vii)  application  of  the  information  recorded  (Figure  1)                                

Figure  1:  Primary  components  of  a  remote  sensing  system  

Page 2: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

3.  Electromagnetic  radiation    Remote   sensing   relies   on   transmitted   and   recorded   electromagnetic   radiation,   energy  derived  from  oscillating  magnetic  and  electrostatic  fields.  Of  particular  importance  is  the  electromagnetic  spectrum  (Figure  2),                                                        Each  interval  of  the  spectrum  makes  up  a  band,  or  channel,  by  a  colour  (if  in  the  visible  part   of   the   spectrum),   a   descriptive   label   (e.g.   near   infra-­‐red),   or   a   specified   range   of  wavelengths.  Subdivisions  of   the  spectrum  have  been  established  for  convenience  (e.g.  microwaves,   of  wavelengths  ~1  mm   to  ~1  m).  Most   remote   sensing   systems   operate  between  wavelengths  of  0.1  um  to  1  m.      The  source  of  electromagnetic  energy  is  either  reflected  solar  radiation  or  the  radiation  emitted   by   objects   (known   as   passive   remote   sensing),   or   a   a   system   with   it’s   own  energy   source   (known   as   active   remote   sensing   –   examples   include   radar,   laser   and  flash  photography).  Energy  interacts  with  the  atmosphere,  and  the  surface,  being  either  absorbed,  relflected  or  redirected.      Different  surface  types  have  particular  reflectance  signatures,  which  describe  how  much  energy  is  absorbed  or  reflected  in  different  areas  of  the  spectrum  by  the  material.  Fresh  snow  reflects  most   incident   radiation,  along  a   range  of  wavelength,  while  dirty  glacier  ice  absorbs  much  more  incident  radiation.        4.  Sensors    Most  remote  sensing  systems  operating  in  the  visible  and  near  infra-­‐red  (VNIR)  parts  of  the   spectrum   operate   either   as   whiskbroom   (across-­‐track   scanning)   or   pushbroom  (along-­‐track  scanning)  instruments  (Figure  3).      

Figure  2:  The  electromagnetic  spectrum  

Page 3: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

                                   Some   sensors   have   the   ability   to   point   with   offers   advantages   such   as   higher   repeat  frequency,   and   stereo   viewing   capability.   Spaceborne   sensor   orbits   include   polar  orbiting,   sun   synchronous   and   ascending   /   descending.   Every   satellite   has   a   distinct  orbit  /  repeat  schedule.      Sensor  resolution  refers  to  the  ability  to  discriminate  information  and  includes  several  aspects:  

o SPATIAL   :   minimum   separation   at   which   objects   appear   independent   and  isolated  

o SPECTRAL  :  number  of  sensor  bands  &  associated  spectral  bandwidths  o RADIOMETRIC  :  Sensitivity  (range  of  values  coded)  of  the  sensor  o TEMPORAL  :  Observation  frequency  

 Figure  4   shows   some   typical   sensors   and  platforms  operating   in   the  visible   (and  near  visible)  parts  of  the  spectrum                                                

Figure  3:  Whisk  and  pushbroom  sensors  types  

Figure  4:  Common  VNIR  sensor  systems  

Page 4: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

5.  Common  RS  systems  for  observing  the  cryosphere    The   following   sections   introduce   the   most   common   remote   sensing   systems   for  observing  the  cryosphere.  This  list  is  not  comprehensive  and  several  more  may  be  used.      

1. Aerial  photography    Aerial  photography  is  perhaps  the  most  traditional  and   longest  used  system  of  remote  sensing.  It  consists  in  the  analogue  form  of  a  photochemical  reaction  of  the  exposure  of  silver   halide   crystal   ‘grains’   in   suspension,   into  metallic   silver.   Chemical   development  then   results   in   a   photo   negative   from   which   further   processing   is   possible.   In   this  instance  the  film  is  the  detector  and  the  film  and  filters  determine  the  spectral  response.  Aerial  photography  is  capable  of  very  high  geometric  fidelity,  and  is  increasingly  digital.      

