68
Optimizing High- Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis www.ece.ucdavis.edu/acsel 4ème journées francophones d'études Faible Tension Faible Consommation Présentation Invité

Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

Embed Size (px)

Citation preview

Page 1: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

Optimizing High-Performance Digital Circuits in Energy Constrained Environment

Vojin G. OklobdzijaACSEL Laboratory

University of California, Daviswww.ece.ucdavis.edu/acsel

4ème journées francophones d'études Faible Tension Faible Consommation

Présentation Invité May 15, 2003

Page 2: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 2

Objective

• Compare Energy-Delay parameters for several commonly used high-performance adder topologies.

• Determine which topology is the best for given Energy-Delay.

• Determine which topology can stretch the furthest in terms of speed or power.

• Develop an estimation tool which can provide those answers before design is committed.

Page 3: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 3

Representative 64-b Adders Delay (Static CMOS design)

0

2

4

6

8

10

12

MXA2 HC2 KS2 QTA2 KS4 LNG4

To

tal D

elay

(F

O4)

Static

Dynamic

Page 4: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 4

Realistic Design Decisions

• It is difficult to determine which design can provide most speed if energy is not constrained.

• Design can always be made faster by increasing power. However, there is a limit.

• Which design is fastest if power is no object ?

• Which design is fastest for a given power budget ?

• Which design works at the minimal power ?

Page 5: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 5

Energy-Delay SpaceEnergy

Delay

Emin

Dmin

The only way to compare !

Page 6: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 6

Design Objective

• Design takes time: – comparing designs afterward does not bring

much value

• There is a disconnect between estimates used on algorithmic level and what is obtained when implementation is finished.

• We need a simple tool that can evaluate different design trade-offs (speed/power) before we commit to design.

Page 7: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 7

Methodology Background

• “Back of the Envelope” complexity – Logical Effort method

• “Logical Effort” accuracy is not sufficient– We needed to extend and refine the method– However, that becomes more than “Back of the

Envelope”• Excel – a platform of choice:

– Simple enough– Can provide relatively complex computation quickly– Easy to enter a given design

• For accuracy technology characterization is needed:– This needs to be done only once and should be available

for every design afterwards

Page 8: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 8

Delay in a Logic Gate

Delay of a logic gate has two components

d = f + p

• Logical effort describes relative ability of gate topology to deliver current (defined to be 1 for an inverter)

• Electrical effort is the ratio of output to input capacitance

parasitic delay

effort delay, stage effort

f = gh

logical effort

electrical effort = Cout/Cin

electrical effortis alsocalled “fanout”

*from Mathew Sanu / D. Harris

Page 9: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 9

Logical Effort Parameters: Inverter

• d = gh + p• Delay increases linearly with fanout• More complex gates have greater g and p

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6

p=3.8ps (parasitic delay)

Fanout: h =Cin/Cout

Del

ay

d=gh+p

g=2.2 (logic effort)

*from Mathew Sanu / D. Harris

Page 10: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 10

Normalized Logical Effort: Inverter

• Define delay of unloaded inverter = 1 • Define logical effort ‘g’ of inverter = 1• Delay of complex gates can be defined w.r.t d=1

1

2

3

4

5

6

1 2 3 4 5

parasitic delay

effortdelay

Fanout: h = Cout/Cin

Nor

mal

ized

del

ay:

d

inver

ter g =

p =d =

1 1gh + p = h+1

*from Mathew Sanu / D. Harris

Page 11: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 11

Computing Logical EffortDEF: Logical effort is the ratio of the input capacitance to the input

capacitance of an inverter delivering the same output current

• Measured from delay vs. fanout plots of simulated gates• Or estimated, counting capacitance in units of transistor W

*from Mathew Sanu / D. Harris

Page 12: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 12

L.E for Adder Gates

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2 3 4 5 6

Fanout

Del

ay (

ps)

Inverter

Static CM

Dyn PG

Dyn CM

Mux

• Logical effort parameters obtained from simulation for std cells• Define logical effort ‘g’ of inverter = 1• Delay of complex gates can be defined w.r.t d=1

*from Mathew Sanu / D. Harris

Page 13: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 13

Normalized L.E

• Logical effort & parasitic delay normalized to that of inverter

Gate type Logical Eff. (g)Parasitics

(Pinv)

Inverter 1 1

Dyn. Nand 0.6 1.34

Dyn. CM 0.6 1.62

Dyn. CM-4N 1 3.71

Static CM 1.48 2.53

Mux 1.68 2.93

XOR 1.69 2.97

*from Mathew Sanu

Page 14: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 14

Delay of a string of gates

• Delay of a path, D = di = gihi + pi

• gi & pi are constants

• To minimize path delay, optimal values of hi are to be

determined

D is minimized when each stage bears the same effort, i.e. gihi = g i+1h i+1

*from Mathew Sanu / D. Harris

Page 15: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 15

Minimizing path delay

• Logical Effort of a string of gates:

• Path Electrical Effort:

• Branching Effort

• Path Branching Effort:

• Path Effort: F=GBH

giG = Cout(path)

Cin(path)

H = hi =

biB =

Con-path + Coff-path

Con-path

b =

Delay is minimized when each stage bears the same effort:

f = gihi = F1/N

The minimum delay of an N-stage path is: NF1/N + P

*from Mathew Sanu / D. Horowitz

Page 16: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 16

Modeling interconnect cap.• Include interconnect cap in branching factor

Con-path + Coff-path

Con-path

b =

CM0

CM0

Coff-path

Con-path

PG

Add

er b

itpitc

h CM0

CM0Cint

Con-path

PG

Add

er b

itpitc

h

Coff-path

= 2 Con-path + Coff-path+Cint

Con-pathb = = 2+

Cint

Con-path

= 2 + I I : % int. cap to gate cap in 1 adder bitpitch

Page 17: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 17

Correction on Branching

CINCOUT1

COUT2

f0 f1

f2 f3

g0 g1

g2 g3

Logical Effort assumes the “branching” factor of this circuit to be 2. This is incorrect and can create significant inaccuracies

Page 18: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 18

CINCOUT1

COUT2

f0 f1

f2 f3

f0 = f1 , f2 = f3

Td1 = (f0 + f1 + parasitics) Td2 = (f2 + f3 + parasitics)

g0 g1

g2 g3

Minimum Delay occurs when Td1 = Td2

Correction on Branching

Page 19: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 19

F1g0 g1 out1

CinF2

g2 g3 out2Cin

B1F1 F2

F1

B1g0 g1 out1 g2 g3 out2

g0 g1 out1

B2F1 F2

F2

B2g0 g1 out1 g2 g3 out2

g2 g3 out2

“Real” Branching Calculation

Branching only equals 2 when: g0 g1 out1 g2 g3 out2

This explains why we had to resort to Excel !

Page 20: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 20

Technology Characterization

Page 21: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 21

Characterization Setup

• Logical Effort Requirements:– Equalize input and output transitions.

(We should also account for the input slope dependence of delay)

• Logical Effort is characterized by varying the h (Cout/Cin) of a gate. By using a variable load of inverters each gate can be characterized over the same range of loads.

Page 22: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 22

• The Logical Effort of each gate is characterized for each input.

• Energy is characterized for each output transition of the gate caused by each input transition.

i.e. for an inverter: energy is measured for tLH and tHL

Characterization Setup

Page 23: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 23

LE Characterization Setup for Static Gates

Gate Gate Gate GateIn

•tLH

•tHL

•Average•Energy

..

Variable Load

Page 24: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 24

LE Characterization Setup for Dynamic Gates

Gate GateIn

•tHL

•Energy

Variable Load

Page 25: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 25

LE Table (Static CMOS)

• Technology: P/N Ratio = 2 INV = 3.67, pINV = 4.29

• Measured on worst-case single-input switching

Fan-out INV NAND2 NAND3 NOR2 TGXORi TGXORs TGM UXi TGM UXs AOI OAI2 11.6 16.3 22.2 20.5 34.9 22.3 8.0 26.0 23.2 21.33 15.3 20.0 26.6 25.4 42.6 28.2 9.9 33.0 28.5 26.74 19.0 24.0 31.2 30.6 50.2 34.2 12.0 39.0 34.1 32.16 26.4 32.4 40.6 41.1 64.4 45.7 16.0 53.0 45.3 43.68 33.6 40.6 50.0 51.9 79.8 56.5 20.2 68.0 56.7 55.3

g (ps) 3.67 4.08 4.65 5.25 7.43 5.71 2.04 6.97 5.60 5.68p (ps) 4.29 7.90 12.74 9.77 20.19 11.12 3.85 11.76 11.82 9.69

g (norm) 1.00 1.11 1.27 1.43 2.03 1.56 0.55 1.90 1.52 1.55p (norm) 1.00 1.84 2.97 2.28 4.71 2.59 0.90 2.74 2.76 2.26

Page 26: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 26

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

Fanout

Delay

INV

NAND2

NAND3

NOR2

AOI

OAI

Static CMOS Gates: Delay Graphs

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

FanoutD

elay

INV

TGXORi

TGXORs

TGMUXi

TGMUXs

Page 27: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 27

LE Table (Static CMOS, Pull-up)• Technology:

• Measured on worst-case single-input switching

• Pull-up path only

Fan-out INV NAND2 NAND3 NOR2 AOI OAI2 12.0 19.0 27.5 18.9 26.4 17.53 15.8 23.3 33.1 23.2 31.7 22.04 19.8 28.2 39.2 28.0 37.4 27.16 27.9 38.5 51.7 37.0 49.3 36.98 35.4 48.8 64.8 46.7 61.7 47.3

g (ps) 3.93 5.01 6.24 4.63 5.91 4.98p (ps) 4.10 8.52 14.57 9.44 14.14 7.26

g (norm) 1.07 1.36 1.70 1.26 1.61 1.36p (norm) 0.96 1.99 3.40 2.20 3.30 1.69

Page 28: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 28

Static Gates: Pull-up Delay Graph

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

Fanout

Del

ayINV

NAND2

NAND3

NOR2

AOI

OAI

Page 29: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 29

LE Table (Dynamic CMOS)• Technology:

