40
1 Challenge the future Overview Electrical Machines and Drives 7-9 1: Introduction, Maxwell’s equations, magnetic circuits 11-9 1.2-3: Magnetic circuits, Principles 14-9 3-4.2: Principles, DC machines 18-9 4.3-4.7: DC machines and drives 21-9 5.2-5.6: IM introduction, IM principles 25-9 Guest lecture Emile Brink 28-9 5.8-5.10: IM equivalent circuits and characteristics 2-10 5.13-6.3: IM drives, SM 5-10 6.4-6.13: SM, PMACM 12-10 6.14-8.3: PMACM, other machines 19-10: rest, questions 9-11: exam

Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

1Challenge the future

Overview Electrical Machines and

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam

Page 2: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

2Challenge the future

Induction machines

• Introduction (5.1)

• Rotating magnetic field (5.2, also for SM)

• Why does an induction machine rotate?

• Induced voltage (5.3, also for SM)

• Definitions (5.4, 5.5)

• Equivalent circuits and voltage equations (5.7)

• Parameter identification (5.8)

• Performance characteristics (5.9)• Torque-speed characteristic• Stator current

• Efficiency / Power flow in three modes of operation (5.10)

• Speed control (5.13)

• Linear induction motors (5.16)

Page 3: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

3Challenge the future

Parameter identification (5.8)

• resistance measurement (dc current) - which resistance?

• no-load test - which parameters?

• blocked-rotor test - which parameters?

Page 4: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

4Challenge the future

Performance characteristics (5.9)

t

WPPP f

dismeche d

d++=

2 2 21Rag R R R R R

R sP I R I R I

s s

′ −′ ′ ′ ′ ′= = +

mechag PPP += 2

agsPP =2

agmech PsP )1( −=1:)1(:::2 ssPPP agmech −=

Power balance:- neglect iron losses- field energy constantThe power crossing the air gap per phase is

From this analysis:

Page 5: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

5Challenge the future

Torque-speed characteristic per phase

2(1 )(1 )

2(1 )

mech ag R R

mech m mech mech

sP s P R I

s

P T s Tp

ω ω

− ′ ′= − = = = −

2

2 2R R

mech ag

R Ip pT P

sω ω′ ′

= =

2 21

222 2

( )

R R Rmech

R

R I V Rp pT

s sRL

s σ

ω ωω

′ ′ ′= =

′ +

1 0R =assuming

Page 6: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

6Challenge the future

21

222

( )

Rmech

R

V RpT

sRL

s σ

ωω

′=

′ +

Torque speed characteristic

Page 7: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

7Challenge the future

Torque-speed characteristic per phase

RRL

s σω′

<<

At low values of the slipRR

Ls σω′

>>2

2112

22 2( )

Rmech

RR

V Rp p sT V

s RRL

s σ

ω ωω

′= ≈

′′ +

> Torque is proportional to the slip

2 21 1

2 222 2 ( )

( )

R Rmech

R

V R V Rp pT

s L sRL

σ

ω ω ωω

′ ′= ≈

′ +

At high values of the slip

> Torque is inversely proportional to the slip

Page 8: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

8Challenge the future

Maximum torque

0d

d =s

T RRs

Lσω′

= ± proportional to RR

independent of RR

21

4mech

VpT

Lσω ω= ±

Page 9: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

9Challenge the future

Induction machines

• Introduction (5.1)

• Rotating magnetic field (5.2, also for SM)

• Why does an induction machine rotate?

• Induced voltage (5.3, also for SM)

• Definitions (5.4, 5.5)

• Equivalent circuits and voltage equations (5.7)

• Parameter identification (5.8)

• Performance characteristics (5.9)• Torque-speed characteristic• Stator current

• Efficiency / Power flow in three modes of operation (5.10)

• Speed control (5.13)

• Linear induction motors (5.16)

Page 10: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

10Challenge the future

Stator current

j jRs

U UI

RL Ls σ

ω ω= + ′

+

1 0R =assuming

- Calculate the current phasor for s=0- Calculate the current phasor for s=∞- What is form of the trajectory of the stator current phasor?

Page 11: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

11Challenge the future

Stator current: Heyland circle

j jRs

U UI

RL Ls σ

ω ω= + ′

+

Page 12: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

12Challenge the future

Power factor

• What is the power factor?

Page 13: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

13Challenge the future

Induction machines

• Introduction (5.1)

• Rotating magnetic field (5.2, also for SM)

• Why does an induction machine rotate?

• Induced voltage (5.3, also for SM)

• Definitions (5.4, 5.5)

• Equivalent circuits and voltage equations (5.7)

• Parameter identification (5.8)

• Performance characteristics (5.9)• Torque-speed characteristic• Stator current

• Efficiency / Power flow in three modes of operation (5.10)

• Speed control (5.13)

• Linear induction motors (5.16)

Page 14: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

14Challenge the future

Efficiency: power flow

Prot: core, friction and windage losses

agsPP =2s

PPag

2=

agmech PsP )1( −=

Pag Pmech

motor + +

generator - -

plugging + -

Page 15: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

15Challenge the future

Efficiency

agmechout PsPP )1( −==

agsPP =2

Ideal: agin PP =

sP

P

in

outideal −== 1η

Page 16: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

16Challenge the future

Induction machines

• Introduction (5.1)

• Rotating magnetic field (5.2, also for SM)

• Why does an induction machine rotate?

