141
mmmll Report for DG JRC in the Context of Contract JRC/PTT/2015/F.3/0027/NC Overview of shale layers characteristics in Europe relevant for assessment of unconventional resourcesEuropean Unconventional Oil and Gas Assessment (EUOGA) Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources Appendix Volume Deliverable T6b

Overview of shale layers characteristics in Europe relevant for … · 2017. 9. 13. · Overview of shale layers characteristics in Europe Delivery T6b. Appendix Volume A-D February

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • mmmll

    Report for DG JRC in the Context of Contract JRC/PTT/2015/F.3/0027/NC “Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources”

    European Unconventional Oil and Gas Assessment

    (EUOGA)

    Overview of shale layers characteristics in Europe relevant for assessment of unconventional

    resources

    Appendix Volume

    Deliverable T6b

  • Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume A-D February 2017 31

    Table of Contents Table of Contents .............................................................................................31 Appendix A Shale layer overview ........................................................................33 Appendix B Shale layer characteristics for EUOGA shales .......................................46 Appendix C Shale layer characteristics for reference shales .................................. 131 Appendix D Bibliography of European shale layer relevant literature ..................... 151

  • Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume A-D February 2017 32

    This report is prepared by Niels H. Schovsbo with contributions from Karen L. Anthonsen, Christian B. Pedersen, and Lisbeth Tougaard, all from the Geological Survey of Denmark and Greenland (GEUS), as part of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET. The analyses, interpretations and opinions expressed in this report represent the best judgments of the Geological Survey of Denmark and Greenland (GEUS). This report assumes no responsibility and makes no warranty or representations as to the productivity of any oil, gas or other mineral well. All analyses, interpretations, conclusions and opinions are based on observations made on material supplied by the European National Geological Surveys (NGS’s) in 2016. The information and views set out in this study are those of the authors and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this study. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. No third-party textual or artistic material is included in the publication without the copyright holder’s prior consent to further dissemination and reuse by other third parties. Reproduction is authorised provided the source is acknowledged. All will presented in here will be available through an interactive Web-GIS application hosted at the European Commission's science and knowledge service, the Joint Research Centre (JRC-IET). Citation to this report is: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources. Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS. Appendix Volume.

    The report is the final version (revision 0) issued in February 2017 and replaces previous issued T6a reports.

  • Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume A-D February 2017 33

    Appendix A Shale layer overview

  • CP index Shale Name Age

    1001  Zebrus Lower Ordovician

    1002 Raikiula‐Adavere Llandovery (Early Silurian)

    1003 Fjäcka‐Mossen  (Oandu‐Vormsi) Late Ordovician (Katian)

    1004 Lemeš Late Jurassic (Kimmeridgian ‐Tithonian) 1005 Meride Fm (Besano Fm and Perledo mob) Ladinian1006 Riva di solto shales (lower lithozone) Norian1007 Marne di Bruntino Aptian‐Albian1008 Emma limestones Upper Triassic‐Lower Jurassic1009 Marne di Monte Serrone Jurassic (Toarcian)1010 Marne a Fucoidi Cretaceous (Aptian‐Albian)

    1011 Argille Lignitifere Tortonian‐Messinian1012 Noto Shale Rhaetian1013 Streppenosa Shale Norian‐Rhaetian‐Hettangian

    1014 Alum Shale Formation M. Cambrian‐E. Ordovician1015 Alum Shale Formation M. Cambrian‐E. Ordovician

    1016 Alum Shale Formation M. Cambrian‐E. Ordovician1017 Alum Shale Formation M. Cambrian‐E. Ordovician1018 Mikulov Marl Malmian (Upper Jurassic)1019 Alum Shale Formation M. Cambrian‐L Ordovician1020 Catalonian Chain Carboniferous Carboniferous2021 Iberian Lower Cretaceous Lower Cretaceous1022 Iberian Carboniferous Carboniferous1023 Duero Carboniferous Carboniferous1024 Ebro Carboniferous Carboniferous1025 Ebro Eocene Eocene1026 Guadalquivir Carboniferous Carboniferous1027 Basque‐Cantabrian Liassic Lower Jurassic (Liassic)1028 Basque‐Cantabrian Lower Cretaceous Lower Cretaceous1029 Basque‐Cantabrian Upper Cretaceous Upper Cretaceous1030 Basque‐Cantabrian Carboniferous Carboniferous1031 Cantabrian Massif Carboniferous Carboniferous1032 Pyrenees Liassic Lower Jurassic (Liassic)1033 Cantabrian Massif Silurian Silurian1034 Pyrenees Lower Cretaceous Lower Cretaceous1035 Pyrenees Eocene Eocene1038 Tandarei graptolitic black shales U Ordovician U Silurian L Devonian1039 Calarasi  bituminous limestones  U Devonian‐ L Carboniferous1040 Vlasin black shale Formation U Carboniferous1041 Biogenic shale U Badenian1042 Biogenic shale L Sarmatian

    1043 East Ukraine shales Carboniferous to Permian1045 Westphalian A and B Formations Westphalian A and B (Early‐Pennsylvanian)1046 Chokier shales Namurian (U‐Mississippian)1047 Chokier alum shales Namurian (U‐Mississippian)1048 Chokier & Souvré hot shales Namurian (U Mississippian)1049 Kössen Marl Upper Triassic, Late Norian to Rhaetian1050 Tard Clay Oligocene1051 Lower Palaeozoic shales Upper Cambrian to Llandovery 1052 Lower Palaeozoic shales Upper Cambrian to Llandovery 

    1053 Lower Palaeozoic shales Silurian (Llandovery to Wenlock)

    1054 Lower Palaeozoic shales Silurian (Llandovery to Wenlock)1055 Upper Palaeozoic shales Carboniferous

    1056 Lower Paleozoic shales Silurian  to Lower Devonian

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 34

  • CP index Shale Name Age

    1057Upper Paleozoic shale & coal succession Trigorska & Konarska Fms

    Lower carboniferous (Middle Mississippian, Upper Visean)

    1058J1 shale & clay limestones Ozirovo Fm (Bucorovo & Dolnilucovt Mbs) Jurassic (Sinemurian ‐ Toarcian)

    1059 J2 shale Etropole Fm (Stefanets Mb) Aalenian Lower Bajocian

    1060Oligocene shale Ruslar Fm (equivalent of Maykop Fm)  Oligocene

    1061 Upper Ordovician‐Llandovery Shales Late Ordovician – Silurian (Llandovery)1062 Black shale Lower Silurian1063 Mikulov Marl Malmian (Upper Jurassic)

