27
Orbit calculations using energy and angular momentum conservation Prof. Dr. Kurt Rauschnabel, Mechatronics and Microsystems Engineering REVA seminar for CVA teachers, 6.7.2009 A few examples related to space flight taken from our physics course for engineering students

Orbit calculations using energy and angular momentum conservation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Orbit calculations using energy and angular momentum conservation

Orbit calculations using energy and angular momentum conservation

Prof. Dr.Kurt Rauschnabel, Mechatronics and Microsystems EngineeringREVA seminar for CVA teachers, 6.7.2009

A few examples related to space flight taken from our physics course for engineering students

Page 2: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 2

Welcome to Heilbronnand northern Baden-Württemberg

Page 3: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 3

Heilbronn and the surrounding area –“the cradle of human space flight”

Lampoldshausen (1959 …)

?

?

LampoldshausenHeilbronnJulius Robert Mayer, 1814-1878

HeilbronnWeil der Stadt(≈50 km south of HN)Johannes Kepler, 1571-1630

Weil der Stadt

Hardheim(≈ 50 km north of HN)Walter Hohmann, 1880-1945

Hardheim

Page 4: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 4

Johannes Kepler, born 1571 in Weil der Stadt,mathematician and astronomer

Page 5: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 5

Johannes Kepler, 1571 - 1630

Analysis of astronomical observationsMotion of planets marsComplicated tracks as seen from earthTransformation from geocentric to heliocentric systemFound elliptical orbits (after ≈40 other assumptions)Astronomia novapublished 16092009 – year of astronomy!

Page 6: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 6

Kepler’s laws of planetary motion

1. Orbit of planet is an ellipse,sun at a focus

2. Line joining planet and sun:equal area in equal time

3. Square of orbital periodproportional to the cube of semi-major axis of orbit

.const~ 32

22

31

2132 ===⇒ K

aT

aTaT 2 a

Page 7: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 7

Julius Robert Mayer, born 1814 in Heilbronn,physician (and self-educated physicist)

Page 8: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 8

Julius Robert von Mayer, 1814 - 1878

Heat as a form of energyConservation of energyMechanical heat equivalent(thermodyn. calculation using known heat capacities cp, cv)Published in 1841/1842(1 year before James P. Joule)

later:More precise determination of mechanical heat equivalent

less known:Angular momentum transfer earth-moon by tidal friction

Page 9: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 9

Significance ofJulius Robert von Mayer’s findings

Heat as a form of energyConservation of Energy

Most important fundamental law of modern physicsTechnical application:Conversion of heat to mechanical energy

Page 10: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 10

Walter Hohmann, born 1880 in Hardheim,engineer

Page 11: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 11

Walter Hohmann, 1880 – 1945,engineer and astronautics pioneer

Private work on spaceflight problems (in1911…1915!)Application of well-known laws of physics (Kepler’s laws)1925 publication of his book:Die Erreichbarkeit der Himmelskörper(The accessibility of the Celestial Bodies)

Member of „Verein für Raumschiffahrt“Publications and talks about space transportationCorrespondence with other space and rocket pioneers (Oberth, Ziolkowski, Esnault-Pelterie, Valier)

Page 12: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 12

Walter Hohmann,astronautics pioneer

Escape velocity (needed to leave earth) Detailed orbit calculations for interplanetary flights to mars and venusFuel-efficient path between two different orbits (Hohmann transfer orbit)Re-entry into atmosphereProposal of separate landing vehicle (as used for moon-landing!)Orientation of spaceship by angular momentum conservation (manually - today: use gyroscopes)

Page 13: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 Page 13

Walter Hohmann

HonoursHohmann crater on moon

Wernher von Braunread Hohmann’s book when he was 18recognized (like many other experts) Hohman’s pioneering workHohmann school, Hohmannobervatory, …

accessibilityaccessibility

Page 14: Orbit calculations using energy and angular momentum conservation
Page 15: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 15

A few examples of orbit calculations

Engineering students, first year Not aerospace engineering, not physics! No frills !

Keep it simple! Do not use space-expert’s terms! Do not use complicated mathematical methods!

