12
International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020 ISSN: 2231-5373 http://www.ijmttjournal.org Page 53 Numerical Simulation of Biodiversity Loss: Comparison of Numerical Methods Godspower C. Abanum 1 , Charles O. Omoregbe 2 and Enu-Obari. N. Ekakaa 3 1 Department of Mathematics/Statistics, Ignatius Ajuru University of Education, Port Harcourt, Nigeria 2 Department of Mathematics/Statistics, University of Port Harcourt, Port Harcourt, Nigeria 3 Department of Mathematics/Statistics, Rivers State University, Port Harcourt, Nigeria ABSTRACT The dependent variable called Normal Agriculture changes as the independent variable time changes that is the yields of a normal agriculture variable changes deterministically as the length of the growing season changes when all the model parameter values are fixed. However, when the model parameter values 1 2 are decrease, the normal agricultural variable also changes. By comparing the patterns of growth in these two interacting normal agricultural data, we have finite instance of biodiversity due to the application of four numerical methods such as ODE45, ODE23, ODE23tb and ODE15s. We have found the numerical prediction upon using these four numerical methods which are similar and robust, hence we have considered ODE45 numerical simulation to be computationally more efficient than the other three methods. The novel result we have obtained in this study have not been seen elsewhere. These are presented and discussed quantitatively. KEYWORD: ODE45,ODE23, ODE23tb, ODE15s, Normal Agriculture I. INTRODUCTION Modeling and simulation of dynamical systems has always been an important issue in both science and engineering. In modern mathematics, the subject of ordinary differential equation has become an effective tool in the world of mathematical modelling. Most physical phenomena such as biological model, fluid dynamics, control theory etc are often transform into ordinary differential equations to give explicit interpretation of the physical attributes of the model in equation. The effectiveness of these equation in the business of modelling has prompted researchers in developing methods for seeking solution to these equations. Differential equations model real life situation and provide real life answers with the help of computer calculations and simulations [7] The notion to apply ordinary differential system or equation base on system dynamics to investigate the interaction between ecospheric asset, industrial asset and agricultural wealth or asset begins in 1994 with the pioneering work of Apedaile et al, it was then followed by the work of Solomonovich et al [17], Freedom et al [1] and Agyeman et al [2]. Agyeman and Feedom [4] model the interaction between normal agricultural asset, auxiliary agricultural asset, industrial asset and ecospheric asset using a system of ordinary differential equation for nonlinear case. They studied the long term effect of each of the assets on each other, local, global analysis of equilibra of systems and dissipativity solutions are checked and the conditions for existence of positive interior equilibrium using the theory of uniform persistence were established. The condition for existence and persistence to occur were proved. [18]Modeled the impacts of disease and pest on agricultural systems. They provide a brief overview of the recent state of development in coupling disease and pest models to crops models and explained the scientific and the technical challenges. They proposed a five-stage road map to improve the simulation of the impacts caused by plant

Numerical Simulation of Biodiversity Loss: Comparison of

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 53

Numerical Simulation of Biodiversity Loss:

Comparison of Numerical Methods Godspower C. Abanum

1, Charles O. Omoregbe

2 and Enu-Obari. N. Ekakaa

3

1Department of Mathematics/Statistics, Ignatius Ajuru University of Education, Port Harcourt, Nigeria 2Department of Mathematics/Statistics, University of Port Harcourt, Port Harcourt, Nigeria

3Department of Mathematics/Statistics, Rivers State University, Port Harcourt, Nigeria

ABSTRACT

The dependent variable called Normal Agriculture changes as the independent variable time changes that

is the yields of a normal agriculture variable changes deterministically as the length of the growing season

changes when all the model parameter values are fixed. However, when the model parameter values

š›¼1 š‘Žš‘›š‘‘ š›¼2are decrease, the normal agricultural variable also changes. By comparing the patterns of

growth in these two interacting normal agricultural data, we have finite instance of biodiversity due to the

application of four numerical methods such as ODE45, ODE23, ODE23tb and ODE15s. We have found

the numerical prediction upon using these four numerical methods which are similar and robust, hence we

have considered ODE45 numerical simulation to be computationally more efficient than the other three

methods. The novel result we have obtained in this study have not been seen elsewhere. These are

presented and discussed quantitatively.