    1064 Geverik Shale Member Namurian A1065 Posidonia Shale Formation Toarcian (Jurassic)

    1066 Haloze‐Špilje Fm. Shale  Neogene: Karpatian and Badenian

    1067 Haloze‐Špilje Fm. Shale  Neogene: Karpatian and Badenian

    1068 Haloze‐Špilje Fm. Sandstone  Neogene: Karpatian and Badenian

    1069 Haloze‐Špilje Fm. Sandstone  Neogene: Karpatian and Badenian

    1070 Kimmeridge Clay U. Jurassic1071 Limestone Coal Formation Carboniferous (Pendleian)1072 West Lothian Oil Shale unit Carboniferous1073 Lower Limestone Formation Carboniferous

    1074 Mid Lias Clay Jurassic

    1075 Oxford Clay U. Jurassic (Oxfordian)

    1076 Upper Lias Clay Jurassic1077 Bowland ‐Hodder unit Carboniferous

    1078 Corallian Clay Jurassic (Oxfordian)1079 Gullane Unit Carboniferous1080 Permo‐carboniferous shales Westphalian to Autunian1081 Autunian shales Permian1082 Promicroceras Shales Jurassic, Sinemurian1083 Amaltheus Shales Jurassic, Pliensbachian1084 Schistes Cartons Fm Jurassic, Toarcian1085 Sainte Suzanne Marls Bedoulian' = Aptian

    1086 Myslejovice Fm. (Culm) L. Carboniferous (Visean)1087 Lias shales Jurassic2012 Posidonia Lower Jurassic2013 Alaunschiefer Carboniferous

    2001 Alum Shale Formation M. Cambrian‐L Ordovician2002 Marcellus Devonian

    2003 Haynesville Late Jurassic

    2004 Bossier Late Jurassic

    2005 Barnett Mississippian

    2006 Fayetteville Mississippian

    2007 Muskwa Devonian

    2008 Woodford Devonian

    2009 Eagle Ford Cretaceous

    2010 Utica Ordovician

    2011 Montney Triassic

    2014 Mean EUOGA2016 Mean L. Palaeozoic EUOGA shale2017 Mean Carboniferous EUOGA shale2018 Mean Jurassic EUOGA shale2015 Mean N. American Shales2019 Antrim Devonian

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 35

  • CP index

    1001

    1002

    1003

    1004100510061007100810091010

    101110121013

    10141015

    1016101710181019102020211022102310241025102610271028102910301031103210331034103510381039104010411042

    104310451046104710481049105010511052

    1053

    10541055

    1056

    Basin Structural setting

    Baltic Foreland basin setting. Structural setting simple

    Baltic Foreland basin setting. Structural setting simple

    Baltic Foreland basin setting. Structural setting simple

    Dinaric Mts. Outer Dinarides, Intraplatform shallow throughLombardy Passive margin; synrift extensional tectonicLombardy Passive margin; synrift extensional tectonicLombardy Passive margin; synrift extensional tectonicEmma Basin Passive margin; synrift extensional tectonicUmbria‐Marche Basin Passive margin; synrift extensional tectonicUmbria‐Marche Basin Passive margin; synrift extensional tectonic

    Ribolla Basinextensional tectonic; opening of the Tyrrhenian basin

    Ragusa Foreland basinRagusa Foreland basin

    Baltic gently dipping succession to the south‐south‐eastSorgenfrei Tornquist Zone complex. Inversion in  L. Cretaceous

    Danish Basin, Höllviken Half grabenForeland basin, Complex Variscan and Alpine wrench faulting

    Fennoscandian Shield Shield platformVienna Basin Passive marginNorwegian‐Danish Passive margin; synrift extensional tectonicCatalonian Chain High complexityIberian Medium complexityIberian High complexityDuero High complexityEbro High complexityEbro Low complexityGuadalquivir High complexityBasque‐Cantabrian Medium complexityBasque‐Cantabrian Medium complexityBasque‐Cantabrian Medium complexityBasque‐Cantabrian High complexityCantabrian Massif High complexityPyrenees Medium complexityCantabrian Massif High complexityPyrenees Medium complexityPyrenees Low complexityMoesian Platform  foreland basinMoesian Platform  foreland basinMoesian Platform  foreland basinTransilvanian back‐arc basinTransilvanian back‐arc basinDniprovsko‐Donetska Depression, south‐eastern part 

    south‐eastern part of Dniprovsko‐Donetska Depression

    Campine Basin Foreland basinMons Basin Foreland basinLiège Basin Variscan orogenic front and forelandCampine Basin low to moderateZala BasinHungarian PaleogeneBaltic Basin (assessment area 1) simplePłock‐Warsaw zone (assessment area 2) simplePodlasie Basin and North Lublin Basin (assessment area 3) simple to complexSouth Lublin Basin and Narol Basin (assessment area 4) complexFore‐Sudetic Monocline (assessment area 5) complexMoesian Platform,  Structural unit: North Bulgarian Uplift extensional ‐ passive margin

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 36

  • CP index

    1057

    10581059

    1060

    106110621063

    10641065

    1066

    1067

    1068

    1069

    1070107110721073

    1074

    1075

    10761077

    10781079108010811082108310841085

    1086108720122013

    20012002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    201420162017201820152019

    Basin Structural setting

    Moesian Platform‐North Bulgarian Uplift, Alexandria depression, Southern Dobudja extension (orogeny collapse)  Moesian Platform ‐  Moesian Platform & Fore Balkan extension (Passive margin)Moesian Platform and fore Balkan extension (Passive margin)

    Kamchia basin (part of Black Sea basin) compression (Fore deep) 

    Baltic foreland basin setting; structural complexity lowLviv‐Volyn Vienna Basin; SE Bohemian Massif Passive margin

    Northwest European Carboniferous BasinWest Netherlands Basin/Broad 14s Basin Large amounts of faults, some inverse tectonicsGas mature part Mura‐Zala Basin (NW part of the Pannonian basin System Sub‐basins (depressions) and inverse antiformsOil mature part of  Mura‐Zala Basin (NW part of the Pannonian basin System Sub‐basins (depressions) and inverse antiformsGas mature part Mura‐Zala Basin (NW part of the Pannonian basin System Sub‐basins (depressions) and inverse antiformsOil mature part of  Mura‐Zala Basin (NW part of the Pannonian basin System Sub‐basins (depressions) and inverse antiforms

    Weald Basin, SE EnglandMidland Valley, ScotlandMidland Valley, ScotlandMidland Valley, Scotland

    Weald Basin, SE England

    Weald Basin, SE England

    Weald Basin, SE EnglandNorthern England

    Weald Basin, SE EnglandMidland Valley, ScotlandParis Basin, Lorraine, Alsace, South‐East Basin Post‐orogenic distensive basinsAutun Post‐orogenic distensive basinsParis Basin Sag basinParis Basin Sag basinParis Basin, Jura, South‐East sag & syn‐riftAquitaine Basin post‐rift series