• Minimum-sized keeper included

• Measured on all-input switching of worst path

Fan-out DN2 DN3 DN4 Dk1ND2 Dk1NR2 DAOI_A DOAI_O2 9.9 12.7 16.0 13.7 10.6 10.1 8.83 12.6 14.7 19.1 16.7 13.2 12.1 11.34 16.0 18.3 23.2 20.7 16.7 14.7 14.06 21.7 24.7 30.2 27.9 23.2 20.0 19.28 27.3 31.2 37.8 36.1 29.5 24.8 24.0

g (ps) 2.92 3.15 3.65 3.75 3.19 2.49 2.55p (ps) 4.04 5.82 8.46 5.76 3.95 4.86 3.75

g (norm) 0.80 0.86 1.00 1.02 0.87 0.68 0.69p (norm) 0.94 1.36 1.97 1.34 0.92 1.13 0.87

Page 30: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 30

LE Table (Dynamic CMOS)Fan-out DG4 DP4 DC4 Dsum LG3 LP4 LC Lsum

2 15.4 16.0 15.4 12.1 21.0 12.1 21.6 12.73 18.5 19.1 18.5 14.8 22.2 14.8 26.0 14.74 22.6 23.2 22.6 16.9 27.6 16.9 29.3 18.36 29.6 30.2 29.6 22.2 34.0 22.2 36.9 24.78 37.5 37.8 37.5 27.5 42.0 27.5 44.6 31.2

g (ps) 3.70 3.65 3.70 2.56 3.61 2.56 3.79 3.15p (ps) 7.72 8.46 7.72 6.94 12.76 6.94 14.24 5.82

g (norm) 1.01 1.00 1.01 0.70 0.98 0.70 1.03 0.86p (norm) 1.80 1.97 1.80 1.62 2.97 1.62 3.32 1.36

Fan-out KSG4 KSP4 KSG16 KSP16 KSSum2 18.9 15.2 12.1 12.1 12.73 22.1 17.0 14.6 14.6 14.74 25.0 19.6 16.4 16.4 18.36 31.5 24.7 21.2 21.2 24.78 38.5 30.7 27.0 27.0 31.2

g (ps) 3.25 2.61 2.45 2.45 3.15p (ps) 12.23 9.45 6.99 6.99 5.82

g (norm) 0.89 0.71 0.67 0.67 0.86p (norm) 2.85 2.20 1.63 1.63 1.36

Page 31: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 31

Dynamic CMOS: Delay Graphs

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

N2

N3

N4

k1ND2

k1NR2

AOI_A

OAI_O

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

G4

P4

C4

STBSum

Page 32: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 32

Dynamic CMOS: Delay Graphs

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

LG3

LP4

G4

P4

LC

Lsum

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

KSG4

KSP4

KSG16KSP16KSSum

Page 33: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 33

Energy Calculation

Page 34: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 34

Energy CalculationEnergy [fJ] vs. Output Load [u]

dgk2

y = 2.3643x + 28.481

y = 2.4975x + 19.35

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

2.00E+02

0 10 20 30 40 50 60 70

Output Load [u]

En

erg

y [f

J]

8X Minimal Size Dyn-NAND

16X Minimal Size Dyn-NAND

Page 35: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 35

Energy CalculationOffset (parasitic+wiring energy) vs. Size (in multiplesof the

gate size)

y = 0.8931x + 4.6411

y = 1.1413x + 10.22

y = 1.6382x + 11.988

y = 0.5538x + 12.338

y = 3.89x + 14.5

y = 1.9595x + 9.621

y = 1.2559x + 6.762

y = 1.0592x + 1.71

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45

Gate Size (x)

Off

se

t

invdgckoai_odaoitgxoraoi_ona2stgmuxsLinear (inv)Linear (dgck)Linear (oai_o)Linear (daoi)Linear (tgxor)Linear (aoi_o)Linear (na2s)Linear (tgmuxs)