KEYWORD: ODE45,ODE23, ODE23tb, ODE15s, Normal Agriculture

I. INTRODUCTION

Modeling and simulation of dynamical systems has always been an important issue in both science and

engineering. In modern mathematics, the subject of ordinary differential equation has become an effective

tool in the world of mathematical modelling. Most physical phenomena such as biological model, fluid

dynamics, control theory etc are often transform into ordinary differential equations to give explicit

interpretation of the physical attributes of the model in equation.

The effectiveness of these equation in the business of modelling has prompted researchers in developing

methods for seeking solution to these equations. Differential equations model real life situation and provide

real life answers with the help of computer calculations and simulations [7]

The notion to apply ordinary differential system or equation base on system dynamics to investigate the

interaction between ecospheric asset, industrial asset and agricultural wealth or asset begins in 1994 with

the pioneering work of Apedaile et al, it was then followed by the work of Solomonovich et al [17],

Freedom et al [1] and Agyeman et al [2]. Agyeman and Feedom [4] model the interaction between normal

agricultural asset, auxiliary agricultural asset, industrial asset and ecospheric asset using a system of

ordinary differential equation for nonlinear case. They studied the long term effect of each of the assets on

each other, local, global analysis of equilibra of systems and dissipativity solutions are checked and the

conditions for existence of positive interior equilibrium using the theory of uniform persistence were

established. The condition for existence and persistence to occur were proved. [18]Modeled the impacts of

disease and pest on agricultural systems. They provide a brief overview of the recent state of development

in coupling disease and pest models to crops models and explained the scientific and the technical

challenges. They proposed a five-stage road map to improve the simulation of the impacts caused by plant

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 54

pests and diseases. Other related contributions to knowledge in the context of environmental modelling of

the interaction of ecosphere, industry and agriculture can be seen in the work of [1-20]

II. MATHEMATICAL FORMULATION

Following Ibrahim A and Freedom H.I (2009), we have consider the four system of nonlinear ordinary

differential equation.

š‘‘š‘„1(š‘”)

š‘‘š‘”= š›¼1š‘„1š‘§ āˆ’ š›½1š‘„1

2 + š›¾1š‘„1š‘¦ āˆ’ šœŒ1š‘„1š‘„2 āˆ’ šœƒš‘„1 + šœƒš‘„1š‘§

š‘‘š‘„2(š‘”)

š‘‘š‘”= š›¼2š‘„2š‘§ āˆ’ š›½2š‘„2

2 āˆ’ š›¾2š‘„2š‘¦ āˆ’ šœŒ2š‘„1š‘„2

š‘‘š‘¦(š‘”)

š‘‘š‘”= āˆ’šœ‰š‘¦ āˆ’ šœ‚š‘¦2 + š›æš‘„1š‘¦

š‘‘š‘§(š‘”)

š‘‘š‘”= āˆ’šœ…š‘„1š‘§ + šœ…1š‘§ āˆ’ šœ…1š‘§

2 + šœ…2š‘„1 āˆ’ šœ…2š‘„1š‘§

where all parameters are assumed to be positive constants except š›¾1 which can be any real constant. š›¼1(š›¼2)

is inter competitive growth rate coefficient of normal (auxiliary) agriculture due to normal (auxiliary)

agricultural activity for fixed z; š›½1(š›½2) is the per asset diminishing returns rate coefficient for normal

(auxiliary) agriculture in the absence of industry and auxiliary (normal) agriculture, š›¾1(š›¾2 ) is the per asset

terms of trade coefficient between normal (auxiliary) agriculture and industry, šœ‰ is the constant

depreciation rate coefficient of industry, šœ‚ is the per asset (linear) depreciation rate coefficient of industry,

š›æ is the per asset growth rate for industry in dealing with normal agriculture, šœŒ1(šœŒ2) is the per asset

competitive rate coefficient of auxiliary (normal) agriculture acting on normal (auxiliary) agriculture, šœ… is

the per asset degradation rate coefficient of the ecosphere due to normal agricultural activities, šœ…1 is the

natural restoration rate coefficient for the ecosphere, šœ…2 is the rate of effort input to restore the ecosphere

by normal agriculture and šœƒ is the net cost rate to normal agriculture to restore the ecosphere.