    Culm Basin; SE Bohemian Massif

    Variscan syntectonic foreland basin ‐ compressional setting during and shortly after deposition

    LusitanianGermanyGermany

    Norwegian‐Danish Passive margin; synrift extensional tectonicAppalachian

    East Texas ‐ North Louisiana

    East Texas ‐ North Louisiana

    Forth Worth

    Arkoma

    Horn River

    Arkoma

    Eagle Ford

    St Lawrence

    Western Canada

    Michigan‐Biogenic

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 37

  • CP index

    1001

    1002

    1003

    1004100510061007100810091010

    101110121013

    10141015

    1016101710181019102020211022102310241025102610271028102910301031103210331034103510381039104010411042

    104310451046104710481049105010511052

    1053

    10541055

    1056

    Facies variability Country   1. Area extend

    Offshore Onshore

    High Lateral continuity; facies variability moderate Latvia 3100 100 3000

    High Lateral continuity; facies variability moderate PL, LT, LV, EE, DK 16000 5000 11000

    High Lateral continuity; facies variability moderate LT, LV, PL, DK 15300 5000 10500

    Moderate lateral continuity  and facies variability.  Croatia 39 39High lateral and vertical variability. IT, SW 7743 0 7743High lateral and vertical variability. Italy 5500 0 5500High lateral and vertical variability. Italy 4069 0 4069High lateral and vertical variability. Italy 9365 5977 3388High lateral and vertical variability. Italy 20792 11813 8979High lateral and vertical variability. Italy 20791 11810 8981

    High lateral and vertical variability. Italy 5564 0 5564Medium facies variability Italy 5090 1190 3900Medium facies variability Italy 12600 8535 4065

    Inner and outer shelf black shale with anthraconite and limestone interbeds Sweden 10227 10121 106Outer shelf black shale with some limestone and antraconite interbeds Sweden 2835 450 2385

    Outer shelf black shale with some limestone and antraconite interbeds Sweden 1610 1106 504Inner  black shale with  limestone and antraconite interbeds Sweden 1497 1497Low lateral variability A, CZ 729 729Lateral continuity high and facies variability low. Denmark 29695 15902 13793

    Spain 500 500Spain 675 675Spain 750 750Spain 800 800Spain 750 750

    High laterally variability Spain 75 75High vertically. Lateral continuity high. Spain 650 650Laterally continuous Spain 2350 2350

    Spain 1800 1800Spain 1050 1050Spain 375 375

    High vertically variability Spain 1500 1500Laterally continuous Spain 500 500

    Spain 500 500Spain 200 200

    High laterally variability Spain 575 575Lateral variability Romania, Bulgaria

    Romania, BulgariaLateral variability Romania, BulgariaLateral variability Romania 20000Lateral variability Romania 20000

    Moderate lateral consistence and facial variability Ukraine 10500 10500Low to moderate  variability Belgium, Netherland 708 708Complex BelgiumModerate Belgium (Wallonia) 16 16

    Belgium, Netherland 1812 1812Hungary 720Hungary 7800

    Lateral continuity Poland 17821 17821Lateral continuity Poland 4599 4599

    Lateral continuity Poland 8703 8703

    Lateral continuity Poland 8465 8465High lateral and vertical variability. Poland 13179 13179

    Lateral continuity Bulgaria and Romania 1100 1100

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 38

  • CP index

    1057

    10581059

    1060

    106110621063

    10641065

    1066

    1067

    1068

    1069

    1070107110721073

    1074

    1075

    10761077

    10781079108010811082108310841085

    1086108720122013

    20012002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    201420162017201820152019

    Facies variability Country   1. Area extend

    Offshore Onshore

    Lateral continuity Bulgaria and Romania 12500 12500

    lateral and vertical continuity Bulgaria 10000 10000lateral and vertical continuity Bulgaria 11000 11000

    Lateral continuity Bulgaria 2110 210 1900lateral continuity high and facies variability low; vertical variability moderate Lithuania 14800 5000 10000Marine ‐deep marine Ukraine 30669 0 30669low (basinal facies) CZ 1600 0 1600Mudstones with sandstone intercalations, recurring cycles of delta progradation. Reasonable correlatability Netherlands 21232 12703 8529Low; correlatable over entire Dutch on‐ and offshore Netherlands 12400 6240 6160

    Vertical and lateral; moderate to high Slovenia, Austria, Hungary, Croatia 914 914

    Vertical and lateral; moderate to high Slovenia, Austria, Hungary, Croatia 1230 1230

    Vertical and lateral; moderate to high Slovenia, Austria, Hungary, Croatia 914 914

    Vertical and lateral; moderate to high Slovenia, Austria, Hungary, Croatia 1230 1230

    UKUKUKUK

    UK

    UK

    UKUK

    UKUK

    High lateral variability (fluvio‐lacustrine settings) France 0 35000High lateral variability (fluvio‐lacustrine settings) France 0 250Facies variability very low France 0 47000Facies variability very low France 0 21000Facies variability: Lateral continuety high and facies variability low. France, Germany 0 105000Facies variability: Lateral continuety high and facies variability low. France 0 2800

     moderate to low Cz 1000PtGermanyGermany

    Lateral continuity high and facies variability low.Summary of 1014, 1016, 1019North America 246049 246049

    North America 23310 23310

    North America 23310 23310

    North America 12950 12950

    North America 23310 23310

    North America 38850 38850

    North America 28490 28490

    North America 19425 19425

    North America 6475 6475

    North America 64750 64750

    Europe 6490 4489 5200Europe 9773 4668 7439Europe 4662 12703 3755Europe 6025 4513 3446North America 48692 0 48692North America

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 39

  • CP index

    1001

    1002

    1003

    1004100510061007100810091010

    101110121013

    10141015

    1016101710181019102020211022102310241025102610271028102910301031103210331034103510381039104010411042

