29
Offshore Wind Resources and Forecasting Bruce H. Bailey AWS Truewind LLC Albany, NY [email protected]

Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Offshore Wind Resources and Forecasting

Bruce H. BaileyAWS Truewind LLC

Albany, [email protected]

Page 2: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Headquarters: Albany, NY

• Mapping• Energy Assessment• Project Engineering• Performance Evaluation• Forecasting

Industry Leader & Consultant for 25 YearsFull spectrum of wind plant design, development

and evaluation servicesProject roles in over 60 countries

Offices in Austin, TX and Barcelona, Spain; 100 employees

Page 3: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Topics

• Contrasting Land & Offshore Winds

• Extreme Winds

• Wind Measurement

• Wind Modeling

• Measurement Approaches for Wind Farms

• Wind Forecasting

• Future Needs & Trends

Page 4: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

WINDPOWER 2008 - Houston© 2007 AWS Truewind Confidential

Source: NREL

Dynamic External Environment

Wind and waves are the primary external conditions affecting the design and cost of offshore wind turbines

Page 5: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Offshore Contrasts With Land

• Stronger Winds:– Very little surface roughness– No terrain– Fetch dependent

• Spatially consistent• Lower average wind shear (.08‐.16 typical)• Lower turbulence intensity (.05‐.10 typical)• Sea/lake breeze & stability issues

Page 6: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Sea/Lake Breezes

• Sea Breezes Are 3‐Dimensional

• Favor Spring & Summer Seasons

• Offshore Extent Is Variable

• Wind Intensity is Variable

Page 7: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Sea Breezes & Load MatchingAvg. Peak Day:1999-2003

Coastal NJ Utility Load & Plant Net Capacity Factor

Based on Ambrose Light Station Wind Data

Page 8: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Role of Atmospheric Stability• Fall‐Winter

– Water warmer than air  unstable atmosphere– Promotes vertical mixing and                    stronger surface winds

• Lake effect snow squalls

• Spring‐Summer– Water cooler than air  stable atmosphere

• Lake/sea breezes– Suppresses mixing and winds

Page 9: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Stability Effects on Wind ShearH

eigh

t

Wind Speed

Stable with low level jet

Unstable

Neutral

Page 10: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Extreme Winds

Strong Fronts/ Thunderstorm Lines

Hurricanes(large waves too)

Slow Moving Intense Coastal Storms – Nor’easters(large waves too)

Page 11: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Hurricane RisksSaffir‐Simpson Hurricane Scale

Category 1: 74‐95 mphCategory 2: 96‐110 mphCategory 3: 111‐130 mphCategory 4: 131‐155 mphCategory 5: 156+ mph

Page 12: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Conventional Sources of Wind Data• Surface

• Buoys and Coastal Marine Automated Network Stations (C‐MAN) ‐ NDBC

• Coastal met. stations 

• Ships (seasonal, moving)• Voluntary observing ships

• Commercial aircraft

• Remote Sensing• Weather balloons from 

land

• Satellite (QSCAT, SAR)

C-MANNDBC

Page 13: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Satellite ImageryWind friction over sea creates wavelets

of few cm-scale when wind speed is several m/s.

Radar signal is related to sea waves by Bragg resonant scattering

λs = n λr / (2*sinθ)

Speed Accuracy ~1.5-2.0 m/s

Source: P. Beaucage

Page 14: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

QuikSCAT Wind Climatology

Source: NASA/JPL

1999 - 2007

Winter

Summer

Page 15: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Weaknesses of Conventional Data• Low elevation measurement (<10 m)

• Low number and density of stations– Some buoys removed in winter

• Ship data – limited value

• Balloon trajectory is wind dependent

• Satellite coastal resolution (QuikScat)

• Accuracy (typically 1‐2 m/s)

Page 16: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Wind Modeling• Wind maps developed from 3‐D mesoscale numerical weather models (WRF, MM5, MASS)

• Combine boundary layer properties & atmospheric data to simulate all physics of the atmosphere

• Widely used for mapping & forecasting• Key Inputs:

– Global Reanalysis Data (NCEP/NCAR) ‐ synthesis of data sources– NCEP or MODIS/Pathfinder Sea Surface Temperatures– Sea Ice– National Elevation Data; Landsat Land Cover– Differential Vegetation Index

Page 17: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Wind Resource Mapping

Validation Results

Page 18: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Regional Wind Maps

• Funded by NREL & States

• 50 nautical miles from shore

• Annual, monthly, diurnal

• Six heights: 10, 30, 50, 90, 150, 300 m

• Power density, speed averages & distributions, wind roses

New England

Funded by NREL & Massachusetts Technology

Collaborative

Page 19: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Texas/Louisiana

Funded by NREL, TX State Energy Conservation Office, LA Dept. of Natural Resources

Page 20: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Great LakesFunded by NREL, Indiana Office of Energy & Defense

Development, Michigan Energy Office, NY State Energy Research & Development Authority, Ohio Dept. of

Development, Ontario Ministry of Natural Resources

Page 21: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Desired Data for Siting & Design of Offshore Wind Plants

• Wind Speeds – annual, monthly,  hourly, sub‐hourly (including hub ht)

• Speed Frequency Distribution

• Wind Shear

• Turbulence Intensity

• Wind Direction Rose

• Extreme Gusts & Return Periods

• Air Temp., RH, Pressure, Density, Solar

• Coincident Sea‐State Conditions– Including sea surface temp

0100200300400500600700800900

1000110012001300

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Wind Speed (m/s)

Page 22: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Assessment Approaches• Tall Met. Mast(s)

– Most credible & widely accepted– Multiple heights; rugged sensors

• Complemented by:– Lidar/sodar– Project weather buoys– Ocean data (temp., waves)

• Regional Weather Obs• Height & Climatological 

Adjustment (MCP) • Mesoscale Modeling

Cleveland Crib

FINO-1 Mast – Germany

NaiKun Mast – B.C.

Cape Wind Mast

Page 23: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Energy Production Projections• Application of Wind Statistics to Turbine Power Curves

• Assumptions for Loss Factors and Availability

• Wake Effects

• Hourly Production Statistics– Load matching and energy pricing

– Sub‐hourly variability & forecast‐ability

Page 24: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Wind Forecasting

Minutes to Days in Advance

Page 25: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

How Forecasts Are Produced

Physics‐based models

Statistical models

Forecast ensembles

Diverse set of input data with widely 

varying characteristics

Importance of specific models and data types vary with look‐ahead 

period

Page 26: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Desired Outcome

Hour of Month - August

Page 27: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Modeling Turbine Wakes• Perturbations in marine flow 

propagate long distances

• Turbine wakes take longer to decay than over land• Low TI and high stability 

reduce wake decay

• Traditional wind farm models over predict energy output for large arrays

• Model adjustments & refinements in progress

South Sandwich Islands Cloud Wakes (NASA)

R. Barthelmie IU/UE

Horns Rev, Denmark

Page 28: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Future Needs & Trends• Special Purpose Offshore Monitoring Masts

– Vertical wind structure and stability

– Coincident sea state conditions  

• Use of Lidar (vertical and side scan) or Sodar– Including units mounted on special spar buoys

• Reliance on Remote Sensing & Models

• Improved Wind Farm Modeling Tools

• Collaboration w/Government Agencies & Research Initiatives

Page 29: Offshore Wind Resources and Forecastingweb.mit.edu/windenergy/windweek/Presentations/P2 - Bailey...Wind Modeling • Wind maps developed from 3‐D mesoscale numerical weather models

Thank You!