Page 36: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 36

0

2

4

6

8

10

8

12

1620

3 4 5 6 7 8

En

erg

y

Siz

e

Fanout

Energy CalculationNAND-2

Page 37: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 37

Energy Calculation

M 1 5 10 15 20 1 5 10 15 200 1.12 5.6 11.2 16.8 22.4 2.51E+00 1.26E+01 2.51E+01 3.77E+01 5.02E+011 2.24 11.2 22.4 33.6 44.8 3.70E+00 1.85E+01 3.70E+01 5.54E+01 7.39E+012 3.36 16.8 33.6 50.4 67.2 4.85E+00 2.42E+01 4.85E+01 7.27E+01 9.70E+013 4.48 22.4 44.8 67.2 89.6 6.16E+00 3.08E+01 6.16E+01 9.24E+01 1.23E+024 5.6 28 56 84 112 7.45E+00 3.73E+01 7.45E+01 1.12E+02 1.49E+025 6.72 33.6 67.2 100.8 134.4 8.74E+00 4.37E+01 8.74E+01 1.31E+02 1.75E+026 7.84 39.2 78.4 117.6 156.8 1.02E+01 5.08E+01 1.02E+02 1.52E+02 2.03E+027 8.96 44.8 89.6 134.4 179.2 1.15E+01 5.75E+01 1.15E+02 1.72E+02 2.30E+028 10.08 50.4 100.8 151.2 201.6 1.27E+01 6.36E+01 1.27E+02 1.91E+02 2.54E+029 11.2 56 112 168 224 1.42E+01 7.08E+01 1.42E+02 2.13E+02 2.83E+0210 12.32 61.6 123.2 184.8 246.4 1.55E+01 7.76E+01 1.55E+02 2.33E+02 3.10E+0211 13.44 67.2 134.4 201.6 268.8 1.69E+01 8.44E+01 1.69E+02 2.53E+02 3.37E+0212 14.56 72.8 145.6 218.4 291.2 1.81E+01 9.05E+01 1.81E+02 2.71E+02 3.62E+0213 15.68 78.4 156.8 235.2 313.6 1.97E+01 9.85E+01 1.97E+02 2.96E+02 3.94E+0214 16.8 84 168 252 336 2.09E+01 1.04E+02 2.09E+02 3.13E+02 4.18E+0215 17.92 89.6 179.2 268.8 358.4 2.26E+01 1.13E+02 2.26E+02 3.39E+02 4.52E+0216 19.04 95.2 190.4 285.6 380.8 2.39E+01 1.20E+02 2.39E+02 3.59E+02 4.79E+0217 20.16 100.8 201.6 302.4 403.2 2.53E+01 1.27E+02 2.53E+02 3.80E+02 5.06E+0218 21.28 106.4 212.8 319.2 425.6 2.67E+01 1.34E+02 2.67E+02 4.01E+02 5.34E+0219 22.4 112 224 336 448 2.81E+01 1.40E+02 2.81E+02 4.21E+02 5.61E+02

INV

Output Capacitance (u) Energy [fJ]

Multiplier FactorEnergy Factors

1.211300121 7.39E-01Output Capacitance Factor

NAND-2

Page 38: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 38

Example: 64-Bit Adders

• Han-Carlson (prefix-2, HC2): Static and Dynamic

• Han-Carlson (prefix-2, HC2-2): Dynamic-Static• Kogge-Stone (prefix-2, KS2): Static and

Dynamic• Kogge-Stone (prefix-2, KS2-2): Dynamic-Static• Quaternary-Tree (prefix-2, QT2): Static and

Dynamic

Included wire delay, tdelay = 0.7RwireCwire

Included wire energy, Ew = CwireV2

Len (um) 10 20 30 40 60 80 120 160 240 320 480Delay (ps) 0.01 0.04 0.09 0.17 0.38 0.67 1.50 2.67 6.01 10.7 24.1

Page 39: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 39

Han-Carlson Adder: Circuits

pi gi-1 gi

G

pi gi-1 gi

G

pi pi-1

P

pi pi-1

P

a b a b

g p

hsum Cin

Sum

CK

Gi

Gi-1

G

Pi

CKGi

Ai

Bi

Gi-1

Pi

Gi

GGi-1

Gi Pi-1

CKPi

Ai Bi

Page 40: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 40

Han-Carlson Adder: Diagram

4 3 02 114 7 663

30

31

15... ... ...

L2

L4

L6

L1

L3

L5

562

Odd

Sum ... ... ...

(p,g)

XOR2NAND2

NOR2OAI

CM6CM1

NAND2AOI

NOR2OAI

CM2 CM3

NAND2AOI

NOR2OAI

CM4 CM5

AOI

OAI

CMo

XOR2NAND2

XOR2

XOR2

SumCiN

Evenbits

Oddbits

Page 41: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 41

Han-Carlson Adder: Critical Path

2b

in0

s0 p0

C0G0-1

C2

g0

cIN

4b

C6

8b

C14

16b

C30

32b

C62

S63

C63

Page 42: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 42

Han-Carlson: Logical Effort Delay

Prefix-2 Han-Carlson Static

Stages# Bits Span

Branch LE ParasiticEnergy/Load Slope

Energy/Size Slope

Energy @ 0 size 0

Load [fJ]

Minimum Input

Capacitance (u)

Total Branch

Total LEPath Effort

Parasitic Delay

Wire Delay 460u [ps]

input 3.0g0 (nand2) 0 2.0 1.36 1.99 2.34 1.26 6.76 0.40C0 (OAI) 1 2.0 1.36 1.69 2.40 1.64 11.99 0.60C2 (AOI) 2 2.0 1.61 3.30 2.40 1.96 9.62 0.60C6 (OAI) 4 2.0 1.36 1.69 2.40 1.64 11.99 0.60C14 (AOI) 8 2.0 1.61 3.30 2.40 1.96 9.62 0.60C30 (OAI) 16 2.0 1.36 1.69 2.40 1.64 11.99 0.60C62 (AOI) 32 2.0 1.61 3.30 2.40 1.96 9.62 0.60Odd Carry (OAI) 1 2.0 1.36 1.69 2.40 1.64 11.99 0.60S63 (TGXORs) 0 1.0 1.56 3.03 3.95 3.89 14.50 0.60Cout (INV) 0 1.0 1.00 0.96 2.35 0.89 4.61 0.60

