14
Background Information 1 Overview of Solid-Phase Peptide Synthesis (SPPS) and Secondary Structure Determination by FTIR Introduction Proteins are ubiquitous in living organisms and cells, and can serve a variety of functions. Proteins can act as enzymes, hormones, antibiotics, receptors, or serve as structural supports in tissues such as muscle, hair, and skin. Due to the high molecular weight and the difficulty in isolating significant quantities of many proteins, scientists have been working for decades to develop methods to synthesize naturally occurring peptides (short proteins) or protein fragments in the laboratory in order to study or mimic the structure and biological activity of full length proteins. Another motivation to develop efficient peptide synthesis techniques is the potential of these molecules to serve as therapeutic agents. 1 More recently, the natural ability of peptides/proteins to selfDassemble into defined structures has also become a target for exploitation in a variety of materials science and biomedical applications. Fibrilliar aggregates and hydrogels formed from peptides and peptide conjugates have been successfully used as biomimetic cell culture scaffolds, 2 drug delivery vehicles, 3 and stimuliDresponsive biomaterials. 4,5 Peptides have also been used to control the morphology of larger polymers, 6,7 and direct the assembly of inorganic nanoparticles to form peptide based wires 8 and sensors. 9 As an introduction to this rapidly expanding field, this experiment will cover methods used to synthesize and characterize peptides, as well as evaluate the secondary structure of a peptide following selfDassembly. Basic Peptide Structure Peptides are formed by sequential addition of specific amino acids. The amino acids all have similar structures that contain an amine on one end and a carboxylic acid on the other (hence the name ‘amino acids’), but they vary in the RDgroup attached to the alpha carbon. To form a peptide, amino acids are joined ‘headDtoDtail’ by coupling the amine of one amino acid with the carboxylic acid of another amino acid to form an amide bond. The general structure of a peptide containing four amino acids (a ‘tetrapeptide’) is shown in Figure 1. The end of the peptide containing the amine is called the ‘NDterminus’ and the end containing the carboxylic acid is called the ‘CDterminus’. Proteins are naturally synthesized starting at the NDterminus, so by convention, the amino acid sequence of a peptide is typically listed from the ND to CDterminus. For example, if your peptide contains arginine, glycine and aspartic acid, the peptide would be referred to as ArgDGlyDAsp or RGD if using the 1Dletter abbreviation for each residue. Note: a peptide with the sequence ArgDGlyDAsp is NOT the same as AspDGlyDArg. Solid-Phase Peptide Synthesis (SPPS) In order to efficiently synthesize peptides, a technique known as ‘solidDphase peptide synthesis’ (SPPS) was first developed in the 1960’s. 10 The key feature of SPPS is the sequential attachment of amino acids to a macroscopic solid support matrix (commonly referred to as resins or beads). While a wide variety of solid supports are available, some of the most common are made from small beads (~70D400 microns in size) of polystyrene plastic Figure 1. General structure of a peptide containing four amino acids

Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 1!

Overview'of'Solid-Phase'Peptide'Synthesis'(SPPS)'and'Secondary'Structure'Determination'by'FTIR'"Introduction'Proteins"are"ubiquitous" in" living"organisms"and"cells," and"can" serve"a"variety"of" functions."Proteins"can"act"as"enzymes,"hormones,"antibiotics," receptors,"or"serve"as"structural" supports" in" tissues"such"as"muscle,"hair,"and"skin." Due" to" the" high"molecular" weight" and" the" difficulty" in" isolating" significant" quantities" of"many" proteins,"scientists"have"been"working"for"decades"to"develop"methods"to"synthesize"naturally"occurring"peptides"(short"proteins)"or"protein"fragments"in"the"laboratory"in"order"to"study"or"mimic"the"structure"and"biological"activity"of"full" length"proteins."Another"motivation"to"develop"efficient"peptide"synthesis"techniques"is"the"potential"of"these"molecules"to"serve"as"therapeutic"agents.1"""More"recently,"the"natural"ability"of"peptides/proteins"to"selfDassemble"into"defined"structures"has"also"become"a"target" for"exploitation" in"a"variety"of"materials"science"and"biomedical"applications."Fibrilliar"aggregates"and"hydrogels"formed"from"peptides"and"peptide"conjugates"have"been"successfully"used"as"biomimetic"cell"culture"scaffolds,2"drug" delivery" vehicles,3"and" stimuliDresponsive" biomaterials.4 ,5"Peptides" have" also" been" used" to"control"the"morphology"of"larger"polymers,6,7"and"direct"the"assembly"of"inorganic"nanoparticles"to"form"peptide"based"wires8"and"sensors.9"As"an"introduction"to"this"rapidly"expanding"field,"this"experiment"will"cover"methods"used"to"synthesize"and"characterize"peptides,"as"well"as"evaluate"the"secondary"structure"of"a"peptide"following"selfDassembly."""Basic'Peptide'Structure'Peptides"are"formed"by"sequential"addition"of"specific"amino"acids."The"amino"acids"all"have"similar"structures"that"contain"an"amine"on"one"end"and"a"carboxylic"acid"on"the"other"(hence"the"name"‘amino"acids’),"but"they"vary" in" the"RDgroup"attached" to" the"alpha"carbon."To" form"a"peptide,"amino"acids"are" joined" ‘headDtoDtail’"by"coupling"the"amine"of"one"amino"acid"with"the"carboxylic"acid"of"another"amino"acid"to" form"an"amide"bond."The"general"structure"of"a"peptide"containing"four"amino"acids"(a"‘tetrapeptide’)"is"shown"in"Figure"1."The"end"of"the"peptide"containing"the"amine"is"called"the"‘NDterminus’"and"the"end"containing"the"carboxylic"acid"is"called"the"‘CDterminus’."Proteins"are"naturally"synthesized"starting"at"the"NDterminus,"so"by"convention,"the"amino"acid"sequence"of"a"peptide"is"typically"listed"from"the"ND"to"CDterminus."For"example,"if"your"peptide"contains"arginine,"glycine" and" aspartic" acid," the" peptide" would" be" referred" to" as" ArgDGlyDAsp" or" RGD" if" using" the" 1Dletter"abbreviation"for"each"residue."Note:"a"peptide"with"the"sequence"ArgDGlyDAsp"is"NOT"the"same"as"AspDGlyDArg."