2. Electro-­‐optical  visible  and  near  infra-­‐red    Employs   a   similar   spectral   range   (V   to   NIR)   as   air   photos,   but   instead   has   a   digital  detection  mechanism   consisting  of   calibrated  photodiode   arrays.  This   supports   a   fully  digital  processing  stream.  This  technology  is  commonly  deployed  from  both  aircraft  and  satellites.  The  ground  resolution  is  limited  by  the  detector  resolution,  and  flying  height.  The   majority   of   sensors   operate   in   several   spectral   bands   (multispectral),   although  some   may   operate   in   very   many   bands   (hyperspectral).   The   field   of   view   of   such  instruments,  from  spaceborne  platforms,  ranges  from  10s  and  1000s  of  km.  The  longest  continously   running   program   of   electro-­‐optical   VNIR   sensors   is   the   Landsat   program,  which  began  in  1972  and  continues  to  this  day  with  the  current  Landsat  8.      Other  popular  sensors  include  the  SPOT  constellation,  ASTER,  and  MODIS.      

3. Thermal  infra-­‐red    Thermal   infra-­‐red  radiation  (~8  to  14  um)  forms  a  major  part  of  black-­‐body  radiation  emitted   at   terrestrial   temperatures.   This   make   it   useful   for   detecting   Earth   (&   sea)  surface   temperatures.   It   does   not   detect   reflected   sunlight   nor   penetrate   clouds   yet  tends  to  have  coarser  spatial  resolution  than  VNIR  imagery,  at  longer  wavelengths.  Both  ASTER   and   MODIS   have   TIR   capability   yet   the   primary   TIR   imager   is   the   Advanced  Along-­‐Track  Scanning  Radiometer  (AATSR).      

4. Laser  ranging  (altimetry)    Laser   ranging,   or   laser   altimetry   is   an   active   remote   sensing   method   for   measuring  Earth  surface  topography.  It  works  by  a  system  emitting  a  NIR  pulse,  a  clock  is  started,  the  pulse   travels,   reflects,   and   returns,   and   is   then  detected  by  photodiode.   The  pulse  detection  stops  an  internal  clock,  with  the  propagation  speed  two-­‐way-­‐travel  time,  then  means   that   range   (or   distance)   to   the   surface   can   be   determined.   This   method   can  achieve  extremely  high  vertical  resolution.  Spaceborne  sensors  include  the  Geosciences  Laser  Altimeter  System  (GLAS)  on  ICESat  (2003-­‐2010),    and  the  planned  ICESat-­‐2  (due  for  launch  March  2016).      

5. Radar  altimetry    Radar  altimetry  is  conceptually  similar  to   laser  altimetry  (LA)  (being  an  active  ranging  method).  This  techniques  however  employs  microwave  radiation  (~10  GHz  frequency)  with  one  key  operational  difference  being  its  capability  to  observe  through  clouds  (due  to   the  wavelength  of  microwaves).  TWTT  and  structure  of   returned  pulse   (waveform)  are   recorded,   which   include   information   on   the   surface   roughness   and/or   scattering.  

Page 5: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

Dry  surface  snow  may  absorb  radar  energy  and  slope   induced  errors  are  of  particular  importance  for  this  method.  A  0.5°  slope  can  result  in  up  to  8  km  error  in  x,y  and  40  m  in  z  from  space.      

6. Passive  microwave    Passive  microwave   remote   sensing  detects  black-­‐body   radiation  between  wavelengths  3-­‐6   mm.   It   is   therefore   able   to   penetrate   through   clouds   –   very   useful!   The   longer  wavelengths  detected  by   its  beam-­‐scanning  antenna  results   in  coarser  resolution  data,  usually  on  the  order  of  tens  of  km  per  pixel.  A  1  m  antenna  length  (wavelength  2  cm)  =  14   km   ground   resolution.   Spectral   resolution   is   typically   low,   15-­‐35   GHz,   and   the  brightness  temperature  of  surface  emission  is  recorded.  The  method  is  veru  sensitive  to  abrupt  backscatter  change  resulting  from  phase  change  of  water  –  useful  for  snowmelt  monitoring.  Figure  5  shows  the  details  of  some  common  passive  microwave  sensors.  

     

7. Imaging  radar    Imaging   radar   utilises   side-­‐looking   or   multi-­‐angled   antennas   to   determine   angular  dependence   of   microwave   backscatter.   These   systems   are   often   known   as   ‘real-­‐aperture’   or   ‘side-­‐looking’   radars.   They   utilise   active   ranging   so   are   independent   of  illumination,  and  microwave  so  independent  of  clouds  (&  mostly,  atmospheric  effects).      