    104310451046104710481049105010511052

    1053

    10541055

    1056

     2. Gros thickness

    2a. Net thickness

    2b. % Net/Gross 

     3. Avg. Depth

    4. Density 5. TOC 6. Porosity

    7. Maturity 8. Res. Pres. 9. Res.  Temp.

    37 1572 1,9 41

    50 25 45 1700 2,47 4,2 5,7 0,87 1668 72

    16 8 45 1800 2,53 3,2 5,7 0,80 1668 71

    350 37 9 465 2,65 6,0 4,2 0,60250 25 10 5726 0,9 1,28200 5000 1,3 4,00

    80 10 13 2500 1,0250 15 6 6000 4,7

    13 5000 1,020 4500 1,8

    40 8 20 1000 20,0 1,10275 20 7 2900 4,0

    1510 20 1 3500 0,8

    25 20 80 300 11,0 0,61 435 1580 76 95 800 2,54 7,5 6,1 2,29 28

    40 40 100 2300 3,0020 16 80 30 11,0 0,60

    525 5500 2,24 2 5,0 1,20 13900 15055 50 95 4250 2,45 9,0 7,0 1,60 7106 135

    75 1500 2,40105 600 2,10 0,5 1,05

    75 1500 2,3575 1700 2,3075 2825 2,35 1,0 1,5038 2400 2,1575 1500 2,45 3,7 1,60

    120 63 52 2200 2,15 2,52000 125 6 1700 2,25 1,0

    125 2000 2,1538 1200 2,35

    275 3000 2,35185 115 62 3000 2,35 0,6 1,09

    70 2500 2,1585 1000 2,1560 2000 2,15 1,3

    625 2,11250 1,2

    50011001400

    2800 400 14 4500 2,67 1,8 3,0 1,50 6527 119515 30 6 1869 5,5 2,35 2786 62

    75 1750  105 1650  

    70 70 100 1838 2,38 8,2 1,6 3,09 1420 84200 200 100 2500 2,5 3,9 2 0,34 3225 165

    68 27 40 2150 2,50 2.21 10,0 0,48 3480 13065 40 62 2800 2,60 3,0 4,5 1,30 4100 7450 50 100 4430 2,60 2,8 4,5 3,00 6500 129

    130 40 31 2025 2,60 2,8 4,5 1,30 3000 68

    120 30 23 2995 2,60 2,5 4,5 2,00 4400 80430 55 12 2500 2,60 2,6 3,6 1,50 4000 85

    1350 540 40 2200 2,40 1,8 2,0 1,60 4200 100

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 40

  • CP index

    1057

    10581059

    1060

    106110621063

    10641065

    1066

    1067

    1068

    1069

    1070107110721073

    1074

    1075

    10761077

    10781079108010811082108310841085

    1086108720122013

    20012002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    201420162017201820152019

     2. Gros thickness

    2a. Net thickness

    2b. % Net/Gross 

     3. Avg. Depth

    4. Density 5. TOC 6. Porosity

    7. Maturity 8. Res. Pres. 9. Res.  Temp.

    1100 495 45 2250 2,35 1,8 2,8 1,10 4750 110

    150 68 45 3500 2,40 1,2 3,0 0,80 5200 122100 60 60 3350 2,30 1,4 2,8 0,75 4800 110

    600 355 60 250 2,30 2,1 3,3 0,40 350 18

    50 20 40 1800 2,49 4,1 5,7 0,85 1668 712296 1504 65 2821 2,70 1,1 4,4 2,50

    650 650 100 5500 2,52 1,9 4,4 0,70 4786 150

    50 50 100 3700 2,71 2,0 1,5 2,50 370 12530 27 90 2000 5,7 7,0 0,80 5880 78

    685 685 100 2900 2,30 1,0 2,0 1,29 4500 130

    660 660 100 2800 2,30 1,0 2,0 0,86 4500 130

    365 365 100 2900 2,30 1,0 9,5 1,29 5000 147

    355 355 100 2800 2,30 1,0 9,5 0,86 5000 147

    2,60 10,9 0,601151 2,60 4,1 1,101050 2,60 2,7 1,101016 2,60 3,1 1,10

    20 2,60 1,2 0,60

    30 2,60 6,4 0,60

    20 2,60 3,0 0,602,60 1,8 3263

    27 2,60 0,601570 2,60 2,2 1,10

    200 1000 1,0 440,001000 45 5 300

    25 0,720 3,040 13 0 800 4,0 440,00

    600 1,5

    1250 250 20 7000 2,68 11,3 13,0 2,20 10287 2104,1 10,0 1,15

    60 2,40 4,3 11,8 1,17260 2,70 3,0 10,1 2,21

    90 90 95 4250 2,45 9,0 7,0 2,00 7106 13558 46 79 3810 4,0 6,2 1,50

    79 79 100 3658 3,0 8,3 1,50

    85 75 88 3551 1,6 7,5 1,50

    244 91 38 2286 3,7 5,0 1,60

    55 41 75 1737 3,8 6,0 2,50

    128 122 95 2438 2,2 4,0 2,00

    152 50 33 2896 5,3 5,0 1,50

    70 69 98 2134 2,8 10,0 1,20

    229 152 67 1311 1,3 2,00

    366 107 29 1829 2,0 5,0 1,60

    481 148 49 2696 2,44 3,5 4,4 1,34 4093 94356 195 68 2171 2,51 4,7 4,8 1,71 3926 74627 146 46 2128 2,50 3,1 3,8 1,67 3302 97268 181 39 3244 2,50 5,5 4,7 0,78 8189 126147 83 70 2565 3,0 6,3 1,69

    37 458 10,0 8,5 0,65 400 24

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 41

  • CP index

    1001

    1002

    1003

    1004100510061007100810091010

    101110121013

    10141015

    1016101710181019102020211022102310241025102610271028102910301031103210331034103510381039104010411042

    104310451046104710481049105010511052

    1053

    10541055

    1056

    10. Gas saturation

    11. Oil Saturation

    12. HI 13. Ker. type  14. Sorption capacity  @ Vr 1,9 %

    15. Matrix permeability

    II

    302 II, II‐III 100

    262 II, II‐III

    556 IIS610 II‐III251 II‐III

    54 II‐III47 I, IIS

    6 II‐III17 II‐III

    412 II125 III

    358 II21 4 II

    II513 II300 II‐III 5,1

    50 0 470 I , II  0,2 40257 II, III

    2 II

    II, IIIII‐III

    257 II, III

    14 IV

    31355 I

    658III

    20 30 ІІ, ІІІ 0,15 0,01II‐III

    II70 516 II S

    252 II, III67 6 100 II67 6 100 II

    67 6 200 II

    67 6 200 II55 III, II‐III 90

    II, III

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 42

  • CP index

    1057

    10581059

    1060

    106110621063

    10641065

    1066

    1067

    1068

    1069

    1070107110721073

    1074

    1075

    10761077

    10781079108010811082108310841085

    1086108720122013

    20012002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    201420162017201820152019