"Solid-Phase'Peptide'Synthesis'(SPPS)!'In"order"to"efficiently"synthesize"peptides,"a"technique"known"as"‘solidDphase"peptide"synthesis’"(SPPS)"was"first"developed"in"the"1960’s.10"The"key"feature"of"SPPS"is"the"sequential"attachment"of"amino"acids"to"a"macroscopic"solid" support" matrix" (commonly" referred" to" as" resins" or" beads)." While" a" wide" variety" of" solid" supports" are"available,"some"of"the"most"common"are"made"from"small"beads"(~70D400"microns"in"size)"of"polystyrene"plastic"

!!

Figure'1."General"structure"of"a"peptide"containing"four"amino"acids"

Page 2: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 2!

that" have" been" chemically"modified" to" attach" a" ‘linker’"molecule" to" the"surface" of" the" bead.11"Each" bead" has" multiple" linker" molecules" on" its"surface." The" number" of" linker" molecules" on" the" surface" of" a" particular"batch"of"beads"is"usually"designated"by"giving"the"millimoles"of"linker"per"gram" of" beads" (mmol/g)." The" chemical" structure" of" the" particular" resin"that"we"will"use"in"this"lab"is"shown"in"Figure"2"(called"Wang"resin12)."The"hydroxyl"group"highlighted"in"blue"is"the"point"of"attachment"(via"an"ester"linkage)"to"the"C'terminal"amino"acid"in"the"peptide"chain."The"rest"of"the"peptide" is" then" synthesized" in" a" stepDwise" fashion" by" adding" one" amino"acid"at"a"time"(see"Scheme"1"below)."Note:"As"mentioned"above,"proteins"are"naturally"synthesized"starting" from"the"NDterminus,"but"SPPS"techniques"synthesize"peptides"starting" from"the"CDterminus"for"ease"of"synthesis"and"to"minimize"racemization"of"the"amino"acids."Therefore,"to"synthesize"the"peptide"GlyDArgDAsp,"you"would"first"add"Asp,"then"Arg,"then"Gly"to"the"resin."" "" "Fmoc'Strategy'in'SPPS'Since"each"amino"acid"contains"both"an"amine"and"carboxylic"acid"functional"group,"it"has"the"potential"to"react"with"itself."Therefore,"in"order"to"synthesize"peptides"containing"a"precise"sequence"of"different"amino"acids,"we"must"use"careful"protecting"group"strategies"so"that"we"can"control"which"end"of"the"amino"acid"can"participate"in"the"coupling"reaction."One"of"the"most"commonly"used"protection"strategies"is"called"the"‘Fmoc"Strategy’,"in"which" the" amineDend" of" the" amino" acids" used" are" first" ‘protected’" with" a" fluorenylmethoxycarbonyl" (Fmoc)"group"(Scheme"1).13,14"These"derivatives"are"now"commercially"available"from"a"variety"of"vendors."""The" Fmoc" group"prevents" the" amineDend"of" the" amino" acid" from" reacting," so" that"the" coupling" is" selective" between" the"terminal" amine" group"on" the" solid" phase"resin," and" the" carboxylic" acid" group" on"the"amino"acid" to"be"added."To"continue"the" growth" of" the" peptide" chain," the"Fmoc" group" can" be" removed" by" reaction"with"a"strong"base,"such"as"piperidine,"as"shown"in"Scheme"2."

"'

Figure'2.'Wang"resin"linker."

Scheme'1."Synthesis"of"FmocDprotected"amino"acids.""

"

Scheme'2."Mechanism"of"Fmoc"removal"from"the"growing"peptide.""

"

Page 3: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 3!