8. Synthetic  aperture  radar    Synthetic  aperture  radar  (SAR)  is  defined  by  the  relative  motion  between  antenna  and  target.  Long-­‐term  coherent  signal  variations  are  used  to  obtain   finer  spatial  resolution  imagery.  A  single  antenna  repeatedly  targets  a  scene  and  then  waveforms  from  different  antenna  positions  are  received,  stored  and  processed.      The  following  table  (Figure  6)  shows  current,  previously  operating,  and  future  planned  SAR  sensors.    

Instrument   Satellite   Years   Spatial  res  (km)  

Frequency  (GHz)  

Swath  width  (km)  

Max.  latitude  (deg)  

SMMR  SSM/I  AMSR/E  

Nimbus  7  DMSP  Aqua  

1978-­‐  1988  1987-­‐  2002-­‐  

136  x  89  87  x  57  54  x  35  47  x  30  28  x  18  70  x  45  60  x  40  38  x  30  16  x  14  74  x  43  51  x  30  27  x  16  31  x  18  14  x  8  6  x  4  

6.6  10.7  18.0  21.0  37.0  19.35  22.24  37.0  85.5  6.93  10.65  18.7  23.8  36.5  89.0  

780  1400  1445  

84.2  87.5  88.3  

Figure  5:  Common  passive  microwave  sensors.  

Page 6: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

                                                 RS2:  DERIVING  GLACIOLOGICAL  PRODUCTS  FROM  REMOTE  SENSING  DATA    1.  Overview    These   notes   will   describe   how   principle   glaciological   and   physical   variables   are  extracted  from  remote  sensing  data.  While  other  variables  are  available,  the  focus  of  this  section  will  be  on  derived  outlines  and  glacier  extents,  structures,  snow  and   ice   facies,  surface   topography,   albedo,   surface   temperature,   accumulation   and  melting.   Elevation  changes   (and   subsequent   geodetic   mass   balance)   will   be   treated   in   greater   depth   in  section  ‘RS3:  Glacier  mass  balance  from  remote  sensing’.      2.  Outlines  and  extents    Glacier   outlines   can   be   produced   with   manual   delineation,   or   automated   and   semi-­‐automated   approaches.   Manual   digitisation,   by   it’s   very   nature,   is   reliant   on   the   skill  level,   judgement  and  experience  of  the  user.  Automated  delineation  aims  to  reduce  the  work  necessary  to  produce  outlines,  and  provide  a  more  objective,  rule-­‐based  outcome.      Especially   when   using   VNIR   image,   an   image   processing   /   display   procedure   called  compositing  is  very  useful.  A  composite  image  is  the  result  of  combining  multiple  image  bands   (3)   to   produce   a   single   colour   image.     This   is   done   in   order   to   better   discern  features  on  the  ground.  How?  Your  computer  uses  R,  G,  B  to  show  colours  on  the  screen.  Using   different   combinations   of   RGB,   creates   many   different   colour   possibilities.   The  false-­‐colour   composite   which   works   best   for   delineating   snow   and   ice   is   (Landsat)  bands  543,  displayed  in  the  red  green  and  blue  channels,  respectively.      Snow  cover  can  be  mapped  using  a  normalised  difference  of  2   image  bands  known  as  the   Normalised   Difference   Snow   Index   (NDSI).   The   normalised   difference   of   these   2  bands  (1  in  V,  1  in  NIR  or  SWIR)  utilises  the  fact  that  snow  is  highly  reflective  in  V,  yet  highly  absorptive  in  NIR  and  SWIR.    

Figure  6:  Common  SAR  sensors  

Page 7: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

     NDSI  works  by  using  the  equation  above,  and  a  threshold  approach  (e.g.  0.4).  It  should  be  noted  however,  that  this  threshold  is  seasonably  and  regionally  variable.      The  workflow  to  automated  glacier  mapping  is  summarised  by  Figure  7  (Paul,  2004).                                                              Overlaying   of   binary   glacier,   vegetation,   and   slope   maps   allows   a   coarse   glacier  classification   resulting   in   classes   for   debris,   glacier   and   debris   not   connected   to   the  glacier.   These   sorts   of   approaches   work   reasonably   well   for   glacier   ice   and   snow  covered  glaciers  but  have  difficulties  with  debris-­‐covered  ice.  Further  manual  editing  is  usually  required.      3.  Structural  glaciology    Remote  sensing  data  can  greatly  aid   in  structural  glaciology  due   to   its  ability   to   image  large,   remote   and   inaccessible   areas   (e.g.   crevasse   fields).   Figure   8   shows   a   satellite  image   of   Wilkins   ice   shelf,   Antarctic   Peninsula,   and   the   corresponding   structural  glaciological  map  of  surface  features.                  

