24
Developing Novel ICT Infrastructure for Largescale Transmission System Operation Prof Gary Taylor, Brunel University London, UK

Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Developing Novel ICT Infrastructure for Large‐scale Transmission System Operation

Prof Gary Taylor, Brunel University London, UK

Page 2: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Overview 

Evolution of UK Energy Sector

GB Transmission System Case Studies1. Performance Evaluation of ICT 

Infrastructure Required for WAMS Implementation 

2. Massively Scalable PMU Data Storage and Analysis 

Page 3: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

3

Increasing Increasing ResourceResource UK committed to 80% of all energy 

coming from renewable sources by 2050

Major contribution from onshore Wind Energy 2014 ≡ 7.5 GW (operational)

Significant  contribution from Offshore Wind Energy 2010 ≡ 1.3 GW 2014 ≡ 3.6 GW 2020 ≡ 12‐18 GW?

UK Wind Energy Resource

Page 4: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

4

Transmission Flowsfrom predictable to highly dynamic

Generally unidirectional Reasonably predictable

Variable in directionalTime varying   Difficult to predict

2000s 202020202010

Page 5: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

West Coast HVDC

• £1bn project– 600KV– 420km under sea cable

• 2.4 GW capability – Operational by 2016– Embedded HVDC link

• Coordinated control schemes

5

Page 6: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Case Study 1: Performance Evaluation of ICT Infrastructure Required for WAMS Implementation 

Mohammad Golshani, Gareth A. Taylor, Phillip Ashton, Ioana Pisica

IEEE Transactions on Power Delivery (Submitted June 2014)

6

Page 7: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

7

Case Study 1

WAMS Deployment on the GB Transmission System

Performance Evaluation of the National Grid WAMS ICT Infrastructure

• Data Communications  ‐Latency Measurement & Calculation

• Data Communications Network Simulation

Conclusions and Future Work

7

Page 8: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

8

WAMS Deployment on the GB Transmission System

First WAMS was deployed in the GB Electricity National Control Centre (ENCC) in 1998

The  PDC  is  maintained  by  Psymetrix  and  is running  the  PhasorPoint  application  for stability analysis

To  effectively monitor  the  inter‐area modes information  is  required  from  the  respective centres of inertia

In addition  to  the 2 PMUs configured  for  the oscillation detection, 40 PMUs have also been installed  to  the  transmission  network  of England and Wales

ScotlandCentre of Inertia

England &WalesCentre of Inertia

8

Page 9: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

WAMS Model Architecture ...

9 substations

11 PMUs ( 1 Arbiter and 10 AMETEK)

All PMUs  generate 50 samples/second

Substations  are  connected  to  WAN through 256Kbps or 2Mbps links

Data  are  transmitted  based  on  TCP/IP protocol

Links  are  shared  for  different applications

Performance Evaluation of the NG WAMS ICT Infrastructure

9

Page 10: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

10

Latency measurement and calculation …

Perform a tcpdump capture at the PDC server 

Intercept and display details of synchrophasor packets in Wireshark

• Packet size• Protocol• SOC time (Second of Century)• Fraction of second• Arrival time• etc.

Each packet information allows to investigate the latency individually

Time Stamp of the PMU and Arrival Time are the two parameters required for the latency calculation

Network Latency Measurement

10

Page 11: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Latency  measurement and calculation …

The SOC  time with  fraction of second  in Wireshark show  the Time Stamp of packet 

In fact, the Time Stamp is an 8‐byte message consisting of 4 bytes SOC, 3 bytes fraction of second, and 1 byte time quality indicator

Arrival Time is the time that packet arrives at PDC

As the server is locked to the accurate time source, time is comparable to the GPS time of the PMUs

Thus:                      Latency = Arrival Time ‐ Time Stamp 

Network Latency Measurement 

11

Page 12: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Latency measurement and calculation …

Calculating the latency of each packet one by one manually is a very time consuming process

Automating the calculation process can:

• Save time • Reduce error• Enables more detailed and larger scale analyses

The provided novel program written in Matlab is able to:

• Open and Read a series of exported CSV files from Wireshark• Determine the PMU type• Calculate each packet’s latency• Calculate Exponentially Weighted Moving Average (EWMA) of 

the PMUs latency values and other characteristics• Create new Excel files including latency details

Network Latency Measurement 

12

Page 13: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Latency calculation results …Measured latency for the synchrophasor packets sent from five of the PMUs