The"general"steps"carried"out"in"solidDphase"peptide"synthesis"using"the"Fmoc"strategy"are"outlined"in"Scheme"3."Wang" resin" is" commonly" sold" with" one" amino" acid" already" attached." Therefore," the" resin" must" first" be"‘deprotected’"by"removing"the"Fmoc"group"on"the"first"amino"acid"(CDterminal"amino"acid)"using"a"base"such"as"piperidine." The" second" FmocDprotected" amino" acid" is" then" attached"using" a" coupling" reagent" to" facilitate" the"reaction" (see" further" discussion" of" coupling" reagents" below)." The" second" amino" acid" is" then" deprotected" by"treatment"with"piperidine,"and"then"a"third"Fmoc"amino"acid"can"be"coupled."After"the"desired"peptide"length"is"reached," the" peptide" undergoes" a" final" deprotection" step" and" can" be" detached" from" the" solid" support" using"trifluoroacetic"acid"(TFA)."When"the"peptide"is"cleaved"from"the"Wang"resin"linker,"the"carboxylic"acid"terminus"will"be"regenerated."""

'Scheme'3:"Peptide"synthesis"using"the"Fmoc"strategy."

!"'

Page 4: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 4!

Protection'of'Reactive'Side'Chains'Several"amino"acids"contain"reactive"side"chains"(DOH,"DNH,"DSH,"DCOOH)"that"must"also"be"protected"to"prevent"

sideDreactions"from"occurring."The"protecting"groups"for"these"amino"acids"must"be"chosen"carefully"so"that"they"

are"compatible"with"the"Fmoc"removal"conditions.13,14

"While"a"wide"variety"of"options"are"available"for"all"of"the"

different" reactive" amino" acids,15"select" examples" of" common" protecting" groups" are" given" in" Figure" 3." As"

discussed"above,"the"Fmoc"groups"that"block"the"end"of"the"growing"peptide"chain"are"removed"using"a"base."

Therefore,"to"prevent"degradation"during"synthesis,"sideDchain"protecting"groups"such"as"tertDbutyl"(tDBu)"or"tertDbutyloxycarbonyl" (Boc)" can"be"employed"due" to" their" stability" in" basic" conditions." These"particular" protecting"

groups"are"also"convenient"when"used"in"conjunction"with"Wang"resin"beads"as"they"are"unstable" in"acid,"and"

can"be"removed"during"the"final"cleavage"step"of"the"peptide"from"the"resin"beads."

Coupling'Reagents'In"order"to"get"an"efficient"reaction"between"an"amine"and"a"carboxylic"acid"to"form"an"amide"bond,"a"‘coupling"

reagent’"or" ‘activator’"must"be"used,"as" illustrated" in"Scheme"4."The"–OH"of"a"carboxylic"acid" is"a"poor" leaving"

group," making" it" difficult" to" directly" displace." Therefore," carboxylic" acids" are" typically" converted" into" an"

‘activated"ester’"prior"to"reaction"in"order"to"facilitate"displacement"of"the"–OH"by"the"–NH2"on"the"end"of"the"

growing"peptide.16""

''Figure'3."Select"examples"of"protecting"groups"for"some"of"the"reactive"amino"acids."

Scheme'4."Activation"of"the"carboxylic"acid"facilitates"amide"bond"formation.""

"

"

Page 5: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 5!

"There" are" many" different" coupling" reagents" that" have" been" developed" for" this" purpose.16"We" will" use" OD(benzotriazolD1Dyl)DN,N,N’,N’Dtetramethyluronium" hexafluorophosphate" (HBTU),which" reacts" as" shown" in" the"mechanism"given"in"Scheme"5."While"this"compound"is"sold"as"a"‘uronium’"salt,"it"actually"has"the"guanidinium"structure"shown"below.17"Briefly,"an"FmocDprotected"amino"acid"is"first"mixed"with"HBTU"in"the"presence"of"base"(N,NDdiisopropylethylamine," DIPEA)" to" convert" the" carboxylic" acid" to" an" ester" that" is" ‘activated’" toward"nucleophilic"attack."The"free"amine"on"the"end"of"the"growing"peptide"chain"can"then"attack"the"carbonyl"and"displace"the"activator"group"(here"hydroxybenzotriazole,"HOBt),"forming"an"amide"bond."Over"the"course"of"this"reaction"two"byDproducts"are"generated,"1,1,3,3Dtetramethylurea"and"HOBt,"which"are"subsequently"washed"out.""""

'

'

'

'

Scheme'5."Activation"of"the"carboxylic"acid"to"facilitate"amide"bond"formation."""

""

Page 6: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 6!

'

Cleavage'and'Isolation'of'the'Peptide'The" final" step"of" the"synthesis" is" to"cleave" the"peptides" from"the" resin"beads."Before"cleavage,"any" remaining"Fmoc" groups" are" removed." As" detailed" in" Scheme" 6," peptides" are" typically" detached" from"Wang" resin" using"trifluoroacetic"acid"(TFA),"which"regenerates"the"carboxylic"acid"on"the"CDterminus"of"the"peptide."Nucleophilic"scavengers"are"often"added"to"the"reaction"mixture"to"prevent"further"reaction"of"the"benzyl"cation"produced"on"the"resin."

If" the"peptide"has"a" free"NDterminus," it"will"become"protonated"under"these"acidic"conditions,"and"form"a"salt"with"TFA."Note:"The"peptide"we"will"synthesize"is"NDacylated,"thus"will"not"form"a"salt."""