3.03E+017.68E+02 2.33E+04 97.13 14.24

Page 43: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 43

Koggie-Stone Adder: Circuits

CK

Gi

Gi-1

G

Pi

CKGi

Ai

Bi

Gi-1

Pi

Gi

GGi-1

Gi Pi-1

CKPi

Ai Bi

pi gi-1 gi

G

pi gi-1 gi

G

pi pi-1

P

pi pi-1

P

a b a b

g p

hsum Cin

Sum

Page 44: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 44

Koggie-Stone Adder: Diagram

4 3 02 114 7 615 ...

L2

L4

L6

L1

L3

L5

5

Inv

Sum ...

13...

...

...

...

30

31

29

63

62

Page 45: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 45

Koggie-Stone Adder: Critical Path

2b

in0

s0 p0

C0G0-1

C2

g0

cIN

4b

C6

8b

C14

16b

C30

32b

C62

S63

Page 46: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 46

Koggie-Stone Adder: Logical Effort Delay Calculation

Prefix-2 Kogge-Stone (2-0) (Dynamic)

Stages# Bits Span

Branch LE ParasiticEnergy/

Load Slope

Energy/Size

Slope

Energy @ 0 size 0

Load [fJ]

Minimum Input

Capacitance (u)

Total Branch

Total LEPath Effort

Parasitic Delay

Wire Delay 460u [ps]

input 3.0g0 (dnand2f) 0 2.0 1.02 1.34 2.40 1.14 10.22 0.50INV (INV) 1.0 1.00 0.96 2.35 0.89 4.61 0.60C0 (DOAI) 1 2.0 0.68 1.33 2.30 0.55 12.34 0.20INV (INV) 1.0 1.00 0.96 2.35 0.89 4.61 0.60C2 (DAOI) 2 2.0 0.68 1.33 2.30 0.55 12.34 0.20INV (INV) 1.0 1.00 0.96 2.35 0.89 4.61 0.60C6 (DOAI) 4 2.0 0.68 1.33 2.30 0.55 12.34 0.20INV (INV) 1.0 1.00 0.96 2.35 0.89 4.61 0.60C14 (DAOI) 8 2.0 0.68 1.33 2.30 0.55 12.34 0.20INV (INV) 1.0 1.00 0.96 2.35 0.89 4.61 0.60C30 (DOAI) 16 2.0 0.68 1.33 2.30 0.55 12.34 0.20INV (INV) 1.0 1.00 0.96 2.35 0.89 4.61 0.60C62 (DAOI) 32 2.0 0.68 1.33 2.30 0.55 12.34 0.20S63 (TGXORs) 0 1.0 1.56 3.03 3.95 3.89 14.50 0.60INV (INV) 0 1.0 1.00 0.96 2.35 0.89 4.61 0.60

1.57E-013.84E+02 81.816.04E+01 14.24

Page 47: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 47

Quaternary-Tree Adder: Circuits

CK

Gi

Gi-1

G

Pi

CKGi

Ai

Bi

Gi-1

Pi

Gi

GGi-1

Gi Pi-1

CKPi

Ai Bi

pi gi-1 gi

G

pi gi-1 gi

G

pi pi-1

P

pi pi-1

P

a b a b

g p

Sel

In1

In0

Out

*from Mathew Sanu, Intel AMR

Page 48: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 48

Quaternary-Tree Adder: Diagram

12b

b0b2b4b6b57b59b61b63

C15

C31C47

Int. Carry Genr

C19C23C27 C3C7C11C35C39C43C51C55C59

Int. Carry Genr Int. Carry Genr Int. Carry Genr

Sum[63:60]

4-bit SumGenr

Sum[47:44]

4-bit SumGenr

Sum[31:28]

4-bit SumGenr

Sum[15:12]

4-bit SumGenr

Cin

C31C47

C15

4-bit SumGenr

Sum[3:0]

16b

16b

8b

4b

4b

2b

*from Mathew Sanu, Intel AMR

Page 49: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 49

Quaternary-Tree Adder: Logical Effort Delay Calculation

Prefix-2 Quarternary (2-2) (Static)

Stages# Bits Span

Branch LE ParasiticEnergy/Load Slope

Energy/Size Slope

Energy @ 0 size 0

Load [fJ]

Minimum Input

Capacitance (u)