    10. Gas saturation

    11. Oil Saturation

    12. HI 13. Ker. type  14. Sorption capacity  @ Vr 1,9 %

    15. Matrix permeability

    II, II‐III, III

    5 I, I‐II4 I‐II

    4 II

    297 II, II‐III 0,0001

    50 570 II

    20 II 34023 II

    210 III, II 50

    210 III, II 50

    50 210 III, II 1000

    50 210 III, II 1000I with minor II, 

    III3 117,5 I, III, minor II3 346 I, III, minor II3 73,5 I, III, minor II

    I with minor II, III

    I with minor II, III

    I with minor II, III

    3 74,2 II, IIII with minor II, 

    III3 265 I, III, minor II

    I70 I

    IIII

    625 IIII

    20 350 III‐IIII

    179 II58 III‐II

    50 0 10 II 0,2 40

    55 1 20 II 20

    75 1 14 II 350

    45 1 15 II 10

    45 10 45 II 50

    60 1 15 II 50

    80 1 10 II 20

    40 5 60 II 25

    75 15 80 II 1000

    60 5 27 II 10

    90 1 17 II 30

    29 5 240 II 0,175 8956 5 255 II 0,2 7014 164 II‐II/III 0,15 14337 322 II 563 4 30 II 15744

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 43

  • CP index

    1001

    1002

    1003

    1004100510061007100810091010

    101110121013

    10141015

    1016101710181019102020211022102310241025102610271028102910301031103210331034103510381039104010411042

    104310451046104710481049105010511052

    1053

    10541055

    1056

    16. Adsorbed gas storage capacity

    17. Compressibility factor (z) 

    18. Bg Gas formation volume factor

    19. Langmuir Pressure

    20. Langmuir Volume

    Total clay Total quartz‐feldspars

    Total carbonate 

    1,01 435 36 56 33 11

    56 33 11

    0 4 96

    71 23 6

    54 37 8

    53 46 131 16 53

    50 1,01 0,0133 435 36 51 38 10

    66 31 3

    45 0,85 0,0150 395 30 80 15 573 20 7

    24 61 1531 11 5848 14 38

    44 1,00 0,0043 51 41 844 1,00 0,0032

    44 1,00 0,0058

    44 1,00 0,004144 1,00 0,0046 49 46 5

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 44

  • CP index

    1057

    10581059

    1060

    106110621063

    10641065

    1066

    1067

    1068

    1069

    1070107110721073

    1074

    1075

    10761077

    10781079108010811082108310841085

    1086108720122013

    20012002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    2011

    201420162017201820152019

    16. Adsorbed gas storage capacity

    17. Compressibility factor (z) 

    18. Bg Gas formation volume factor

    19. Langmuir Pressure

    20. Langmuir Volume

    Total clay Total quartz‐feldspars

    Total carbonate 

    1,01 435 36 56 33 11

    49 10 42

    33 0,0212 5 69 2681 0,0195

    51 23 26

    51 23 26

    16 77 7

    16 77 7

    34 43 2344,5 59 32 944,5 59 32 944,5 59 32 9

    34 43 23

    34 43 2344,5 0,0211 906,25 44,5

    34 43 2344,5 59 32 9

    1290 169,5 53 19 283916 98 33 46 21

    50 1,01 0,0130 435 36 51 38 1036 38 26

    38 38 25

    51 32 18

    29 53 18

    45 41 14

    22 67 11

    25 69 6

    17 17 67

    27 41 32

    18 47 35

    47 0,98 0,0112 1230 69 47 32 2145 1,00 0,0061 435 36 53 39 843 0,93 0,0155 1739 58 50 39 1181 0,0195 1290 170 34 28 39

    31 44 2540 40 20

    Appendix A Shale layer overview Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume February 2017 45

  • Overview of shale layers characteristics in Europe

    Delivery T6b. Appendix Volume A-D February 2017 46

    Appendix B Shale layer characteristics for EUOGA shales

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: No name (local lithostratigraphical unit - Zebrus Formation)

    1001

    Age: Lower Ordovician Tremadocian Stage Basin: Baltic Basin

    Structural setting

    Facies variability no dataCountry: Latvia 1. Area extend (km2)

    Offshore 100 aproximate Onshore 3000 triangular aproximate

    2. Thickness (gross, m) 26 48 37 triangular2a. Thickness (net, m) not calculated2b. Net/Gross (%) no data

    3. Depth (m) 1474 1670 1571,8 triangularmeasured depth, top of the

    Formation

    4. Density (g/cm3) no data

    5. TOC (%) 1,91 1,91 1,91 triangular 1

    6. Porosity (%) no data

    7. Maturity (%VR) or graptolite equivalent no data

    8. Reservoir pressure (psi) no data

    9. Reservoir Temperature (°C) 23 58 40,5 triangular obtained from log data

    10. Gas saturation (%)(Sg) no data

    11. Oil Saturation (%) So) no data

    12. Gas generation mgHC/g TOC (Hydrogen index) no data

    13. Kerogen type II 2

    14. Sorption capacity VReq. - 1,9 % (mmol/g) no data

    15. Matrix permeability (nDarcy) no data

    16. Adsorbed gas storage capacity (scf/ton) no data

    17. Compressibility factor (z) no data

    18. Bg - Gas formation volume factor no data

    19. Langmuir Pressure (pL, psi) no data

    20. Langmuir Volume (nL, scf/ton) no data

    Bulk mineral constituents XRD % Source

    Average clay content (%)

    Average quartz-feldspars content (%)Average carbonate content (%) M

    iner

    alog

    y

    Compiled by Baiba Brikmane, Inga Piese. Supervised by Daiga Pipira

    REFERENCE LIST : 1 . Kanev S.V. 1995. Geochemical Studies.Hydrocarbon Sector Support Project, Phase IIa (HSSP/IIa). 2. Kanev S., Margulis L., Bojesen-Koefoed J.A., Weil W.A., Merta H., Zdanaviciute O. 1994. Oil and hydrocarbon source rocks of the Baltic Syneclise. Oil & Gas Journal, July 11, 1994. Available:http://mapx.map.vgd.gov.lv/geo3/VGD_OIL_PAGE/_private/article_1994.pdf

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 47

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Raikiula-Adavere1002

    Age: Llandovery (Early Silurian)

    Basin: Baltic Sedimentary Basin

    Structural setting: Foreland basin setting. Structural setting - simple

    Facies variability: Lateral continuity high and facies variability homogenouse. Horizontal (vertikal) variability - moderate.

    Country: PL, LT, LV, EE, DK 1. Area extend (km2) 10254 21823 16000 Lognorm 1

    Offshore 3206 6413 5000 Lognorm 2

    Offshore area comprises maximal area of the Lithuanian Baltic sea territory where the shale is widspread. Minumum area has been considerd as half of total offshore area.