With the following precise model parameter values from Agyemang and Freedman (2009)

š›¼1 = 3,š›¼2 = 1 ,š›½1 =1

10,š›½2 =

1

10, š›¾1 = āˆ’

1

49,š›¾2 =

1

10,šœŒ1 =

1

10, šœŒ2 =

1

5,š›æ =

1

4,

šœƒ =6

5,šœ‚ =

1

20, šœ‰ = 1, šœ… = 2,šœ…1 = 2,šœ…2 = 1

III. METHOD OF ANALYSIS

To tackle this environmental problem, we have fully explore the application of four numerical methods,

namely ODE45, ODE23, ODE23tb, ODE15s to model and predict the effect of decreasing š›¼1 š‘Žš‘›š‘‘ š›¼2 by

5%, 10% and 15% on a biodiversity loss scenario for a fixed initial condition consisting of a point of

values.

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 55

IV. RESULTS

On the application of the above mention four numerical methods, we have obtain the following novel

empirical results which are presented as displayed as shown in table 1- table 12

Table 1: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 5% on the biodiversity loss: using

ODE45

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1975 0.1154 96.3920

3 15 3.6804 0.0833 97.7376

4 22 3.7410 0.0765 97.9539

5 29 3.7470 0.0758 97.9783

6 36 3.7485 0.0768 97.9503

7 43 3.7490 0.0784 97.9091

8 50 3.7492 0.0799 97.8694

9 57 3.7499 0.0812 97.8342

10 64 3.7498 0.0823 97.8048

11 71 3.7501 0.0832 97.7807

12 78 3.7499 0.0839 97.7617

13 85 3.7503 0.0846 97.7452

14 92 3.7500 0.0851 97.7314

15 99 3.7498 0.0855 97.7205

16 106 3.7499 0.0858 97.7117

17 113 3.7502 0.0861 97.7045

18 120 3.7501 0.0863 97.6981

19 127 3.7499 0.0865 97.6925

20 134 3.7497 0.0867 97.6876

21 141 3.7501 0.0869 97.6840

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 56

Table 2: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 5% on the biodiversity loss: using

ODE23

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1974 0.1153 96.3938

3 15 3.6802 0.0832 97.7380

4 22 3.7408 0.0765 97.9556

5 29 3.7479 0.0758 97.9776

6 36 3.7481 0.0768 97.9517

7 43 3.7485 0.0784 97.9084

8 50 3.7500 0.0799 97.8702

9 57 3.7497 0.0812 97.8341

10 64 3.7490 0.0823 97.8041

11 71 3.7501 0.0832 97.7815

12 78 3.7504 0.0840 97.7604

13 85 3.7493 0.0845 97.7460

14 92 3.7497 0.0851 97.7301

15 99 3.7507 0.0854 97.7231

16 106 3.7498 0.0859 97.7098

17 113 3.7494 0.0860 97.7058

18 120 3.7505 0.0864 97.6963

19 127 3.7503 0.0865 97.6945

20 134 3.7493 0.0868 97.6860

21 141 3.7501 0.0868 97.6856

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 3: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 5% on the biodiversity loss: using

ODE23tb

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1975 0.1152 96.3960

3 15 3.6805 0.0832 97.7388

4 22 3.7410 0.0765 97.9558

5 29 3.7472 0.0757 97.9794

6 36 3.7484 0.0768 97.9512

7 43 3.7490 0.0784 97.9100

8 50 3.7494 0.0799 97.8694

9 57 3.7496 0.0812 97.8339

10 64 3.7497 0.0823 97.8044

11 71 3.7498 0.0832 97.7801

12 78 3.7499 0.0840 97.7604

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 57

13 85 3.7499 0.0846 97.7442

14 92 3.7500 0.0851 97.7310

15 99 3.7500 0.0855 97.7201

16 106 3.7500 0.0858 97.7110

17 113 3.7500 0.0861 97.7035

18 120 3.7500 0.0864 97.6972

19 127 3.7500 0.0866 97.6919

20 134 3.7500 0.0867 97.6875

21 141 3.7500 0.0869 97.6837

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 4: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 5% on the biodiversity loss: using