Total Branch

Total LE

input 3.0g0 (nand2) 0 1.0 1.36 1.99 2.34 1.26 6.76 0.40C1 (OAI) 2 1.0 1.36 1.69 2.40 1.64 11.99 0.60C3 (AOI) 4 1.0 1.61 3.30 2.40 1.96 9.62 0.60C7 (OAI) 8 1.0 1.36 1.69 2.40 1.64 11.99 0.60C15 (AOI) 16 2.0 1.61 3.30 2.40 1.96 9.62 0.60C31 (OAI) 16 2.0 1.36 1.69 2.40 1.64 11.99 0.60C47 (AOI) 12 4.0 1.61 3.30 2.40 1.96 9.62 0.60C59 (TGMUXs) 4 4.0 1.90 2.74 0.40 1.06 1.71 0.80S63 (TGMUXs) 0 1.0 1.90 2.74 0.40 1.06 1.71 0.80INV (INV) 0 1.0 1.00 0.96 2.35 0.89 4.61 0.60

1.92E+02 5.15E+01

Page 50: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 50

Quaternary-Tree Adder: Logical Effort Delay Calculation

Prefix-2 Quarternary (2-2) (Dynamic-Static)

Stages# Bits Span

Branch LE ParasiticEnergy/Load Slope

Energy/Size Slope

Energy @ 0 size 0

Load [fJ]

Minimum Input

Capacitance (u)

Total Branch

Total LE Path Effort

input 3.0g0 (Gk1ND2) 0 1.0 1.02 1.34 2.40 1.14 10.22 0.50C1 (OAI) 2 1.0 1.36 1.69 2.40 1.64 11.99 0.60C3 (DAOI) 4 1.0 0.68 1.33 2.30 0.55 12.34 0.20C7 (OAI) 8 1.0 1.36 1.69 2.40 1.64 11.99 0.60C15 (DAOI) 16 2.0 0.68 1.33 2.30 0.55 12.34 0.20C31 (OAI) 16 2.0 1.36 1.69 2.40 1.64 11.99 0.60C47 (DAOI) 12 4.0 0.68 1.33 2.30 0.55 12.34 0.20C59 (TGMUXs) 4 4.0 1.90 2.74 0.40 1.06 1.71 0.80S63 (TGMUXs) 0 1.0 1.90 2.74 0.40 1.06 1.71 0.80INV (INV) 0 1.0 1.00 0.96 2.35 0.89 4.61 0.60

2.91E+001.92E+02 5.59E+02

Page 51: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 51

Simulation

Page 52: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 52

Adder

S0

S63

A0

A63

Cwire

Cwire

Test Setup

1mm wire

H=(Cin + Cwire)/Cin

Page 53: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 53

Wire Load Explanation

• The Wire load is expressed in terms of the input gate capacitance.

• For a 1mm wire:– If the input gates are minimum size, then the

wire load is roughly 80x the min. size inverter input cap (or H is roughly 80 in the worst case).

Page 54: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 54

Kogge-Stone Adder (2-2) Analysis

Page 55: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 55

Results

• The results are shown for a Kogge-Stone prefix 2 (2-2) adder with H=1

• No internal wiring is included.

• Measured delay is worst case delay from Clk to S.

Page 56: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 56

Estimation vs. SimulationEnergy vs. Delay Kogge-Stone-2

0

5E-11

1E-10

1.5E-10

2E-10

2.5E-10

3E-10

3.5E-10

0.00E+00 5.00E-11 1.00E-10 1.50E-10 2.00E-10 2.50E-10 3.00E-10 3.50E-10 4.00E-10

Delay

En

erg

y

delay vs. Energy

Estimated

Simple model (w/o branch correction)

Page 57: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 57

Energy-Delay CalculationEnergy vs. Delay Analysis

Cin 1 10 20 30 40 50 60 70H 153.6 15.36 7.68 5.12 3.84 3.072 2.56 2.194285714f 1.838654148 1.577006121 1.5057911 1.465633204 1.437791945 1.416561319 1.399447559 1.385139486

Delay 183.0282108 168.624487 164.7041 162.4934079 160.9607466 159.7920006 158.8498881 158.0622287Energy [J] 360.5587565 480.3520072 538.59688 580.6499651 615.0500515 644.824554 671.441635 695.7384103

Critical Path Energy 2418.006611 3456.676415 3961.6898 4326.311888 4624.578533 4882.738959 5113.522899 5324.188581

Input Capacitance [u] 0.333333333 3.333333333 6.6666667 10 13.33333333 16.66666667 20 23.33333333Size 0.666666667 6.666666667 13.333333 20 26.66666667 33.33333333 40 46.66666667

Energy [fJ] 12.04251502 26.39300879 41.448918 56.11848716 70.54453162 84.79309096 98.90235574 112.8972071

Input Capacitance [u] 0.300433684 2.576807388 4.9208858 7.184476491 9.397332977 11.57321339 13.72007411 15.84309869Size 0.500722807 4.29467898 8.2014763 11.97412748 15.66222163 19.28868899 22.86679019 26.40516449

Energy [fJ] 6.356320592 17.9961342 29.348829 40.05014041 50.35074284 60.36401926 70.15456226 79.76397111