'

''Advantages'and'Disadvantages'of'SPPS'"Solid"phase"reactions"have"advantages"and"disadvantages.13"Since"the"peptide"is"anchored"to"a"solid"support"and"only" has" one" reactive" end," a" large" excess" of" reagents" at" high" concentrations" can" be" used" to" drive" coupling"reactions" to" completion." Excess" reagents" and" side" products" can" easily" be" removed" by" filtration" and"washing"steps" after" each" coupling" step." Disadvantages" to" this" approach" are" the" cost" of" the" solid" support," the" limited"number" of" ‘linker’" groups" on" the" surface" of" the" beads," and" tedious" nature" of" repetitive" stepDwise" synthesis"(However," there"are"commercially"available" instruments"called" ‘peptide"synthesizers’" that"can"do"the"work"for"you!)." Typically," only" peptides" containing" less" than" 30" amino" acids" are" synthesized" using" this" method." Even"though"the"reaction"conditions"have"been"highly"optimized"and"are"quite"efficient,"if"you"get"98%"of"the"coupled"product" at" each" step," after" the" addition" of" 30" amino" acids" only" ~55%" of" your" product" will" have" the" correct"sequence."Therefore,"longer"sequences"are"more"commonly"obtained"through"expression"by"bacterial"cells"such"as"E.'coli.""""''''

Scheme'6."Cleavage"of"the"peptide"from"the"resin"using"TFA.""

""""""

Page 7: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

7

Secondary Structure Determination Thus   far,  we  have   only   discussed   the   ‘primary   structure’  of peptides and proteins, which refers to the particular sequence of amino acids in the chain. However, protein function heavily relies on the assembly of the molecule into higher order structures, referred to as secondary, tertiary and quaternary structures. Here we will focus on the secondary structure, which is governed by hydrogen bonding interactions between amide groups in the protein backbone (C=O---H-N). Depending on the location and size of the amino acid side chains in the primary structure, different domains within a protein will commonly fold into either an alpha helix (spiral) or beta sheet (extended) structure as illustrated in Figure 4. While some proteins will primarily fold into one structure or the other, oftentimes a single protein will have domains of both. Beta sheets can form by association of either parallel or anti-parallel strands, where the strands are either oriented in the same N to C direction or in alternating directions, respectively (Figure 5). The close C=O---H-N distances obtained in the anti-parallel beta sheet arrangement typically leads to the strongest hydrogen bonds.

To determine the 3D structure of proteins, X-ray crystallography and multi-dimensional NMR spectroscopy are commonly employed. However, these techniques are time consuming and require a high level of expertise to interpret the data. Here, we will utilize FTIR spectroscopy to gain some insight into the secondary structure of your peptide. The vibration of the amide C=O in the peptide backbone (~1600-1700 cm-1) is particularly sensitive to hydrogen bonds, and can be used to identify the presence of different types of secondary structures. Through a compilation of spectra of many well-characterized proteins, a consensus has emerged regarding peak assignments corresponding to beta-sheets, alpha-helices, random coils, turns, etc. as summarized in Table 1.18,19 While FTIR analysis of proteins with several different structural domains is quite complex due to overlapping peaks, FTIR can be very useful for simple peptides such as ours. As noted in Table 1, lower C=O vibration frequencies are associated with stronger hydrogen bonds. Relevant to your peptide, a prominent shift in the C=O vibration from ~1640 cm-1 to ~1625 cm-1 is observed upon transition from a disordered state to a beta sheet structure,20 due to the strong hydrogen bonds formed in an extended beta conformation. Furthermore, parallel and anti-parallel beta sheet structures can often be distinguished by a weak secondary band around 1645 cm-1 or 1690 cm-1, respectively.18,19

Figure 4. Illustrations of alpha helix and beta sheet structures.

Figure 5. Hydrogen bonding in parallel vs. anti-parallel beta sheet structures.

Page 8: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 8!

'''Table' 1." Consensus" amide" C=O" vibrations" of" proteins" in" various" conformations" as" measured" with" FTIR"spectroscopy.18D20""Secondary2Structure2 Vibration2(cm'1)2Beta"sheet/"extended""""""""""""""Parallel""""""""""""""AntiDparallel"

1621D1640"(strong)"~1645"(weak)"~1690"(weak)"

Alpha"helix" 1651D1662"

Random"coil/"Disordered" 1638D1655"

Turns" 1663D1696""""Lab'Overview''"The"peptide"that"you"will"synthesize" in"this" laboratory"exercise" is"modeled"after"the"repetitive"glycineDalanineDglycineDalanineDglycineDserine" (GAGAGS)"motif" found" in" silk" fibroin"produced"by"Bombyx'mori" silkworms.21"The"GAGAGS"domains"in"silk"selfDassemble"into"highly"crystalline,"antiDparallel"beta"sheets,"which"are"responsible"for"the" characteristic" strength" of" silk" fibers." You"will" synthesize" a" peptide"mimic" of" silk" containing" a" short" GAGA"sequence" with" an" attached" alkyl" tail" to" increase" solubility" and" aid" in" characterization." Once" synthesized,"directions"are"provided"to"induce"selfDassembly"of"the"peptide"in"an"organic"solvent,"resulting"in"the"formation"of"an" organogel" (gel" in" an" organic" solvent," as" opposed" to" a" hydrogel" which" forms" in" water)." Following" solvent"evaporation,"your"task"will"be"to"deduce"the"secondary"structure"of"your"peptide"xerogel"(gel"with"the"solvent"removed)"using"FTIR"spectroscopy."""""""""""""""""""""""""