    Onshore 7613 15410 11000 Lognorm 1

    2. Thickness (gross, m) 15 80 50 Lognorm 1, 9, 10 Thickness is for net thickness of Llandovery shale

    2a. Thickness (net, m) 7 45 25 Lognorm 22b. Net/Gross (%) 35 55 45 Lognorm

    3a. Depth (m), top 1500 2045 1600 1, 9, 10

    3b. Depth (m), bottom 1500 2120 1800 Lognorm 1, 9, 10Depth grid is of the depth of the bottom of Llandovery (Early Silurian) shale

    4. Density (g/cm3) 2,17 2,85 2,47 Lognorm 1, 2

    Grain density values based on measurements. Wt % from QuantaETC (QXRD) and TOC obtained from RockEval and converted into the volume percent (vol.%) of the solid matrix constituents. Number of measurements - 91. Uncertainty - 20%.

    5. TOC (%) 2 19,2 4,2 Lognorm 1, 2, 5,6,10

    6. Porosity (%) 1,2 14,1 5,7 Lognorm 1,2

    7. Maturity (%VR) or graptolite equivalent 0,48 1,94 0,87 Lognorm 1, 2, 4, 5,6

    Vitrinite-like particles + graptolites+ bitumines calibrated to Vitrinite reflectance

    8. Reservoir pressure (psi) 1450 1886 1668 triangular 2,7

    Sparse mesurement data converted from MPa. Mean pressure gradient (Baltic region) 0.453 psi/ft. No overpressure indications.

    9. Reservoir Temperature (°C) 32 90,2 71,7 triangular 2

    Temperature mesurements at certain depth data. Mean present day geothermal gradient in Lithuania 25 °C/km. Present day geothermal gradient in geothermal anomaly in Western Lithuania - 40-45 °C/km.

    10. Gas saturation (%)(Sg) n/a n/aNo production data available. Polish Silurian shales would be the best analogue.

    11. Oil Saturation (%) So) n/a n/a

    No production data available. Test Llandovery oil obtained in 2 wells. Polish Silurian shales would be the best analogue.

    12. Gas generation mgHC/g TOC (Hydrogen index) 89 720 302 triangular 1, 5,6

    Values based on 332 RockEval and Leco measurements. Uncertainty - 15%.

    13. Kerogen type II, II-III 1,5,6,10Kerogen type values based on 290 RockEval measurements. Uncertainty - 15%.

    14. Sorption capacity VReq. - 1,9 % (mmol/g) n/a n/a

    No measurement data. Analogue numbers could be form Furongian unit of Alum Shale or Polish Silurian shales.

    15 Matrix permeability ( nDarcy ) 85 400 100 Lognorm 1,2

    Matrix permeability values based on 7 GRI-derived absolute Kg determined from pressure decay results and 27 helium permeameter measurements (Soviet uncertificated equipment). Uncertainity - 70%

    16. Adsorbed gas storage capacity (scf/ton) n/a n/a

    No measurement data. Analogue numbers could be form Furongian unit of Alum Shale or Polish Silurian shales.

    17. Compressibility factor (z) 0.76 1,1 1,01

    No measurement data. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Silurian shales.

    18. Bg - Gas formation volume factor n/a n/a

    Bo - Oil formation volume factor n/a n/aNo data available. Polish Silurian shales would be the best analogue.

    19. Langmuir Pressure (pL, psi) 432 700 435 8

    No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Silurian shales.

    20. Langmuir Volume (nL, scf/ton) 20 63 36 8

    No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Silurian shales.

    Bulk mineral constituents XRD % Source1,2

    Average clay content (%) 49Average quartz-feldspars content (%) 29Average carbonate content (%) 10

    TOC values based on 332 RockEval measurements. Uncertainty - 5%. Porosity valuse based on 37 mesurements: 7- GRI-

    Min

    eral

    ogy

    REFERENCE LIST : 1 . Investigations of structure and composition of shaley Lower Paleozoic succession in Lithuanian part of the Baltic Sedimentary Basin. Report of Lithuanian Geological Survey, Lazauskiene et al., 2014, 132 pp (in Lithuanian). 2. Lazauskiene, J., Bitinas, J.,

    - Excel sheet with parameters for data distribution. 3. Genesis of Shale Geological Formations and Hydrocarbon Extraction: Impact on environment and human health. 2014-12-02, 56 pp. http://skalunudujos.lt/wp-content/uploads/2014-12-02_Genesis_of_shale_geological-formations_LMA-website.pdf. 4. Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance measurements of zooclasts and solid bitumen in Lower Palaeozoic shales, southern Scandinavia: correlation to vitrinite reflectance. International Journal of Coal Petrology 114, 1–18. http://www.sciencedirect.com/science/article/pii/S0166516213001080 52009.Organic matter of Early Silurian succession – the potential source of unconventional gas in Lithuania. Baltica. Vol. 22, No. 2. 89-98.. 62007. The Petroleum potential of the Silurian succession in Lithuania. Journal of Petroleum Geology. 325-337. 7. EIA/ARI World Shale Gas and Shale Oil Resource Assessment, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States http://www.eia.gov/analysis/studies/worldshalegas/pdf/fullreport.pdf 8. Matus Gasparik, Pieter Bertier, Yves Gensterblum, Amin Ghanizadeh, Bernhard M. Krooss, Ralf Littke, Geological controls on the methane storage capacity in organic-rich shales - April 2013 9. Lapinskas P. 2000. Structure and petroleum potential of the Silurian in Lithuania. Vilnius, 203 p.(in Lithuanian). 10. K. (reds.). 2001. Petroleum Geology of Lithuania and Southeastern Baltic. Vilnius. 204 p.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 48

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution Source (Ref.list) Comments

    Shale Name: Fjacka-Mossen (Oandu-Vormsi)1003

    Age: Late Orodovician (Katian)Basin: Baltic Sedimentary Basin

    Structural setting: Foreland basin setting. Structural setting - simple

    Facies variability: Lateral continuity high and facies variability homogenous. Vertical variability - moderate.Country: LT, LV, PL, DK 1. Area extend (km2) 9376 21263 15300 Lognorm 1

    Offshore 3206 6413 5000 Lognorm 2 Onshore 6170 14850 10500 Lognorm 1

    2. Thickness (gross, m) 9 20 16 Lognorm 1, 22a. Thickness (net, m) 4,5 10 8 Lognorm 22b. Net/Gross (%) 40 50 45 Lognorm

    3. Depth (m) top 1500 2130 1800 1, 2

    3. Depth (m) bottom 1500 2150 1825 Lognorm 1, 2

    Depth is of the bottom of Late Orodovician (Katian) shale.

    4. Density (g/cm3) 2,11 2,76 2,53 Lognorm 1, 2

    Grain density values based on measurements. Wt % from QuantaETC (QXRD) and TOC obtained from RockEval or chemical analysis and converted into the volume percent (vol.%) of the solid matrix constituents. Number of measurements - 35. Uncertainty - 50%.