Simplifications, e.g.

only 2-body.problems (“heavy” planet plus orbiting satellite) no non-gravitational effects earth as perfect sphere, km 6370=ER gravitational acceleration on surface is g0 = 9.81 m/s² rotation period of earth T = 24 h (exact value: 23 h 56 min 4.1 s) …

Orbit calculation give examples of non-trivial application of fundamental laws of physics

Page 16: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 16

Circular earth orbit Simple example, because radius and velocity are constant energy and angular momentum are constant

Newton’s law of gravity: ( ) 2rmmGrF E⋅

=

need mass of earth: kg 10975 24 .mE ⋅= and grav. constant: 2211 kg/Nm 1067.6 −⋅=G

alternatively: use only radius of earth and grav. acceleration on surface: for ERr = we have ( ) 0mgRF E =

Newton’s law states ( ) 21~r

rF ( )2

0 ⎟⎠⎞

⎜⎝⎛=

rRmgrF E

231420 s/m 1098.3 ⋅==⋅=μ EE RgmG

“standard gravitational parameter”

Using µ, we have: ( ) 21r

mrF ⋅μ⋅=

Page 17: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 17

Circular earth orbit

Approach for orbit calculation: Gravitational force = centripetal force

rmr

m 22

1ω=⋅μ⋅ 2

3 ω=μr

(rv

T=

π=ω

2 is the angular velocity)

222 vrr

=ω=μ

rv μ=

2

32

⎟⎠⎞

⎜⎝⎛ π

Tr

or .const4 2

3

2

=μπ

=rT

This is Kepler’s 3rd law for circular orbits!

Page 18: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 18

Circular earth orbit

Exercises for students: 1. The ISS is on a circular “low earth orbit” (LEO) at

height km 350=h above ground. Calculate the period T and velocity v !

h 5.123

≈μ

⋅π=rT , km/s 7.7≈

μ=

rv

2. GPS satellites have an orbital period of h12=T . What is the radius of the orbit of a GPS-satellite?

km 266004

32

2

≈πμ

=Tr

3. A TV-satellite is on a geostationary orbit (GSO, period equals earth rotation time) above the equator. Calculate radius and velocity! Can you watch satellite-TV in northern Greenland (latitude λ ≈ 83°) ?

km 422004

32

2

≈πμ

=Tr , °≈λ=λ 81,cos maxmax r

RE 83° is too far north

km/s 1.32≈

π=

Trv

GPS

ISS

GSO

Page 19: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 19

a a

b

b

Elliptical orbits e.g. Hohmann transfer orbit LEO → GSO

Kepler’s first law:

Orbit is a conic section, i.e. circle, ellipse, parabola or hyperbola

depending on starting position / velocity / direction of vr -vector central body is at one focus

No proof given in physics lecture for engineering students!

Newton’s cannonball elliptical orbits are at least plausible!

Page 20: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 20

Angular momentum / angular momentum conservation Angular momentum ( )vmrprL rrrrr

×=×=

Describes rotation of a body. Inertia torque Mr

needed to change Lr

: MtL rr

=dd

Absence of external torque Angular momentum conservation .const=Lr

Kepler’s second law: equivalent to angular momentum conservation!

( ) ( ) ( ) ( )tvtrtvtrtA rrrr ×=α⋅⋅= 2

121 sin

dd

( ) ( ).const

22dd

==×

=mL

mtvmtr

tA

rrr

Note: From this relation we will calculate

the orbital period for an elliptical orbit!

Period:

mL

ba

tA

AT

2dd r

⋅⋅π== (with: area of ellipse baA ⋅⋅π= )

equal area in equal time!

( )trr

α( ) ttv d⋅r

( ) ( ) α⋅⋅⋅= sindd 21 ttvtrA rr

Page 21: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 21

a

bA B

C

D

F 1rr

ab

2rr

1vr

2vr

3vr3rr

Angular momentum / angular momentum conservation Lr

can easily be calculated at points A, B, C, D:

in A ( )11 vr rr ⊥ : 11 mvrL ⋅=r

in B ( )22 vr rr ⊥ : 22 mvrL ⋅=r

in C (D): 3mvbL ⋅=r

compare A (perigee), B (apogee,):

2211 vmrvmrL ⋅=⋅=r

or 1

2

2

1

rr

vv =

e.g. for a Hohmann transfer orbit LEO → GSO we get

km 67201 =r , km 422002 =r 3.62

1 ≈vv

satellite looses a factor ≈6 in velocity when “climbing” from A to B ! gains a factor ≈6 in velocity when “falling” from B to A!

To calculate 21, vv we need energy conservation …

Page 22: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 22

a a

a b

b

Elliptical earth orbit Energy conservation: .const=+= kinpottot EEE

Potential energy is not “mgh ” !