Figure  7:  Workflow  for  automated  glacier  mapping  utilising  NDSI,  hue,  image  ratios,  DEM  slopes  and  accounting  for  debris  cover  (Paul,  2004).    

Page 8: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

                                       4.  Snow  and  ice  facies    The  SAR  backscatter  from  snow  and  glacier  surfaces  is  dependent  on  various  variables,  including   liquid  water  content,  grain  size  and   layering,  surface  roughness,  wavelength,  polarisation,  incident  angle,  and  more.  The  ability  of  radar  band  penetration  into  snow  means   that   snow   and   ice   surface   facies   may   be   mapped   according   to   their  corresponding  ‘radar  glacier  zones’.      The  dry  snow  radar  zone  (-­‐14  to  -­‐20  dB)  corresponds  approximately  to  the  glaciological  dry   snow   zone.   The   frozen   percolation   radar   zone   (0   to   -­‐8   dB)   corresponds   to   the  glaciological  percolation  zone,  plus  some  of  the  wet  snow  zone.  The  wet  snow  and  bare  ice  radar  zone,  correlate  well  with  their  glaciological  counterparts.  This  discrimination  of  facies  allows  mapping  of  snow  and  ice  zones  over  very  large  areas  with  imaging  and  synthetic  aperture  radar.      5.  Topography    

a. Photogrammetry:      Photogrammetry  is  the  process  of  determining  the  geometric  properties  of  objects  from  photographic   or   stereo   images.   It   can   include   interpretive,   metric   and   stereo   (3D)  photogrammetry  and   involves  reconstructing   the  geometric  relationship  between   film,  camera   and   ground   at   time   of   image   capture.   A   2D   image   space   coordinate   system   is  transformed   to   a   3D   object   space   coordinate   system   utilising   a   mathematical   back-­‐calculations  known  as  a  bundle  adjustment.  This  process  is  used  to  generate  the  image  space  coordinates  of  the  camera  centre,  from  known  ground  coordinates.  In  the  case  of  satellite   sensors   with   accurately   known   positions,   ground   space   three   dimensional  coordinates   are   calculated   through   trigonometric   calculations   utilising   the   parallax  between  two  images  of  the  same  scene  taken  from  different  positions.      

b. Photoclinometry    Photoclinometry  provides  an  alternative  to  stereo  photogrammetry  for  VIR  imagery.   It  assumes   a   uniform   Bidirectional   Reflectance   Function   (BDRF)   such   that   variations   in  radiance  detected  by  the  sensor  are  solely  due  to  variations  in  viewing  geometry.  When  

Figure  8:  SAR  image  and  corresponding  structural  glaciological  map  of  Wilkins  ice  shelf  (images  courtesy  of  Matthias  Braun).    

Page 9: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

the  image  illumintion  (sun)  is  constant  –  variations  in  radiance  are  due  to  surface  slope  :  surfaces  facing  the  sun  are  brighter.  This  is  expressed  mathematically  by  D  =  A  cosθ  +  B  where  D  is  image  brightness,  θ  is  angle  between  surface  normal  and  solar  direction,  and  A,  B  are  constants  derived  from  known  ground  points.      