ODE15s

Example LGS TIME (WEEKLY)

š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1976 0.1154 96.3905

3 15 3.6802 0.0833 97.7371

4 22 3.7410 0.0765 97.9547

5 29 3.7472 0.0758 97.9784

6 36 3.7484 0.0768 97.9503

7 43 3.7490 0.0784 97.9089

8 50 3.7494 0.0799 97.8690

9 57 3.7496 0.0812 97.8341

10 64 3.7497 0.0823 97.8047

11 71 3.7498 0.0832 97.7806

12 78 3.7499 0.0840 97.7611

13 85 3.7499 0.0846 97.7451

14 92 3.7500 0.0851 97.7319

15 99 3.7500 0.0855 97.7210

16 106 3.7500 0.0858 97.7119

17 113 3.7500 0.0861 97.7044

18 120 3.7500 0.0863 97.6980

19 127 3.7500 0.0865 97.6927

20 134 3.7500 0.0867 97.6882

21 141 3.7500 0.0868 97.6843

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 58

Table 5: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 10% on the biodiversity loss:

using ODE45

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1975 0.1744 94.5452

3 15 3.6804 0.1572 95.7285

4 22 3.7410 0.1587 95.7566

5 29 3.7470 0.1617 95.6834

6 36 3.7485 0.1641 95.6231

7 43 3.7490 0.1659 95.5748

8 50 3.7492 0.1669 95.5472

9 57 3.7499 0.1680 95.5211

10 64 3.7498 0.1686 95.5033

11 71 3.7501 0.1691 95.4900

12 78 3.7499 0.1695 95.4797

13 85 3.7503 0.1698 95.4714

14 92 3.7500 0.1700 95.4661

15 99 3.7498 0.1702 95.4602

16 106 3.7499 0.1702 95.4613

17 113 3.7502 0.1704 95.4557

18 120 3.7501 0.1705 95.4547

19 127 3.7499 0.1705 95.4521

20 134 3.7497 0.1706 95.4510

21 141 3.7501 0.1706 95.4502

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 6: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 10% on the biodiversity loss:

using ODE23

Example LGS TIME (WEEKLY)

š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1974 0.1744 94.5467

3 15 3.6802 0.1572 95.7287

4 22 3.7408 0.1587 95.7569

5 29 3.7479 0.1617 95.6849

6 36 3.7481 0.1641 95.6219

7 43 3.7485 0.1656 95.5813

8 50 3.7500 0.1669 95.5488

9 57 3.7497 0.1681 95.5163

10 64 3.7490 0.1686 95.5021

11 71 3.7501 0.1690 95.4942

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 59

12 78 3.7504 0.1696 95.4780

13 85 3.7493 0.1699 95.4688

14 92 3.7497 0.1699 95.4700

15 99 3.7507 0.1702 95.4630

16 106 3.7498 0.1705 95.4542

17 113 3.7494 0.1703 95.4576

18 120 3.7505 0.1704 95.4574

19 127 3.7503 0.1707 95.4491

20 134 3.7493 0.1706 95.4503

21 141 3.7501 0.1704 95.4550

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 7: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 10% on the biodiversity loss:

using ODE23tb

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1975 0.1743 94.5484

3 15 3.6805 0.1572 95.7291

4 22 3.7410 0.1587 95.7574

5 29 3.7472 0.1617 95.6846

6 36 3.7484 0.1641 95.6224

7 43 3.7490 0.1658 95.5770

8 50 3.7494 0.1671 95.5440

9 57 3.7496 0.1680 95.5201

10 64 3.7497 0.1686 95.5024

11 71 3.7498 0.1692 95.4890

12 78 3.7499 0.1695 95.4791

13 85 3.7499 0.1698 95.4714

14 92 3.7500 0.1700 95.4658

15 99 3.7500 0.1702 95.4614

16 106 3.7500 0.1703 95.4582

17 113 3.7500 0.1704 95.4557

18 120 3.7500 0.1705 95.4537

19 127 3.7500 0.1705 95.4523

20 134 3.7500 0.1706 95.4512

21 141 3.7500 0.1706 95.4504

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 60

Table 8: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 10% on the biodiversity loss:

using ODE15s

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1976 0.1745 94.5438

3 15 3.6802 0.1572 95.7281

4 22 3.7410 0.1587 95.7567

5 29 3.7472 0.1617 95.6845

6 36 3.7484 0.1641 95.6225

7 43 3.7490 0.1658 95.5770

8 50 3.7494 0.1671 95.5441

9 57 3.7496 0.1680 95.5204

10 64 3.7497 0.1686 95.5030

11 71 3.7498 0.1691 95.4898

12 78 3.7499 0.1695 95.4797

13 85 3.7499 0.1698 95.4721

14 92 3.7500 0.1700 95.4663

15 99 3.7500 0.1702 95.4620

16 106 3.7500 0.1703 95.4587

17 113 3.7500 0.1704 95.4562

18 120 3.7500 0.1705 95.4542

19 127 3.7500 0.1705 95.4527

20 134 3.7500 0.1706 95.4516

21 141 3.7500 0.1706 95.4506

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 9: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 15% on the biodiversity loss:

using ODE45

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1975 0.2437 92.3770

3 15 3.6804 0.2389 93.5086

4 22 3.7410 0.2427 93.5123

5 29 3.7470 0.2455 93.4487

6 36 3.7485 0.2472 93.4045

7 43 3.7490 0.2488 93.3627

8 50 3.7492 0.2495 93.3442

9 57 3.7499 0.2502 93.3285

10 64 3.7498 0.2505 93.3199

11 71 3.7501 0.2508 93.3113

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 61

12 78 3.7499 0.2511 93.3036

13 85 3.7503 0.2512 93.3005

14 92 3.7500 0.2515 93.2937

15 99 3.7498 0.2514 93.2966

16 106 3.7499 0.2514 93.2968

17 113 3.7502 0.2515 93.2939

18 120 3.7501 0.2515 93.2925

19 127 3.7499 0.2517 93.2872

20 134 3.7497 0.2515 93.2915

21 141 3.7501 0.2516 93.2908

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 10: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 15% on the biodiversity loss:

using ODE23

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL(%)

1 1 1.0000 1.0000 0

2 8 3.1974 0.2437 92.3781

3 15 3.6802 0.2389 93.5084

4 22 3.7408 0.2427 93.5120

5 29 3.7479 0.2456 93.4467

6 36 3.7481 0.2475 93.3977

7 43 3.7485 0.2489 93.3593

8 50 3.7500 0.2497 93.3409

9 57 3.7497 0.2502 93.3266

10 64 3.7490 0.2506 93.3145

11 71 3.7501 0.2509 93.3094

12 78 3.7504 0.2510 93.3080

13 85 3.7493 0.2510 93.3063

14 92 3.7497 0.2510 93.3053

15 99 3.7507 0.2512 93.3020

16 106 3.7498 0.2514 93.2947

17 113 3.7494 0.2516 93.2890

18 120 3.7505 0.2518 93.2874

19 127 3.7503 0.2518 93.2857

20 134 3.7493 0.2517 93.2859

21 141 3.7501 0.2516 93.2911

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 62

Table 11: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 15% on the biodiversity loss:

using ODE23tb

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL (%)

1 1 1.0000 1.0000 0

2 8 3.1975 0.2437 92.3793

3 15 3.6805 0.2389 93.5088

4 22 3.7410 0.2427 93.5123

5 29 3.7472 0.2455 93.4476

6 36 3.7484 0.2474 93.3993

7 43 3.7490 0.2487 93.3663

8 50 3.7494 0.2496 93.3438

9 57 3.7496 0.2502 93.3281

10 64 3.7497 0.2506 93.3170

11 71 3.7498 0.2509 93.3094

12 78 3.7499 0.2511 93.3039

13 85 3.7499 0.2512 93.3000

14 92 3.7500 0.2513 93.2974

15 99 3.7500 0.2514 93.2954

16 106 3.7500 0.2515 93.2941

17 113 3.7500 0.2515 93.2932

18 120 3.7500 0.2515 93.2925

19 127 3.7500 0.2515 93.2921

20 134 3.7500 0.2516 93.2917

21 141 3.7500 0.2516 93.2915

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

Table 12: Quantifying the effect of decreasing the š›¼1 š‘Žš‘›š‘‘ š›¼2 together by 15% on the biodiversity loss:

using ODE15s

Example LGS TIME

(WEEKLY) š‘„1(š‘œš‘™š‘‘) š‘„1(š‘›š‘’š‘¤) EBL (%)