Page 9: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Background Information

! 9!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!References''(1)"a)"Bray,"B.L."LargeDscale"manufacture"of"peptide"therapeutics"by"chemical"synthesis."Nat.'Rev.'Drug'Discov."

2003,"2,"587D593."b)"Robinson,"J.A."“Protein"epitope"mimetics"as"antiDinfectives."Curr.'Opin.'Chem.'Biol."2011,"15,"379D86."c)"Schall,"N.;"Page,"N.;"Macri,"C.;"Chaloin,"O.;"Briand,"J.P.;"Muller,"S."J."PeptideDbased"approaches"to"treat"lupus"and"other"autoimmune"diseases."Autoimmun."2012,"39,"143D153.""

(2)"Matson,"J."B.;"Stupp,"S."I."SelfDassembling"peptide"scaffolds"for"regenerative"medicine."Chem.'Comm.'2011,'48'(1),"26–33."

(3)" Branco,"M." C.;" Schneider," J." P." SelfDassembling"materials" for" therapeutic" delivery."Acta' Biomater."2009,"5,"817D831."

(4)"Zhang,"S."Fabrication"of"novel"biomaterials"through"molecular"selfDassembly."Nat.'Biotechnol."2003,"21,"1171–1178."

(5)"Mart,"R." J.;"Osborne,"R."D.;" Stevens,"M."M.;"Ulijn,"R."V."PeptideDbased"stimuliDresponsive"biomaterials."Soft'Matter,"2006,"2,"822D835."

(6)"Frauenrath,"H;" Jahnke,"E."A"General"Concept" for" the"Preparation"of"Hierarchically"Structured"πDConjugated"Polymers."Chem.'Eur.'J."2008,"14,"2942D2955."

(7)"Shu,"J.Y.;"Panganiban,"B.;"Xu,"T."PeptideDpolymer"conjugates:"from"fundamental"science"to"application."Annu.'Rev.'Phys.'Chem."2013,"64,"631D657."

(8)"Reches,"M.;"Gazit,"E."Casting"Metal"Nanowires"Within"Discrete"SelfDAssembled"Peptide"Nanotubes."Science"2003,"300,"625–627."

(9)" Lakshmanan," A.;" Zhang," S.;" Hauser," C." A." E." Short" selfDassembling" peptides" as" building" blocks" for"modern"nanodevices."Trends'Biotechnol."2012,"30,"155D165.!

(10)"Merrifield,"R.B."Solid"Phase"Peptide"Synthesis."I."The"Synthesis"of"a"Tetrapeptide."J.'Am.'Chem.'Soc."1963,"85,"2149–2154."

(11)""SigmaDAldrich"ChemFiles"Vol."3,"No."4."Resins"for"Solid"Phase"Peptide"Synthesis."(12)" Wang," S.S." pDAlkoxybenzyl" alcohol" resin" and" pDalkoxybenzyloxycarbonylhydrazide" resin" for" solid" phase"

synthesis"of"protected"peptide"fragments."J.'Am.'Chem.'Soc."1973,"95,"1328D1333"(13)"a)"Fields,"G.B.;"Noble,"R.L."Solid"phase"peptide"synthesis"utilizing"9Dfluorenylmethoxycarbonyl"amino"acids."

Int.'J.'Pept.'Protein'Res.'1990,"35,"161D214."b)"Chan,"W.C.;"White"P.D."Fmoc'Solid'Phase'Peptide'Synthesis:'A'Practical'Approach;'Oxford"University"Press,"New"York,"2000."

(14)" "Carpino,"L.A.;"Han,"G.Y."The"9Dfluorenylmethoxycarbonyl"amino"protecting"group."J.'Org.'Chem."1972,"37,"3404D3409."

(15)"IsidroDLlobet,"A.;"Alvarez,"M.;"Albericio,"F."Amino"AcidDProtecting"Groups."Chem.'Rev."2009,"109,"2455D2504."!(16)"ElDFaham,"A.;"Albericio,"F."Peptide"coupling"reagents,"more"than"a"letter"soup."Chem.'Rev."2011,"111,"6557D

6602."!(17)" Carpino," L.;" Imazumi," H.;" ElDFaham," A.;" Ferrer," F.;" Zhang," C.;" Lee," Y.;" Foxman," B.;" Henklei," P.;" Hanay," C.;"

Mügge,"C.;"Wenschuh,"H.;"Klose,"J.;"Beyermann,"M.;"Bienert,"M."The"Uronium/Guanidinium"Peptide"Coupling"Reagents:"Finally"the"True"Uronium"Salts."Angew.'Chem.'Int.'Ed.""2002,"41,"441D445.""

(18)" Byler," D.M.;" Susi," H." Examination" of" the" Secondary" Structure" of" Proteins" by" Deconvolved" FTIR" Spectra."Biopolymers"1986,"25,"469D487."

(19)"Miyazawa," T.;" Blout," E." R." The" Infrared" Spectra" of" Polypeptides" in"Various"Conformations:"Amide" I" and" II"Bands."J.'Am.'Chem.'Soc."1960,"83,"712D719."