Input Capacitance [u] 0.55239364 4.063641024 7.4098258 10.5298073 13.51140966 16.39416644 19.20052423 21.94490158Size 2.761968198 20.31820512 37.049129 52.6490365 67.55704831 81.97083218 96.00262115 109.7245079

Energy [fJ] 17.30290147 45.26564783 70.594916 93.69433198 115.4586974 136.2829861 156.3885039 175.9159682

Input Capacitance [u] 0.746809453 4.712049095 8.204154 11.34767295 14.28426175 17.07598679 19.75744616 22.35055124Size 1.244682422 7.853415159 13.67359 18.91278825 23.80710292 28.45997799 32.92907693 37.25091873

Energy [fJ] 8.949467974 29.08757121 45.854176 60.58609791 74.13694538 86.87318494 98.99630665 110.6325785

Input Capacitance [u] 1.373124299 7.430930267 12.353742 16.63152627 20.53779649 24.18918238 27.6495098 30.95863105Size 6.865621495 37.15465134 61.768708 83.15763133 102.6889825 120.9459119 138.247549 154.7931553

Energy [fJ] 24.67960998 72.55076325 109.46456 140.8379748 169.0849236 195.2157258 219.7763893 243.1045836

Input Capacitance [u] 1.856397564 8.616634205 13.678054 17.92332142 21.71255763 25.19519126 28.45149928 31.53089875Size 3.09399594 14.36105701 22.796757 29.87220237 36.18759605 41.99198543 47.41916546 52.55149791

Energy [fJ] 15.39543952 49.3697995 73.372069 93.02204918 110.2927721 125.9867956 140.5295525 154.180271

Input Capacitance [u] 3.413273081 13.58848489 20.596292 26.269015 31.21814047 35.69053337 39.81638122 43.67469288Size 17.06636541 67.94242443 102.98146 131.345075 156.0907024 178.4526669 199.0819061 218.3734644

Energy [fJ] 43.01642085 122.4453747 174.26845 215.2999958 250.5985885 282.1695087 311.0574365 337.8904978

Input Capacitance [u] 4.614579932 15.75670871 22.8042 28.30936811 33.00381685 37.1748743 40.97127759 44.48201591Size 7.690966553 26.26118118 38.007 47.18228018 55.00636142 61.95812383 68.28546265 74.13669318

Energy [fJ] 11.47980223 28.06486091 38.555051 46.74949443 53.73718139 59.9458004 65.5967467 70.82248068

Input Capacitance [u] 8.484616531 24.84842609 34.33836 41.49114989 47.45262204 52.66048899 57.33715443 61.61379664Size 42.42308266 124.2421304 171.6918 207.4557494 237.2631102 263.302445 286.6857722 308.0689832

Energy [fJ] 88.59754048 213.6845802 282.3102 332.9106058 374.502097 410.4676397 442.5057334 471.6091264

Input Capacitance [u] 11.47079072 28.81332356 38.019408 44.71382864 50.16691012 54.85059689 59.00025061 62.7527225Size 19.11798453 48.02220594 63.365681 74.52304773 83.61151686 91.41766148 98.33375102 104.5878708

Energy [fJ] 71.24869177 154.2807831 195.73871 225.172603 248.788957 268.8493131 286.4671013 302.2834208

Input Capacitance [u] 21.09081693 45.43878763 57.249285 65.53407194 72.12957929 77.6992339 82.56775672 86.92127377Size 105.4540846 227.1939382 286.24643 327.6703597 360.6478965 388.4961695 412.8387836 434.6063689

Energy [fJ] 201.901783 380.5281006 462.43857 518.6731647 562.8395914 599.7683219 631.7964492 660.2518357

Input Capacitance [u] 28.51376325 52.68915165 63.386369 70.62419988 76.25538833 80.93068331 84.96268061 88.52800622Size 47.52293875 87.81525275 105.64395 117.7069998 127.0923139 134.8844722 141.6044677 147.546677

Energy [fJ] 170.2570669 278.3029217 323.26118 352.9816766 375.7696959 394.4880196 410.4948677 424.5504842

Input Capacitance [u] 52.42694907 83.09111468 95.446627 103.5091724 109.6393831 114.6432755 118.900816 122.623637Size 262.1347453 415.4555734 477.23313 517.5458618 548.1969157 573.2163776 594.5040801 613.1181851

Energy [fJ] 483.5502262 600.7155042 643.62904 670.6330806 690.6976786 706.799734 720.3163847 732.0037153

Input Capacitance [u] 70.87869658 96.34940918 105.67844 111.5488823 115.9107514 119.4111983 122.3496006 124.8903246Size 118.131161 160.5823486 176.13073 185.9148039 193.1845857 199.0186638 203.916001 208.1505411

Energy [fJ] 804.010708 1023.894344 1102.573 1151.673008 1187.968424 1216.987393 1241.275748 1262.226473

Input Capacitance [u] 83.53936503 97.39974875 102.00618 104.8011191 106.8304774 108.4315927 109.7575961 110.891359Size 139.232275 162.3329146 170.01031 174.6685318 178.0507957 180.7193211 182.9293268 184.8189317