1 1 1.0000 1.0000 0

2 8 3.1976 0.2438 92.3761

3 15 3.6802 0.2389 93.5083

4 22 3.7410 0.2427 93.5122

5 29 3.7472 0.2455 93.4480

6 36 3.7484 0.2474 93.3996

7 43 3.7490 0.2487 93.3665

8 50 3.7494 0.2496 93.3439

9 57 3.7496 0.2502 93.3284

10 64 3.7497 0.2506 93.3176

11 71 3.7498 0.2509 93.3101

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 63

12 78 3.7499 0.2511 93.3046

13 85 3.7499 0.2512 93.3006

14 92 3.7500 0.2513 93.2977

15 99 3.7500 0.2514 93.2957

16 106 3.7500 0.2515 93.2944

17 113 3.7500 0.2515 93.2935

18 120 3.7500 0.2515 93.2928

19 127 3.7500 0.2515 93.2924

20 134 3.7500 0.2515 93.2921

21 141 3.7500 0.2516 93.2918

LGS= Length of growing season

š‘„1(š‘œš‘™š‘‘)= Measures the normal agricultural volume when all model parameters are fixed at 100%

š‘„1(š‘›š‘’š‘¤)= Measures the normal agricultural volume when š›¼1 š‘Žš‘›š‘‘ š›¼2 only are varied.

EBL= Estimated Biodiversity Loss

DISCUSSION OF RESULT

In this paper, we have applied a mathematical model to discuss the numerical simulation of biodiversity

loss by comparing four differential methods of ordinary differential equation (ODE45, ODE23, ODE23tb,

and ODE15s). From the result obtained, we have seen that the growth of normal agricultural assets depends

on time and the normal agricultural assets changes deterministically as the length of growing season

changes where all the model parameter values are fixed, however when the model valueš›¼1 š‘Žš‘›š‘‘ š›¼2are

decrease, the normal agricultural variable also changes. From the numerical prediction using four method

of ODE which are similar, ODE45 appears to be more efficient than the others. Applying these four

methods, we have seen that the pattern of growth of these two interacting normal agricultural data have

finite instance of biodiversity.

CONCLUSION

We applied the different methods of Ordinary Differential Equation (ODE45, ODE23. ODE34tb, ODE15s)

to check the estimated biodiversity loss (EBL) with respect to normal Agriculture by decreasing the

š›¼1 š‘Žš‘›š‘‘ š›¼2 together.

REFERENCES

[1] Agyemang, H.I. Freedman, J.W. Macki, An ecospheric recovery model for agriculture industry interactions, Diff. Eqns. Dyn.

Syst. 15 (2007) 185-208.

[2] Agyemang, H.I. Freedman, An environmental model for the interaction of industry with two competing agricultural resource,

Elsevier. 49(2009) 1618-16

[3] H. Amman, Ordinary Differential Equations: Introduction to Non-Linear Analysis, Walter de Gruyter, Berlin, 1990.

[4] L.P. Apedaile, H.I. Freedman, S.G.M. Schilizzi, M. Solomonovich, Equilibria and dynamics in an economic predator prey

model of agriculture, Math. Comput. Model. 19 (1994) 1 -15.

[5] J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York, 1981.

[6] G.J. Butler, H.I. Freedman, P.E. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96 (1986) 425 430.

[7] Michael A. Obe, Godspower C. Abanum, Innocent C. Eli, Variational Iteration Method for first and second ordinary

differential equation using first kind chebychev polynomials, IJASRE. 4(2018) 126-130

[8] G.J. Butler, P. Waltman, Persistence in three-dimensional Lotka Volterra systems, Math. Comput. Model. 10 (1988) 13 16.