(20)"Hu,"X.;"Kaplan,"D.;"Cebe,"P."Determining"BetaDSheet"Crystallinity"in"Fibrous"Proteins"by"Thermal"Analysis"and"Infrared"Spectroscopy."Macromolecules"2006,"39,"6161D6170."

(21)"Zhou,"C.Z.;"Confalonieri,"F.;"Jacquet,"M.;"Perasso,"R.;"Li,"Z.G.;"Janin,"J."Silk"fibroin:"structural"implications"of"a"remarkable"amino"acid"sequence."Protein"2001,"44,"119D122.

Page 10: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Experimental Procedure

! 1!

!Peptide!Synthesis!Scheme!!!!

!!!!!!!!!!!

OHN

O

ONH

NH2O

OHN

O

ONH2

Step 3: Remove Fmoc

Step 6: Couple hexanoic acid

Step 7: Cleave from resin (Day 2)

Step 4: Couple ala-Fmocand remove Fmoc

Start with ala-Fmoc Wang resin

OHN

O

ONH

HN

O

ONH2

OHN

O

ONH

HN

O

ONH

HOHN

O

ONH

HN

O

ONH

O

OHN

O

ONHFmoc

Step 1: Remove Fmoc

O

OHN

O

Fmoc

Step 2: Couple gly-Fmoc

ONH2

O

Step 5: Couple gly-Fmocand remove Fmoc

Page 11: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Experimental Procedure

! 2!

Solid1Phase!Peptide!Synthesis!(SPPS)!Procedure!!"The!reaction!vessel!you!will!be!using!is!shown!on!the!left.!It!consists!of!a!standard!syringe!barrel,!with!a!frit!in!the!bottom.!Your!instructor!will!pre"load!the!resin!into!the!barrel!of!the!syringe.!!!Standard!‘washing’!procedure!(use!every!time!the!procedure!says!to!‘wash!the!resin’):!!"To!add!solvent!to!the!syringe,!simply!immerse!open!end!into!the!solvent,!and!pull!up!on!the!plunger.!!"Turn!the!syringe!upside"down!(plunger!side!down)!and!swirl!gently!for!1!minute.!!"Expel! the!solvent! into!a!waste!container!by!gently!pushing!down!on! the!plunger.!Take!care!not! to!squish!the!beads"!always!leave!a!cushion!of!air!between!the!beads!and!the!plunger.!!!

!

Hazards!Most!of!the!solvents!and!chemicals!used!in!this!lab!are!toxic,!so!preventative!measures!should!be!taken!to!avoid!exposure.!All!students!should!wear!safety!glasses,!gloves!and!lab!coats!at!all!times,!transport!chemicals!in!closed!vessels!with!secondary!containment,!and!perform!their!work! inside!a! fume!hood.! In!particular,! trifluoroacetic!acid!is!very!corrosive,!toxic!and!volatile,!so!special!measures!should!be!taken!to!avoid!exposure!and!inhalation.!Tetrahydrofuran,!diethyl!ether,!and!piperidine!are!highly!flammable!and!should!be!kept!away!from!heat!sources.!Additional! information! can!be! found! in! the!Material! Safety!Data! Sheet! (MSDS)!database.!Report! any! spills! or!incidents!immediately!to!the!instructor.!When!done,!dispose!of!all!chemicals!in!appropriate!waste!containers.!

!!

TAKE!YOUR!TIME!AND!FOLLOW!THE!DIRECTIONS!CAREFULLY!!!

Day!One!!Step!One:!Preparing!the!Resin!and!Removing!Fmoc!!

a) You!will!be!given!a!syringe!loaded!with!300!mg!of!the!Wang!resin!that!already!has!one!Fmoc"protected!alanine!attached!(resin!has!0.72!mmol!of!the!linker!per!gram!of!bead)!!

b) Wash!the!resin!3!times!with!5!mL!of!dichloromethane!(DCM).!Wash!the!resin!3!more!times!with!5!mL!of!dimethylformamide!(DMF).!These!washings!cause!the!resin!to!swell.!!

c) Add!5!mL!of!20%!(v/v)!piperidine!in!DMF!and!soak!for!5!minutes,!drain,!then!wash!again!with!5!mL!of!20%!piperidine!in!DMF.!This!removes!the!Fmoc!protecting!group.!!

d) Wash!the!resin!3!more!times!with!DMF!alone!(5!mL!each!time)!to!remove!the!piperidine!reagent.!!

Step!Two:!Glycine!Coupling!Procedure!e) In!a!clean,'dry'10!mL!beaker!combine!the!following:!(do!not!combine!until!you!are!ready!to!use!it)!!

• 0.26!g!(0.86!mmol)!of!Fmoc"glycine!!• 0.33! g! (0.86! mmol)! O"(benzotriazol"1"yl)"N,N,N',N'"tetramethyluronium! hexafluorophosphate!