c. Altimetry    Altimetry  will   be   dealt  with   in  more   detail   in   RS3:   Glacier  mass   balance   from   remote  sensing.      6.  Physical  variables  :  albedo    Remote   sensing   can  be  used   to  derive   albedo  by  defining  planetary   reflectance   as   the  ratio   between   radiance   at   sensor   and   solar   irradiation   in   a   given   spectral   band.  planetary  reflectance  R  is  computed  by            where   L   is   measured   radiance,   Esun   solar   irradiance,   and   θ   sun   zenith   angle.   This  calculation   should  be   corrected   for   atmospheric   transmission   effects,   topography,   and  other  effects.      7.  Physical  variable  :  surface  temperature    Surface  temperature  can  be  derived  from  thermal  infra-­‐red  (TIR)  data  (e.g.  from  MODIS  or  AVHRR  sensors).  Following  the  form        where   T11   and   T12   are   brightness   temperatures   in   each   band,   and   a,b,c   are   empirical  constants  obtained  by  regression  with  surface  measurements.  This  approach,  however,  should  be   corrected   for   atmospheric  propagation,   clouds  may  need   to  be   filtered,   and  other  algorithms  developed  for  oblique  viewing  angles  /  multi-­‐look  techniques.      8.  Physical  variables  :  velocity    a)  Feature-­‐tracking    Feature   tracking   is  posisble  by   locating  and   tracking   the  position  of   features   in   repeat  imagery.   This   features   may   be   crevasses,   foliations,   large   boulders   or   moraines.   It  requires   good   image-­‐to-­‐image   registration   and   can   utilise   manual   or   image   cross-­‐correlation.   The  methods  work  well   for   small   glaciers   which   are   relatively   snow-­‐free  during   summer   so   have   good   image   texture,   have   exposed   rock   surrounding   ice   for  image   registration,   and   may   be   faster   flowing   glaciers,   often   heavily   crevassed.   The  approach  is  less  effective  for  large  areas  such  as  ice  sheet  interiors.      Automated   feature   tracking   uses   algorithms   designed   to   use   image   chips   to   search  through   image   data;   a   chip   size   is   selected,   step   size   and   previous   filtering,   then   a  correlation   function   is   returned  per  chip.  The  process  results   in   image  motion   in  E-­‐W,  and   N-­‐S   directions,   magnitude,   and   angles.   Also,   a   SNR   image   may   be   provided   for  quality  judgement  (see  Figure  9).        

Page 10: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

                                                 b)  Interferometric  SAR  (InSAR)    InSAR   exploits   differences   in   phase   of   returned   signal   from   2+   sensor   positions   (e.g.  Figure   10).   Phase   differences   result   from   fraction   of   wavelength   differences   in   pulse  travel  time  which  provide  a  parallax  due  to  topography  &  shift  in  location  of  scatterers  due  to  motion.                                              The   InSAR   processing   stream   is   characterised   by   two   image   pairs,   exploitation   of   the  phase  difference   in  both   image  pairs   to  create  an   interferogram,  removal  of  horizontal  displacement  by  ‘double  differencing’  one  of  the  image  pairs,  to  provide  topography  and  

Figure  9:  SAR  image  and  components  of  feature-­‐tracking  algorithm  (images  courtesy  of  Matthias  Braun).    

 

Figure  10:  Schematic  diagram  illustrating  the  principle  of  InSAR  image  acquisition  (image  courtesy  of  Matthias  Braun).    

Page 11: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

vertical   displacement.   Combining   with   a   DEM   can   remove   the   topographic   signal,   if  desired.   InSAR   processing   has   the   following,   brief,   advantages   and   disadvantages  (among  others):    advantages    

o Highly  sensitive  (m  in  z,  cm-­‐mm  in  x,y  over  large  areas)  o works  in  textureless  areas  o high  density  data  o active  radar  so  high-­‐resolution  data  over  large  areas  irrespective  of  solar  

illumination  or  clouds  limitations  

o requires  pulse  coherence  o decorrelation  possible  o requires  starting  point  if  areas  of  0  movement  o Penetration  of  SAR  signal  

 c)  Intensity  and  speckle    SAR  intensity  tracking  uses  a  similar  procedure  to  feature-­‐tracking  in  optical  imagery.  It  utilises  the  intensity  of  radar  backscatter  to  produce  a  direct  2D  displacement  field.  This  has   the  advantage  of  being  computationally  simpler   than   InSAR.  Speckle-­‐tracking  uses  image   ‘chips’  and  fringe  rate  or  coherence  to  determine  displacement.   It  works  well   in  absence  of  visible  features  or  fast-­‐moving  ice  and  can  thus  be  considered  complimentary  to  InSAR.      9  Physical  variables  :  accumulation    Accumulation  from  remote  sensing  data  is  based  on  the  idea  of  an  empirical  relationship  between   thermal   microwave   emissivity   and   in   situ   accumulation   rates.   Authors   have  used  AMSR-­‐E  radiometer  data  at  6.9  GHz  (4.3  cm  wavelength).  Two  channels  measure  horizontal   and   vert.   polarisation   and   the   polarisation   ratio   decreases   as   accumulation  increases.      10.  Physical  variables  :  melt    Microwave   data   can   be   used   to   derive   snow   facies   (as   shown   previously).   Due   to   the  strong  backscatter  response  due  to  phase  change  of  water  (solid  –  liquid),  it  can  also  be  used  to  infer  snowmelt  conditions  (Figure  11).                                       1-