[9] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York, 1990.

[10] J.M. Conrad, C.W. Clark, Natural Resource Economics: Notes and Problems, Cambridge University Press, Cambridge, 1987.

[11] G.C. Daily, Natures Services: Societal Dependence on Natural Ecosystem, Island Press, Washington, DC, 1997.

International Journal of Mathematics Trends and Technology (IJMTT) ā€“ Volume 66 Issue 3- March 2020

ISSN: 2231-5373 http://www.ijmttjournal.org Page 64

[12] G.C. Daily, K. Ellison, The New Economy of Nature: The Quest to Make Conservation Profitable, Island Press, Washington,

DC, 2002.

[13] G.C. Daily, P.A. Matson, P.M. Vitousek, Ecosystem services supplied by soil, in: Natures Services: Societal Dependence on

Natural Ecosystem, Island Press, Washington, DC, 1997.

[14] L. Edelstein-Keshet, Mathematical Models in Biology, Random House, New York, 1988

[15] H.W. Eves, Foundations and Fundamental Concepts of Mathematics, PWS-Kent, Boston, 1990.

[16] H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker Inc., New York, 1980.

[17] H.I. Freedman, P. Moson, Persistence definitions and their connections, Proc. Amer. Math. Soc. 109 (1990) 1025 1033.

[18] H.I. Freedman, J.W.-H. So, Global stability and persistence of simple food chains, Math. Biosci. 73 (1985) 89 91.

[19] H.I. Freedman, M. Solomonovich, L.P. Apedaile, A. Hailu, Stability in models of agricultural-industry-environment

interactions, in: Advances in Stability Theory, vol. 13, Taylor and Francis, London, 2003, pp. 255 265.

[20] H.I. Freedman, P. Waltman, Persistence in a model of three competitive populations, Math. Biosci. 73 (1985) 89 91.

[21] H.I. Freedman, P. Waltman, Persistence in a model of three interacting predator-prey populations, Math. Biosci. 68 (1984) 213

231.

[22] G. Heal, Nature and the Marketplace: Capturing the Value of Ecosystem Services, Island Press, Washington, DC, 2000.

[23] L. Horrigan, R.S. Lawrence, P. Walker, How sustainable agriculture can address the environmental and human health harms of

industrial agriculture, Environ. Health Persp. 110: 445 456.

[24] J. Ikerd, The ecology of sustainability, University of Missouri, MO, USA.

[25] J. Ikerd, Sustaining the profitability of agriculture, Paper presented at extension pre-conference, The economists role in the

agricultural sustainability paradigm, San Antonio, TX, 1996.

[26] J.P. LaSalle, The Stability and Control of Discrete Processes, Springer-Verlag, New York, 1986.

[27] N. Myers, The worldā€™s forest and their ecosystem services, in: Natures Services: Societal Dependence on Natural Ecosystem,

Island Press, Washington, DC, 1997.

[28] F. Nani, Mathematical Models of Chemotherapy and Immunotherapy, Ph.D. Thesis, Univ. of Alberta, AB, 1998.

[29] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996.

[30] M. Solomonovich, L.P. Apedaile, H.I. Freedman, A.H. Gebremedihen, S.M.G. Belostotski, Dynamical economic model of

sustainable agriculture and the ecosphere, Appl. Math. Comput. 84 (1997) 221 246.

[31] M. Solomonovich, L.P. Apedaile, H.I. Freedman, Predictability and trapping under conditions of globalization of agricultural

trade: An application of the CGS approach, Math. Comput. Model. 33 (2001) 495 516.

[32] M. Solomonovich, H.I. Freedman, L.P. Apedaile, S.G.M. Schilizzi, L. Belostotski, Stability and bifurcations in an

environmental recovery model of economic agriculture-industry interactions, Natur. Resource Modeling 11 (1998) 35 79.

[33] P.M. Vitousek, H.A. Mooney, J. Lubchenco, J.M. Mellilo, Human domination on earthā€™s ecosystems, Science 227 (1997)