(HBTU)!• 1.8!mL!of!25%!diisopropylethylamine!(DIPEA)!in!DMF!!

f) Mix!thoroughly!with!a!glass!pipette!until!completely!dissolved!(HBTU!will!activate!the!carboxylic!acid),!then!immediately!draw!this!solution!into!the!syringe!barrel!containing!the!resin.!Let!this!solution!sit!for!30!minutes!with!occasional!swirling.!Place!the!syringe!upright!in!a!large!beaker!to!prevent!leakage.!

g) Drain!the!reaction!solution,!and!then!wash!the!resin!3!times!with!5!mL!of!DMF.!!

arthur
Highlight
arthur
Highlight
Page 12: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Experimental Procedure

! 3!

!Step!Three:!Removing!Fmoc!!

h) Repeat!steps!(c)!and!(d)!above!to!remove!the!Fmoc!group.!!!Step!Four:!Alanine!Coupling/!Fmoc!Removal!!

i) Repeat!steps!(e)!through!(h),!substituting!0.27!g!of!Fmoc"alanine!for!the!Fmoc"glycine!in!part!(e).!!

Step!Five:!Glycine!Coupling/!Fmoc!Removal!!j) Repeat!steps!(e)!through!(h).!

!Step!Six:!Alkyl!Chain!Coupling!!

k) In!a!clean,'dry!10!mL!beaker!combine:!!!• 0.10!mL!(0.86!mmol)!hexanoic!acid!(liquid)!• 0.33!g!(0.86!mmol)!HBTU!• 1.8!mL!of!25%!DIPEA!in!DMF!!

l) Mix!thoroughly!with!a!pipette!until!completely!dissolved,!then!immediately!draw!this!solution!into!the!syringe!barrel!containing!the!resin.!Let!this!solution!sit!for!30!minutes!with!occasional!swirling.!!

m) Drain!the!reaction!solution,!then!wash!the!resin!once!with!5!mL!methanol,!three!times!with!5!mL!DMF,!and!three!times!with!5!mL!DCM.!!

Resin!Storage!Expel! any! residual! solvent,! label! your! syringe! with! your! name,! and! give! to! the! instructor! to! store! under!refrigeration!until!the!following!lab!period.!!!!Day!Two!!Step!Seven:!Peptide!Cleavage!!**Trifluoroacetic-acid-(TFA)-is-a-volatile,-corrosive-acid.-Take-precautions-to-prevent-breathing-the-vapors,-and-be-careful-not-to-spill-any-on-your-skin.--!

a) Draw!5!mL!DCM!into!the!syringe.!Let!the!beads!soak!for!15!minutes!with!occasional!swirling!(beads!tend!to!float!in!DCM).!Drain.!!

b) Add!5!mL!of!95%!TFA!to!the!beads.!This!will!cleave!the!peptide! from!the!resin.!Let! this!solution!sit! in!contact! with! the! beads! for! 1! hour,! swirling! occasionally.! Occasionally! TFA! collects! in! the! tip! of! the!syringe,!and!may!drip!out!from!the!syringe!when!swirled.!To!minimize!drips,!pull!back!on!the!plunger!to!pull! any! TFA! that! has! collected! in! the! nozzle! back! into! the! barrel! prior! to! swirling.! Place! the! syringe!upright!in!a!large!beaker!to!prevent!leakage.!!

c) Expel!the!TFA!solution!containing!the!peptide!into!a!50"mL!round!bottom!flask.!Do-not-throw-away-this-solution-@-it-contains-your-peptide!!!

d) To!ensure!complete!recovery!of!the!peptide!from!the!beads,!wash!the!resin!two!more!times!with!4!mL!of!95%!TFA!and!add!each!of!the!washes!to!the!round!bottom!flask.!!

!!!!

Page 13: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Experimental Procedure

! 4!

Peptide!Isolation!Procedure!e) Remove!the!TFA!by!rotary!evaporation.!Again,'take'precautions'to'prevent'inhalation'of'the'TFA'vapors.!

Evaporate!completely!until!only!an!oily!residue!remains!on!the!bottom!of!the!flask.!f) Cool!the!flask!containing!the!residual!peptide!in!an!ice!bath,!and!add!30!mL! ice<cold'anhydrous!diethyl!

ether!to!precipitate!the!peptide.!You!should!see!a!white!precipitate!in!the!flask.!If!you!do!not,!see!the!instructor.!

g) Pipet! the! peptide/ether!mixture! to! two!plastic' centrifuge! tubes! (do! not! use! glass).! Split! the! solution!evenly!between!the!tubes.!If!a! lot!of!white!solid!remains!in!the!flask,!scrape!it!from!the!sides!and!add!more!ether!and!transfer!this!to!the!centrifuge!tubes!as!well.!(may!need!to!do!this!in!batches)!!

h) Centrifuge!for!5!minutes!at!3000!rpm.!The!white!peptide!solid!should!collect!at!the!bottom!of!the!tube.!!i) Carefully! remove! and!discard! the! ether!with! a! Pasteur! pipet,!making! sure! not! to! disturb! the! peptide!

pellet!(may!form!a!gel!in!the!bottom!of!the!tube).!!j) Add!5!mL!of!fresh!ether!to!each!tube,!and!pipette!vigorously!to!re"suspend!the!peptide!pellet!(or!gel).!!!k) Centrifuge!for!5!minutes!at!3000!rpm.!!l) Carefully!remove!the!ether!with!a!Pasteur!pipet,!making!sure!not!to!disturb!the!peptide!pellet!(or!gel).!!m) Label!your!tubes,!and!submit!to!the!instructor!for!freeze"drying.!