7-20

001-

8-20

001-

9-20

001-

10-2

000

1-11

-200

01-

12-2

000

1-1-

2001

1-2-

2001

1-3-

2001

1-4-

2001

1-5-

2001

1-6-

2001

1-7-

2001

1-8-

2001

1-9-

2001

1-10

-200

11-

11-2

001

1-12

-200

11-

1-20

021-

2-20

021-

3-20

021-

4-20

021-

5-20

021-

6-20

02

-25

-20

-15

-10

-5

0

σ0 (d

B)

-50

-40

-30

-20

-10

0

10

T i (o C

)

Figure  11:  Relationship  between  daily  surface  air  temp  and  microwave  backscatter  through  two  melt  seasons  at  Larsen  C  ice  shelf,  Antarctica.    

Page 12: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

This  approach  works  by  utilising  daily  microwave  backscatter  images  (e.g.  SMMR,  SSMI,  QSCAT).  A  winter  mean  normalised  backscatter  threshold  approach  is  applied  pixel  by  pixel  e.g.              where  σ0  is  daily  pixel  backscatter,                is  winter  mean  backscatter  preceding  each  melt  season,  and  b  is  a  threshold  constant  (=3  dB).  The  approach  identifies  a  ‘wet’  snowpack  based   on   backscatter   difference   from   reference   ‘dry’   state,   and   can   be   used   to   derive  spatial  maps  of  melting,  and  when  the  time-­‐series  is  long  enough,  correlate  melting  with  atmospheric  and  climate  variables.                  RS3:  GLACIER  MASS  BALANCE  FROM  REMOTE  SENSING    1.  Overview    The  following  notes  describe  the  acquisition,  processing  and  analysis  of  remote  sensing  data   to  measure   glacier  mass   balance.   Focus   is   primarily   on   the   analysis   of   elevation  data   to   calculate   the   geodetic   (or   map-­‐based,   or   altimetric-­‐)   mass   balance.   The  fundamentals   of   geodetic  mass   balance  will   be   introduced,   followed  by   platforms   and  methods   of   data   collection,   calculations   of   elevation   change   and   corrections.   The  conversion   of   elevation   change   to   volume   change   to   mass   change   will   be   then   be  introduced,   along  with   assumptions   of   the   approach,   errors,   and  methods   of   regional  extrapolation.      Why  measure  glacier  elevation  change?    

o good  spatial  sampling  o coarse  temporal  sampling  o calculate  volume  change  o ice  dynamics  o sea-­‐level  rise  o proxy  for  climate  change  o can  have  small  uncertainty  bounds  o independent  measurement  of  mass  balance  

 Some  words  of  caution  should  be  mentioned.  It  is  possible  to  have:    

o changes  in  volume  without  a  corresponding  change  in  mass    o changes  in  ice  discharge  without  corresponding  changes  in  elevation,  or  volume..  o changes  in  mass  without  changes  in  sea  level..  

         A  change  in  volume  may  not  equal  a  change  in  mass  due  to  the  concept  of  the  ellipsoid  and  the  geoid.  The  ellipsoid  is  a  smooth  elliptical  model  of  the  Earth’s  surface,  the  geoid    an   equipotential   surface   that  mean   sea-­‐level   follows.  As   the  height   of   geoid   above   (or  