SUB PMU Min Max Average STDEV

1 1 134 295.4 167.53 22.86

4 1 58.21 687.6 86.88 47.41

5 1 70.6 201.5 95.03 13.72

7 1 65.21 170.8 84.6 10.95

81 53.95 151.6 72.29 10.97

2 53.79 214.4 73.65 13.53

91 55.76 139.3 75.05 11.07

2 55.25 164.9 75.22 11.22

EWMA graphs based on a 0.06 smoothing constantActual statistical latency characteristics

Network Latency Measurement 

Page 14: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Network Latency Measurement 

14

Page 15: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

PMUs internal delay …

Investigations were carried out to accurately estimate the PMUs internal delayBased on operation manuals and manufacturers information

For Arbiter,  depending on the sample time the delay could be differentBetween 75  (finished sampling and start calculating directly) and 115ms  (finish sampling and wait the maximum of 40ms)

For AMETEK, on average we have assumed 30ms internal delay 

As AMETEK is a fault recorder, it is reasonable to have a lower internal delay

Applying  these  facts  to  the developed MATLAB program,  the network  latency can be calculated  

Network Latency Estimation

15

Page 16: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Network latency …

Network Latency Measurement

16

Page 17: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Data CommunicationsNetwork Simulation

OPNET Modeler has been used as a Discrete Event Simulation (DES) tool 

Two tasks were configured to model traffic associated with the two types of PMUs

Both tasks were configured to generate 50 samples per second

Destination of all PMUs packets is a DELL PowerEdge server in the data centre 

Novelty of the two PMU models is the inclusion of internal processing delays when simulated in OPNET Modeler

Also in the case of Arbiter packet size is 50 bytes while for AMETEK is 42 bytes 17

Page 18: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

18

Data CommunicationsNetwork Simulation 

According to the information provided by National Grid:

• Substations 6 and 7 have more communications network activity In terms of staff presence and data transfer

• Whereas substations 8 and 9 have a lower level of background traffic

• Based on this information, substations were modelled differently

Page 19: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Data CommunicationsNetwork Simulation 

Apart from PMUs, standard application were specified for other workstations Including Database Access, File Transfer, and Email

Background  traffic  was  defined  for  the  links  between  Substations and  Data Centre 

Proportional to the number of workstations in substations and their generating traffic 

From TO Background traffic(Percentage of link bandwidth)

Substation 1 IP cloud 50 %Substation 2 IP cloud 50 %Substation 3 IP cloud 50 %Substation 4 IP cloud 50 %Substation 5 IP cloud 50 %Substation 6 IP cloud 70 %Substation 7 IP cloud 70 %Substation 8 IP cloud 0 %Substation 9 IP cloud 0 %

IP cloud Data Center 60 %19

Page 20: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Data CommunicationsNetwork Simulation 

SUB PMU Min Max Average STDEV

1 1 127.8 403.3 165.104 28.73

4 1 64.85 354.9 100.67 29.06

5 1 65.12 525.7 104.94 50.38

7 1 62.15 120.9 86.04 8.39

81 60.49 204.2 82.82 9.39

2 56.03 201.2 81.73 9.42

91 61.53 218.4 84.49 9.5

2 60.67 202.2 83.76 9.35

Latency of the synchrophasor packets in OPNET Latency characteristics of OPNET results(ms)

Network simulation results …

Page 21: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

UPEC2012 21

Conclusions and Future Work

Low‐latency ICT infrastructure is vital for transmitting time‐critical PMU data Novel WAMS modelling and analysis  tools based upon Wireshark and OPNET have been demonstratedPMUs latencies are very sensitive to the level of background trafficWindow size of the PMU and the algorithm are important delay factorsOther traffic profiles experience higher latency than PMU packetsPMUs generate large volumes of data, but bits per second stream is modestPMU itself does not require high channel capacityThe bottleneck for PMU communication is overall network latency

Further work will be focused on refinement of the simulated WAMS model

• PDC processing delay• IEC61850 communication protocol deployment • QoS policy and priority tagging

21

Page 22: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Case Study 2: Massively Scalable PMU Data Storage and Analysis

Muktaj Khan, Gareth A. Taylor, Phillip Ashton, Maozhen Li, Ioana Pisica and Junyong Liu

IEEE Transactions on Smart  Grid (Accepted August 2014)

22

Page 23: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

23

Case Study 2

Overview of Hadoop MapReduce for Massive Data Storage and Analysis

Proposed Framework for Massive PMU Data Storage and Analysis

Parallel DFA for Event Detection on Massive PMU Data

23

Page 24: Novel ICT Infrastructure for Large scale Transmission ... › data › zt_powercon2014 › doc › PN2_3.pdf · Large‐scale Transmission System Operation ... Mohammad Golshani,

Thank You