    5. TOC (%) 2 7 3,2 Lognorm 1, 2, 4,6

    6. Porosity (%) 0,35 14,1 5,7 Lognorm 1,2

    7. Maturity (%VR) or graptolite equivalent 0,7 1,1 0,8 Lognorm 1, 2, 3Vitrinite-like particles + graptolites+ bitumines calibrated to Vitrnite reflectance

    8. Reservoir pressure (psi) 1450 1886 1668 2Based on ananlogue with Lithuanian Silurian Shales

    9. Reservoir Temperature (°C) 35,98 91,7 71,1 2

    Temperature mesurements at certain depth data. Mean present day geothermal gradient in Lithuania 25 °C/km. Present day geothermal gradient in geothermal anomaly in Western Lithuania - 40-45 °C/km.

    10. Gas saturation (%)(Sg)No production data available. Polish Late Ordovician shales would be the best analogue.

    11. Oil Saturation (%) So)

    No production data available. Test Llandovery oil obtained in 2 wells. Polish Late Ordovician shales would be the best analogue.

    12. Gas generation mgHC/g TOC (Hydrogen index) 86 551 262 1, 2, 6Values based on 32 RockEval and Leco measurements. Uncertainty - 85%

    13. Kerogen type II, II-III 1, 2, 6Kerogen type values based on 32 RockEval measurements. Uncertainty - 45%.

    14. Sorption capacity VReq. - 1,9 % (mmol/g)

    No measurement data. Analogue numbers could be form Furongian unit of Alum Shale or Polish Silurian shales.

    15. Matrix permeability (mDarcy) 1,2

    Matrix permeability values based on 70 GRI-derived absolute Kg determined from pressure decay results. Uncertainity - 70%

    16. Adsorbed gas storage capacity (scf/ton)

    No measurement data. Analogue numbers could be form Furongian unit of Alum Shale or Polish Late Ordovician shales.

    17. Compressibility factor (z)

    No measurement data. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Silurian shales.

    18. Bg - Gas formation volume factorNo data available. Polish Late Ordovician shales would be the best analogue.

    19. Langmuir Pressure (pL, psi) 5

    No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Late Ordovician shales.

    20. Langmuir Volume (nL, scf/ton) 5

    No data available. Analogue numbers are form Furongian unit of Alum Shale, or could be from Polish Late Ordovician shales.

    Bulk mineral constituents XRD % Source1,2

    Average clay content (%) 49Average quartz-feldspars content (%) 29Average carbonate content (%) 10

    TOC values based on 33 RockEval measurements. Uncertainty - 85%. Porosity valuse based on 10 measurements: 2- GRI-derived absolute Kg-matrix

    Min

    eral

    ogy

    Offshore area comprises maximal area of the Lithuanian Baltic sea territory where the shale is

    REFERENCE LIST : 1 . Investigations of structure and composition of shaley Lower Paleozoic succession in Lithuanian part of the Baltic Sedimentary Basin. Report of Lithuanian Geological Survey, Lazauskiene et al., 2014, 132 pp (in Lithuanian). 2. Lazauskiene, J., Bitinas, J.,

    - Excel sheet with parameters for data distribution. 3. Petersen, H.I., Schovsbo, N.H., Nielsen, A.T., 2013. Reflectance measurements of zooclasts and solid bitumen in Lower Palaeozoic shales, southern Scandinavia: correlation to vitrinite reflectance. International Journal of Coal Petrology 114, 1–18. http://www.sciencedirect.com/science/article/pii/S0166516213001080 4. EIA/ARI World Shale Gas and Shale Oil Resource Assessment, Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States http://www.eia.gov/analysis/studies/worldshalegas/pdf/fullreport.pdf 5. Matus Gasparik, Pieter Bertier, Yves Gensterblum, Amin Ghanizadeh, Bernhard M. Krooss, Ralf Littke, Geological controls on the methane storage capacity in organic-rich shales - April 2013 6(reds.). 2001. Petroleum Geology of Lithuania and Southeastern Baltic. Vilnius. 204 p.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 49

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Lemeš1004

    Age: Late Jurassic (Kimmeridgian-Tithonian) 1Basin: Dinaric Mts.

    Structural setting: Outer Dinarides, Intraplatform shallow through 3,4,5,6

    Facies variability: Moderate lateral continuety and facies variability. 3,5,6Country: Croatia 1. Area extend (km2)

    Offshore Onshore 36,2 42 39,1 Triangular 3,5,6

    2. Thickness (gross, m) 250 450 350 Triangular 1,32a. Thickness (net, m) 3 70 36,5 Triangular 1,32b. Net/Gross (%) 1,2 15,6 8,4 Triangular 1

    3. Depth (m) 0 930 465 Triangular 3

    4. Density (g/cm3) 2,6 2,7 2,65 Triangular 2

    5. TOC (%) 2 10 6 Triangular 1

    6. Porosity (%) 3 5,4 4,2 Triangular 1

    7. Maturity (%VR) or graptolite equivalent 0,5 0,7 0,6 Triangular 1

    % VR is defined with biomarker thermal maturity and optical parameters (fluorescence)

    8. Reservoir pressure (psi) 0 0 0

    Exhumated structure according termal maturity from depth of approximately 5500-5800 m

    9. Reservoir Temperature (°C)

    10. Gas saturation (%)(Sg) 0 0 0 Surface

    11. Oil Saturation (%) So) 0 0 0 Surface

    12. Gas generation mgHC/g TOC (Hydrogen index) 509 602 555,5 1

    13. Kerogen type II-S

    14. Sorption capacity VReq. - 1,9 % (mmol/g) 0 0 0 Surface

    15. Matrix permeability (nDarcy)

    These organic rich limestones and calcareous shales (micritic limestones with clay particles) are classified as biopelmicrites.

    16. Adsorbed gas storage capacity (scf/ton) 0 0 0 Surface

    17. Compressibility factor (z) 0 0 0 Surface

    18. Bg - Gas formation volume factor 0 0 0 Surface

    19. Langmuir Pressure (pL, psi)

    20. Langmuir Volume (nL, scf/ton)

    Bulk mineral constituents XRD % Source

    Average clay content (%) 0

    Average quartz-feldspars content (%) 4Average carbonate content (%) 96 M

    iner

    alog

    y

    REFERENCE LIST : 1 .

    (2009): Source potential and palynofacies

    - 40, 833-845. 2. Application of Artificial

    to Mesozoic Source Rocks of Dinarides in Evaluation of

    Zagreb, Faculty of Science,

    3.

    geological map, L -33-141,

    tectonics: - -86. 5

    – –170.