Page 13: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

below)  ellipsoid  varies  around  the  Earth,  there  are  uncertainties  in  the  reference  frame  of   any  elevation  measurements.  Glacio-­‐isostatic   adjustment   (the  viscous   change   in   the  Earth’s  geoid  is  response  to  LGM  glaciation  can  result  in  rapid  uplift  rate,  control  point  errors   and   geoid   /   ellipsoid   transformation   errors.  All  must   be   accounted   for   prior   to  calculating  elevation  change  of  ice  from  geodetic  data.      2.  Fundamental  of  geodetic  mass  balance    At  a  specific  point        where  h-­‐dot  is  the  rate  of  change  of  ice  surface  elevation,  b  is  the  mass  balance,  and  q  is  the  ice  flux  per  unit  cross  sectiob  of  the  glacier.      Glacier-­‐wide  mass  balance  is  therefore            where  a(z)  is  the  glacier’s  area-­‐altitude  distribution  function  and  Z  is  the  elevation  range  of  the  glacier.  Alternatively,            where  pi   is   the  average  material  density   required   to  obtain  mass  balance.  h-­‐dot   and  b,  when   integrated  over   the  entire  glacier  basin,   yield  glacier-­‐wide  mass  balance.  This   is  because                            (the  flux  divergence  term)  sums  to  zero  over  the  entire  basin.      3.  Platforms  and  data  collection    The   following   typically   used   platforms   and   methods   of   data   collection   are   used   in  glaciology   to   derive   geodetic   measurements,   and   to   further   calculate   geodetic   mass  balance:    

a. Stereoscopic  imagery    Including   air   photos,   SPOT   and  ASTER   satellite   data.   Elevation   information   is   derived  from  the  parallax  displacement  of  same  object  from  different  locations.  To  calculate  3D  ground  space  coordinates,  the  position  of  the  sensor  is  required  relative  to  the  reference  plane.   3D   coordinates   of   ground   features   are   then   back-­‐calculated.   The   solution  improves  with  GCPs,  yet  the  method  relies  on  surface  texture  for  image  matching    

b. Laser  altimetry    The  basic  principles  of  laser  altimetry  are  as  follows  (see  also  Figure  12).  The  distance  between   the   sensor  and  surface   is  determined  by   the   travel   time  of   a   laser  pulse.  The  sensor   position   is   known   from  either   differential   GPS   (air)   or   star   trackers   (satellite).  The  attitude  of  the  sensor  is  derived  from  an  inertial  navigation  system  (INS).  Different  altimeters  include  

o nadir-­‐pointing  vs  scanning  laser  o scanning  laser  :  different  ways  to  distribute  the  measurement  (conical,  nutating  

mirrors)  o different  scanning  frequencies  o first  return,  first-­‐last,  full  waveform  

Page 14: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

                                                   Some   common   airborne   laser   altimetry   (lidar)   systems   used   in   cryospheric   remote  sensing   include   the   University   of   Alaska   laser   altimeter   (20   Hz   nadir   laser   (1993   –  2007),   10,000   Hz   scanning   laser   (2009   –   present),   few   hundred   m   altitude,   ~1   m  footprint),   the   NASA   Airborne   Topographic   Mapper   (ATM,   5000   Hz   laser   altimeter  (1990s   –   present),   Maximum   1   km   altitude,   3   m   footprint),   the   UK   NERC   Airborne  Research   and   Survey   Facility   instrument   (ARSF,   Optech   ALTM3033,   ~1000   m   flying  height,   swath   scanning,   33000  Hz   pulse   rate,   ~10   cm   footprint),   and   the   NASA   Land,  Vegetation  and  Ice  Sensor  (LVIS,  swath  scanning  altimeter,  high  altitude  (10  km),  swath  footprint  (20  km)).      NASA  Geoscience  Laser  Altimeter  System  (GLAS)  onboard  ICESat  (2003-­‐2010)  was  the  only  spaceborne   laser  altimeter   for  observing   the  Earth’s   surface   (decimeter  elevation  accuracy,   near-­‐repeat-­‐track   profiles,   can   be   differenced  where   slopes   are   low,   steeper  slopes   (glaciers   and   ice   caps)   errors   due   to   cross-­‐track   slope   may   be   larger   than  elevation  change  signal).  ICESat-­‐2  is  planned  for  launch  in  March  2016.      3.  Corrections      Prior  to  differencing  elevation  data,  the  following  corrections  may  need  to  be  applied:  

1. Co-­‐registration  2. Cross-­‐track  slope  3. Spatially-­‐correlated  biases  4. Elevation-­‐dependent  biases  5. Others  

 4.  Elevation  differencing    1.  Altimetry  vs  map  /  DEM    

Figure  12:  Components  of  an  aircraft  laser  altimetry  system.    