Energy [fJ] 489.9193448 510.550526 517.40721 521.5674658 524.5881657 526.9714257 528.9451818 530.6327879

Prefix-2 Kogge-Stone (2-0) (Dynamic)Number of Gates

XOR2

INV

OAI

DAOI

OAI

DAOI

INV

INV

INV

INV

INV

INV

dnand2f

OAI

DAOI

Page 58: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 58

Energy vs. DelayEstimate Comparison

(Cout = 1mm wire)

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

0.00E+00 5.00E-11 1.00E-10 1.50E-10 2.00E-10 2.50E-10 3.00E-10 3.50E-10 4.00E-10

Delay [S]

En

erg

y [

J]

Estimate assuming every gate switches

Spice

Critical Path Estimate

Estimate with correct switching

KS-2-2 dynamic

Complete model (w/ branch correction)

Page 59: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 59

Energy-Delay Estimates

Page 60: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 60

Adders: EnergyEnergy vs. Delay

Cout = 1mm wire (160u gate cap)For Cin = ~minimum input to 50*minimum input

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300

Delay [pS]

En

erg

y [p

J]

HC Dynamic (2-2)

KS Dynamic (2-0)

HC Dynamic (2-0)

KS Dynamic (2-2)

KS Static Prefix 2

HC Static Prefix 2

Quarternary Dynamic (2-2)

Quarternary Static

Dynamic: KS, HC

Static

Dynamic-Static

QT

KS

HC

Page 61: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 61

Energy-Delay comparison of 64-bit KS, HC and QT adders

0

0.5

1

1.5

2

2.5

3

0.9 1.1 1.3 1.5 1.7 1.9 2.1

Normalized Delay

No

rmal

ized

En

erg

y

QT Static

HC Static

KS Static

QT compound-domino

HC compound-domino

KS compound-domino

Page 62: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 62

Adders: Critical Path EnergyCritical Path Energy vs. Delay (no internal wire Energy)

Cout = 1mm wire (160u gate cap)For Cin = ~minimum input to 50*minimum input

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

Delay [S]

En

erg

y [f

J]

HC Dynamic (2-2)

KS Dynamic (2-0)

HC Dynamic (2-0)

KS Dynamic (2-2)

KS Static Prefix 2

HC Static Prefix 2

Quarternary (2-2)

Quarternary Static (2-2)

QT dynamic-static

HC dynamicQT static

KS dynamic-static

HC-dynamic

KS dynamic

HC-staticKS-static

Page 63: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 63

Intel 32-bit Adder 0.13u 1.2V [VLSI-2002]Comparison with Intel Measured Data

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

Delay [pS]

En

erg

y [f

J]

Kogge-Stone (2-0)

Quarternary (2-2)

Intel Kogge-Stone (2-0)

Intel Quarternary (2-2)

QT

KS

KS estimated

QT Estimated

Page 64: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 64

Energy-Delay comparison of 32-bit QT and KS adders: estimated vs. simulation in

0.10mm technology

0

10

20

30

40

50

60

90 100 110 120 130 140 150 160Delay [pS]

En

erg

y [p

J]

KS [9]

QT [9]

KS Estimate

QT Estimate

55%

35%

Page 65: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 65

Energy-Delay Space

• LE does not provide energy optimization• Our new results can save ~30-50% energy

0

10000

20000

30000

40000

50000

60000

70000

80000

10 11 12 13 14 15 16

Total Delay (FO4)

To

tal

Siz

e (

um

)

Potential energysaving at equal

performance

Page 66: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 66

Simulated Energy-Delay for 2 Adders

H-SPICE confirms potential energy savings

0.0E+00

5.0E-11

1.0E-10

1.5E-10

2.0E-10

2.5E-10

10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0Delay (FO4)

KS_LE KS_Opt

HC_LE HC_Opt

saving

Page 67: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 67

Estimated Energy-Delay for 2 Adders

• Static prefix-2 Kogge-Stone & Han-Carlson

• Can save ~40% energy on average

0

2E-11

4E-11

6E-11

8E-11

1E-10

1.2E-10

1.4E-10

10.0 11.0 12.0 13.0 14.0 15.0

Delay (FO4)

To

tal

En

erg

y (

J)

KS_LE HC_LE

KS_Opt HC_Optsaving

Page 68: Optimizing High-Performance Digital Circuits in Energy Constrained Environment Vojin G. Oklobdzija ACSEL Laboratory University of California, Davis

May 15, 2003 4ème journées francophones d'études: Faible Tension Faible Consommation, Présentation Invité 68

Conclusion• Relaxing delay constraint for a small amount can

result in huge energy saving. – This is very dependent on where design point is on the

Energy-Delay curve (“Hardware Intensity” V. Zyban)• We demonstrated our findings by simulation and

confirmed by matching against measured results• We developed a tool for estimation of design

trade-offs– The tool is important at the beginning of the design

• We found that a topology that is good for low-power is not necessarily the most efficient for speed and vice versa

• We are developing adder topologies suitable for both.