!!Day!Three:!Characterization!

!Yield!Carefully! transfer! the!peptide!product! from!both! centrifuge!tubes!to!clean,! tared!weigh!paper!and!record!the!mass! (pre"weighing! the! centrifuge! tubes! is! usually! not! accurate! enough! given! the! small! amount! of! peptide!product).!Do!not!wear! gloves!during! this!process,! as! the! static! from! the!gloves!will! cause! your!peptide! to!go!flying!!Calculate!the!percent!yield.!Carefully!return!the!peptide!to!one!of!the!tubes!for!storage.!Do!your!best!to!minimize!air!exposure!as!the!peptide!tends!to!absorb!moisture!from!the!air!(especially!on!humid!days),!and!may!collapse!into!a!gooey!ball.!!!TLC!Analysis!In!a!clean!glass!vial,!dissolve!a!small!flake!of!your!peptide!in!one!drop!of!methanol.!Spot!this!solution!onto!a!TLC!plate,!as!well!as!the!reference!solution!of!the!desired!peptide!provided!by!your!instructor.!Develop!the!plate!in!the!solvent!mixture!provided!(6:1:2!chloroform:!glacial!acetic!acid:!methanol).!Visualize!the!spots!on!the!plate!by!dipping!the!plate!in!a!potassium!permanganate!stain!(turns!pink)!followed!by!heating!with!a!heat!gun!until!the!spots!appear!(yellow).!Record!the!Rf!values!for!the!reference!peptide!and!the!spot(s)!seen!in!your!sample.!!NMR!Spectroscopy!One!or! two!groups! from!each!class!will!be!chosen! to!submit! their! sample! for!NMR,!and! the!spectrum!will!be!shared!with!the!other!students!in!the!class.!Dissolve!~10!mg!of!the!solid!peptide!(usually!the!sample!in!one!of!the!centrifuge!tubes!will!suffice)!in!0.75!mL!dimethyl!sulfoxide"d6.!Place!solution!in!an!NMR!tube,!and!obtain!an!1H!NMR!spectrum!of!your!sample!(with!the!help!of!the!instructor).!!ATR1FTIR!Spectroscopy!One!group!from!each!class!will!be!chosen!to!take!an!IR!spectrum!of!the!freeze"dried!peptide!(before!assembly).!The!spectrum!will!be!shared!with!the!rest!of!the!class.!All!groups!should!take!individual!spectra!of!their!xerogels.!Obtain!a!copy!of!both!spectra!to!analyze!and!turn!in!with!your!report.!!!!

Page 14: Overview of Peptide Synthesis finalpeople.reed.edu/~glasfeld/Chem392/lab/Exp2_peptide.pdf · Background Information ! 6! Cleavage'and'Isolation'of'the'Peptide' The"final"step"of"the"synthesis"is"to"cleave"the"peptides"from"the"resin"beads."Before"cleavage

Experimental Procedure

! 5!

HPLC!Analysis!Dissolve! a! small! portion! (~1! mg)! of! your! peptide! in! 1! mL! of! the! solution! provided! (1:1! nanopure! water:!acetonitrile!containing!0.1%!TFA).!Draw!the!solution!into!a!disposable!1!mL!syringe,!attach!a!0.2!µm!filter!to!the!end,! and!expel! the! solution! through! the! filter! into! the!autosampler! vial!provided.! Label!with!your!name,!and!submit!to!your!instructor!for!HPLC!analysis.!!Mass!Spectrometry!In!a!plastic!Eppendorf! tube,!dissolve!a!small!portion! (~1!mg)!of!your!peptide! in!0.5!mL!HPLC!grade!methanol.!Label!the!tube!with!your!name,!and!submit!to!your!instructor!for!MS!analysis.!!!Self1Assembly!and!FTIR!Analysis!a)! Combine!5!mg!of!the!peptide!with!0.5!mL!tetrahydrofuran!(THF)!in!a!clean!glass!shell!vial.!b)! Sonicate!in!a!water!bath!for!5!minutes.!c)!!! Heat!the!vial!gently!on!a!hot!plate!just!until!peptide!dissolves!or!solvent!begins!boiling!(very!light!bubbles).!

NOTE:!do!not!cap!the!vial!while!heating!!d)! Remove!the!vial!from!heat!and!quickly!transfer!the!solution!to!a!1.5!mL!conical!plastic!Eppendorf!tube.!e)! Let! the! solution! slowly! cool! to! room! temperature! (~10!minutes).! Do! not! disturb! the! sample! during! gel!

formation.!f)! When!cool,!invert!the!tube!to!look!for!gel!formation.!Carefully!decant!any!solution!that!did!not!gel.!If!the!

entire!sample!is!still!liquid,!repeat!the!procedure!(may!need!to!add!more!peptide).!g)! Remove! the!THF! solvent!under!high! vacuum!–! see! instructor! for! further! instructions.! (takes! approx.! 30!

minutes).!h)! Take! an! ATR"FTIR! spectrum! of! the! dried! ‘xerogel’! powder,! and! compare!with! the! one! provided! of! the!

freeze"dried!product!before!assembly.!!

!!