We have to integrate Newton’s law of gravity ( ) 21r

mrF ⋅μ⋅= ( EmG ⋅=μ )

choosing ( ) 0=∞potE we get:

( )rmr

rmrE

r

potμ−

=μ= ∫∞

d12

Energy conserv. at A → B: 2

222

1

1

212

1

rmmv

rmmv μ−=μ−

Relation 21 vv ↔ (angular mom. conserv. : 2

112 r

rvv = ): 2

22

212

121

1

212

1

rm

rrmv

rmmv μ−=μ−

Calculate kinetic energy and total energy, e.g. at r1

⎟⎟⎠

⎞⎜⎜⎝

⎛−μ=⎟⎟

⎞⎜⎜⎝

⎛−

212

2

212

121 111

rrm

rrmv ( )

22

21

22

21212

11

11

rrrrrmmvrEkin −

−μ==

A B

Page 23: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 23

Kinetic energy at r1: ( )2

2

21

22

21212

11

11

rrrrrmmvrEkin −

−μ==

Total energy at r1: ( )⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

μ=μ

−=1

21

22

22

21

1

212

11

111

rrr

rrr

mr

mmvrEtot

( ) ( )

( )( ) ( )( )( ) 12121

122

1121

2

1121221

2212

1

1

11

rrm

rrrrrrm

rrrrrm

rrrrrrrrrrmrEtot

+−

μ=++−

μ=

⎟⎟⎠

⎞⎜⎜⎝

⎛−

+μ=⎟⎟

⎞⎜⎜⎝

⎛−

+−−

μ=

Using arr 212 =+ (major axis of ellipse!) we get the very important result: amEtot 2

μ−=

Total energy on elliptical orbit does only depend on semi major axis a !

Page 24: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 24

ab

C

Fa

b

3vra

We can now easily calculate speed as a function of r:

am

rmmvEtot 2

221 μ−

−= ⎟⎠⎞

⎜⎝⎛ −μ=

arv

21122

“vis-viva equation”

Let us now go back and calculate the angular momentum (at point C), now using the vis-viva equation

Note: aFCr ==3

a

mbaa

mbmvbL μ⋅=⎟

⎠⎞

⎜⎝⎛ −μ⋅=⋅=

21123

r

Finally we calculate the orbiting period for the elliptical orbit:

amb

mbaT

mL

ba

tA

ATμ⋅

⋅⋅⋅π=

⋅⋅π==

2,

2dd r Important: T only dep. on semi major axis!

Thus we have derived Kepler’s 3rd law: .const4 2

3

2

=μπ

=aT

for elliptical orbits !

Page 25: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 25

Exercise for students: 4. Hohmann transfer LEO → GSO (cf. examples1 and 3)

given: km 3501 =h km672011 =+= hRr E , km/s 7.7=LEOv km 422002 =r , km/s 1.3=GSOv Calculate:

a and b of Hohmann ellipse, Time needed for transfer (=T/2), Velocity for elliptical orbit at 21, rr , vΔ for LEO→ transf. orbit and transf. orbit → GSO

ERrra ⋅≈=+

= 8.3km 244702

21 ,

km 177501 ≈−== raeFM , ER.eab ⋅≈≈−= 62km 1684422

h 6.1023

≈μ

π=aT , h 3.52

1 ≈T

at 1r : km/s 1.102112

11 ≈⎟⎟

⎞⎜⎜⎝

⎛−μ=

arv , km/s 4.21 +≈Δv

at 2r : km/s 6,12

112 ≈=

rrvv , km/s5.12 +≈Δv

a a

a b

b F M

Page 26: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 26

Exercise for students: 5. Toolbox-orbit

On November 18, 2008 space shuttle Endeavour astronaut Heidemarie Stefanyshyn-Piper lost a toolbox during work outside of the ISS. assume: ISS on LEO , km3501 =h , km672011 =+= hRr E , km/s7.7=LEOv toolbox escaped backwards with m/s5.1−=Δv calculate:

min. and max. height of toolbox-orbit, diff. in orbital period (toolbox – ISS)

vis-viva eq. ( )

⎟⎟⎠

⎞⎜⎜⎝

⎛μΔ+−

=

212

12

1

vvr

aLEO

, km6.21 −=−=Δ raa , km8.344212 =Δ+= ahh

orbit “350 km x 344.8 km” as 2

3

~ aT we can use error propagation” to calculate TΔ :

s 2.323

−=Δ⇒Δ⋅=

Δ Taa

TT (toolbox orbits faster!)

TΔ is equivalent to a distance of km25≈ after one orbit!

Page 27: Orbit calculations using energy and angular momentum conservation

K. Rauschnabel , REVA seminar for CVA teachers, Heilbronn, 6.7.2009 page 27

Thank you for your attention! Are there any questions ?

Please use our potential well (and your €-coins) for orbit simulations

Content of potential well goes to”KRAKI”, the nursery of

Prof. Dr. Kurt Rauschnabel Hochschule Heilbronn Mechatronik und Mikrosystemtechnik [email protected]