Page 15: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

The   following   steps   explain   this   process:   1)   digitise   glacier   outlines,   2)   difference  elevations   to   calculate   dh/dt,   3)   extract   glacier   hypsometry   using   outlines   and   DEM  (area  per  elevation  bin),  4)  parameterise  dh/dt  as  a  function  of  elevation          2.  DEM  vs  DEM    Two  DEMsm  from  different  times.  Simple  raster  differencing  of  the  two  grids,  provided  that  they  are  correctly  geolocated.  No  extrapolation  is  required  and  volume  change  can  be  calculated  from  pixel  summation,  following:            where  B   is   total  volume  change,   lp   is   the  DEM  grid  spacing,  A   is   the  glacier  area   in   the  earlier  DEM  surface,  and  delta  h  is  the  difference  model.      3.  Altimetry  vs  altimetry    This  can  be  best  described  Figure  13  (courtesy  A.  Arendt)                                                              5.  Elevation  change  errors    

Figure  12:  Procedure  for  measuring  elevation  change  from  repeat  altimetry  data  (A.  Arendt)    

Page 16: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

Errors  can  be  determined  by  examining  the  scatter  in  full  geodetic  map  (DEM  –  DEM)  of  elevation  change,  as  a  function  of  elevation.  This  approach  determines  the  statistics  on  extrapolation  errors.  Reasons  for  errors  in  centreline  altimetry  may  include:      

o glaciers  do  not  thin  in  steps  (or  bins)  o debris  cover  at  the  margins?  o main  glacier  branch  does  not  represent  other  branches?  o advection  of  turbulent  energy  from  valley  sides?  

 6.  Volume  to  mass  change    Volume  –  mass  conversions  are  complicated  by  changes  in  near-­‐surface  density  (Figure  13).   In   a   dry   snow   zone   accumulation   and   temperature   are   constant,   so   Sorge’s   law  holds  true  (that  the  density  depth  profile  remains  constant.  However,  this  is  rarely  the  case,   and   density  must   be  measured,  modelled,   or   assumed.   For   the   ice   sheets,   small  variations  in  density  may  mean  large  variations  in  mass  balance.  Densifications  models  require  a  physics-­‐basis  and  coupling  with  regional  climate  models.                                                            7.  Regional  extrapolation    Regional   extrapolation   of   elevation   changes   may   be   done   by   calculating   an   average  thinning   rate  over   elevation  bands,  upscaling   that   rate   to   the  hyposometry  of   a   larger  glaciated  area,  and  multiplying  by  the  surface  area  of  unmeasured  glaciers  to  give  a  total  regional   volume   change   (e.g.   Arendt   et   al,   2006).   However,   in   regions   with   many  different   types   of   glaciers   (land-­‐terminating,   lake   /   tidewater-­‐terminating)   it   may   be  more   appropriate   to   extrapolate   area-­‐averaged   mass   balance,   rather   than   elevation  changes  (Arendt  et  al.,  2006).      

Figure  13:  Changes  in  near-­‐surface  density  profile  between  times  t1  and  t2,  where  t2  is  warmer  than  t1  (image:  A.  Arendt).    

Page 17: Notes Barrand RemoteSensGlaciers...Notes&for&Remote&Sensing&of&the&Cryosphere& & Nick&Barrand& School&of&Geography,&Earth&and&Environmental&Sciences& University&of&Birmingham& & &

REFERENCES    Arendt,   A.   et   al.   (2006)   ‘Updated   estimates   of   glacier   volume   changes   in   the   western  Chugach   Mountains,   Alaska,   and   a   comparison   of   regional   extrapolation   methods.’   J.  Geophys.  Res.  doi:10.1029/2005JF000436.      Cuffey,  K.M.  &  Paterson,  W.S.B.,  2012.  Physics  of  Glaciers.  4rd  Edition,  Elsevier  Science  Ltd.  480  pp.    Lillesand,  T.,  Kiefer,  R.W.  &  Chipman,  J.  2008.  Remote  Sensing  and  Image  Interpretation.  John  Wiley  &  Sons,  768  pp.      Paul,  F.,  Huggel,  C.  and  Kääb,  A.  (2004):  Combining  satellite  multispectral  image  data  and  a   digital   elevation   model   for   mapping   of   debris-­‐covered   glaciers.   Remote   Sensing   of  Environment,  89  (4),  510-­‐518    Rees,  W.G.  2005.  Remote  Sensing  of  Snow  and  Ice.    CRC  Press,  312  pp.      WEBSITES    http://arsf.nerc.ac.uk/    http://lvis.gsfc.nasa.gov/    https://airbornescience.nasa.gov/instrument/ATM    http://fairweather.alaska.edu/chris/altimetry_text.html