• Induced voltage (5.3, also for SM)

• Definitions (5.4, 5.5)

• Equivalent circuits and voltage equations (5.7)

• Parameter identification (5.8)

• Performance characteristics (5.9)

• Power flow in three modes of operation (5.10)

• Speed control (5.13)

• Linear induction motors (5.16)

Page 17: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

17Challenge the future

Speed control

• How can the speed of an

induction machine be

controlled?

Page 18: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

18Challenge the future

Speed control

• Old:

• pole changing

• line voltage control

• rotor resistance control

• State-of-the-art:

• line frequency control

• rotor slip energy recovery

• Realized by means of

• Voltage source inverter (VSI)

• Current source inverter (CSI) not discussed

• Replaces dc motor drives

Page 19: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

19Challenge the future

Line voltage control / soft starter

• To limit inrush currents

Page 20: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

20Challenge the future

Line frequency control

Page 21: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

21Challenge the future

Line frequency control

Page 22: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

22Challenge the future

Voltage as a function of frequency

pw fNkE Φ= π2

Can be realized with�controlled rectifier�PWM

Page 23: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

23Challenge the future

Principle of voltage source converter

v v

t1f

v v

v2

t

control tri

c

Ao ao,1

d

0

2dv

0

b.

c.

T

v

V

+

i

+

d g1

g2

o

an

2

0

D1

D2

S1

S2

V2

d

_ _a.

N

Vd

Phase leg ofVoltage Source Converter

=Basic building block of

modern power electronics

Average output voltage is a replica of vcontrol

Page 24: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

24Challenge the future

Field weakening above base speed

Page 25: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

25Challenge the future

Closed loop speed control

• Why is the slip limited?

Page 26: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

26Challenge the future

Speed control

• Old:

• pole changing

• line voltage control

• rotor resistance control

• State-of-the-art:

• line frequency control

• rotor slip energy recovery

• Realized by means of

• Voltage source inverter (VSI)

• Current source inverter (CSI) not discussed

• Replaces dc motor drives

Page 27: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

27Challenge the future

Rotor resistance control

Page 28: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

28Challenge the future

Slip energy recovery

Page 29: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

29Challenge the future

Doubly fed induction generator

Page 30: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

30Challenge the future

Large wind turbines

Page 31: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

31Challenge the future

Example large

wind turbine

REpower•5 MW•12 rpm•126 m rotor diameter•100 m tower

Source: REpower Systems AG, photo: Jan Oelker.

Page 32: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

32Challenge the future

Wind power stations: Horns Rev

80 x 2 MW

Copyright: DONG Energy A/S

Page 33: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

33Challenge the future

Horns Rev construction

Copyright: DONG Energy A/S

Page 34: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

34Challenge the future

Generator system

with gear

NEG Micon

Source: Bundesverband WindEnergie e

Page 35: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

35Challenge the future

DFIG system

Works as a generator both below and above synchronous speed.What is the direction of the energy flow in generator operation - Above synchronous speed?- Below synchronous speed?

agsPP =2

agmech PsP )1( −=

Page 36: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

36Challenge the future

Induction machines

• Introduction (5.1)

• Rotating magnetic field (5.2, also for SM)

• Why does an induction machine rotate?

• Induced voltage (5.3, also for SM)

• Definitions (5.4, 5.5)

• Equivalent circuits and voltage equations (5.7)

• Parameter identification (5.8)

• Performance characteristics (5.9)

• Power flow in three modes of operation (5.10)

• Speed control (5.13)

• Linear induction motors (5.16)

Page 37: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

37Challenge the future

Linear induction machines

Page 38: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

38Challenge the future

Linear induction machines

Page 39: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

39Challenge the future

Traction application LIM

Page 40: Overview Electrical Machines and Drives - TU Delft OCW€¦ · Challenge the future 1 Overview Electrical Machines and Drives • 7-9 1: Introduction, Maxwell’s equations, magnetic

40Challenge the future

Overview Electrical Machines and

Drives

• 7-9 1: Introduction, Maxwell’s equations, magnetic circuits

• 11-9 1.2-3: Magnetic circuits, Principles

• 14-9 3-4.2: Principles, DC machines

• 18-9 4.3-4.7: DC machines and drives

• 21-9 5.2-5.6: IM introduction, IM principles

• 25-9 Guest lecture Emile Brink

• 28-9 5.8-5.10: IM equivalent circuits and characteristics

• 2-10 5.13-6.3: IM drives, SM

• 5-10 6.4-6.13: SM, PMACM

• 12-10 6.14-8.3: PMACM, other machines

• 19-10: rest, questions

• 9-11: exam