    Evolution of the Adriatic

    and depositional dynamics. -

    -360.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 50

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Meride fm (Besano fm and Perledo mb)

    1005

    Age: Ladinian (Triassic)Basin: Lombardy Basin

    Structural setting: Passive margin; synrift extentional tectonic

    Facies variability: High lateral and vertical variability.Country: IT, SW (cf. Grenzbitumenzone) 1. Area extend (km2) 7743 1, 2

    Offshore 0 Onshore 7743 1, 2

    2. Thickness (gross, m) 100 400 250 3, 4, 52a. Thickness (net, m) 10 40 25 3, 4, 52b. Net/Gross (%) 10 10 10 3, 4, 5

    3. Depth (m) top 4452 7000 5726 3

    Mean depth of top and bottom is referred to the Meride

    formation in the Gaggiano 1 well log published in a very

    simplified form and is considered also the min. The max depths can be inferred

    from published regional cross sections

    3. Depth (m) bottom 4829 7000 5914,5 3

    4. Density (g/cm3) No data available.

    5. TOC (%) < 1 35 0,9 1, 6

    intraformational variability in the Besano fm, mean value from regional study (1)

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent 0,39 2,17 1,28 6, 4

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg) No data available.

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index) 420 800 610 6

    values are desumed from the plot reported in (6); min/max

    values for kerogen type III are 0-100

    13. Kerogen type II-III 6, 7

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available. 20. Langmuir Volume (nL, scf/ton) no data

    Bulk mineral constituents XRD % Source

    Average clay content (%)Average quartz-feldspars content (%)Average carbonate content (%) M

    iner

    alog

    y

    REFERENCE LIST : 1. Lindquist, S.J. (1999). Petroleum Systems of the Po Basin Province of Northern Italy and Northern Adriatic Sea: Porto Garibaldi (Biogenic), Meride/Riva di solto (Thermal), and Marnoso Arenacea (Thermal). USGS Open-File Report 99-50-M. 2. Riva, A., Salvatori, T., Cavaliere, R., Ricchiuto, T., and Novelli, L. (1986). Origin of oils in Po Basin, Northern Italy. Org. Geochem., 10, 391-400. 3. Bongiorni, D. (1987). The hydrocarbon exploration in the Mesozoic structural highs of the Po Valley: the example of Gaggiano. Atti Tic. Sc. Terra, 31, 125-141. 4. Gaetani, M., Gnaccolini, M., Poliani, G., Grignani, D., Gorza, M., and Martellini, L. (1992). An anoxic intraplatform basin in the Middle Triassic of Lombardy (southern Alps, Italy): anatomy of a Hydrocarbon source. Riv. It. Paleont. Strat., 97 (3-4), 329-354. 5. Jadoul, F., and Tintori, A. (2012). The Middle-Late Triassic of Lombardy (I) and Canton Ticino (CH). In “Pan-European Correlation of the Triassic - 9th International Field Workshop”. September 1-5, 2012. 6. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology, vol.23(4), 399-424. 7. Pieri, M., and Mattavelli, L. (1986). Geologic framework of Italian petroleum resources. AAPG Bull., 70, 2, 103-130.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 51

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Riva di solto shales (lower lithozone)

    1006

    Age: NorianBasin: Lombardy Basin

    Structural setting: Passive margin; synrift extentional tectonic

    Facies variability: High lateral and vertical variability.

    Country: IT5. proposes correlation with

    Kossen formation 1. Area extend (km2) 5500 1

    Offshore 0 Onshore 5500 1

    2. Thickness (gross, m) 200thickness of the lower lithozone

    from outcrops2a. Thickness (net, m)2b. Net/Gross (%)

    3. Depth (m) top 2764 > 7000 5000 4

    Min depth of top and bottom is referred to the whole Riva di Solto fm in the Gerola 1 well

    log; mean and max can be inferred from published regional cross sections

    3. Depth (m) bottom 2947 > 7000 5000 4

    4. Density (g/cm3) No data available.

    5. TOC (%) 0,5 5 1,3 triangular 2

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent 4 3

    The literature reported only mean value and the type of distribution is not indicated

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg) No data available.

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index) 251 2

    The literature reported only mean value and the type of distribution is not indicated

    13. Kerogen type II-III 3

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available. 20. Langmuir Volume (nL, scf/ton) no data

    Bulk mineral constituents XRD % Source

    Average clay content (%)Average quartz-feldspars content (%)Average carbonate content (%) M

    iner

    alog

    y

    REFERENCE LIST : 1. Riva, A., Salvatori, T., Cavaliere, R., Ricchiuto, T., and Novelli, L. (1986). Origin of oils in Po Basin, Northern Italy. Org. Geochem., 10, 391-400. 2, . Lindquist, S.J. (1999). Petroleum Systems of the Po Basin Province of Northern Italy and Northern Adriatic Sea: Porto Garibaldi (Biogenic), Meride/Riva di solto (Thermal), and Marnoso Arenacea (Thermal). USGS Open-File Report 99-50-M. 3, Stefani, M., and Burchell, M. (1990). Upper Triassic (Rhaetic) argillaceous sequences in northern Italy: depositional dynamics and source potential, in Huc, A.Y., ed., Deposition of Organic Facies, AAPG Studies in Geology, 30, American Association of Petroleum Geologists, p. 93-106. 4. http://unmig.sviluppoeconomico.gov.it/videpi/pozzi/consultabili.asp 5. Veto I., Hetenyi M., Hamor-Vido M., Hufnagel H., Haas J. (2000) - Anaerobic degradation of organic matter controlled by productivity variation in a restricted Late Triassic basin. Organic Geochemistry, 31, 439-452.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 52

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Marne di Bruntino1007

    Age: Aptian-AlbianBasin: Lombardy Basin

    Structural setting: Passive margin; synrift extentional tectonic

    Facies variability: High lateral and vertical variability.Country: IT 1. Area extend (km2) 4069 constrained by well logs

    Offshore 0 Onshore 4069

    2. Thickness (gross, m) 30 140 80 triangular

    thickness from well log stratigraphies (min) and

    outcrops (max)

    2a. Thickness (net, m) 10 50 10 triangularthickness from well log

    stratigraphies2b. Net/Gross (%) 12,5

    3. Depth (m) top 67 4911 2500 triangular 2 Top and bottom min depth 3. Depth (m) bottom 104 4945 2500 triangular 2

    4. Density (g/cm3) No data available.

    5. TOC (%) 0,03 15,5 1,01 triangular 1

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent No data available.

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg) No data available.

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index) 0,87 107,6 54 triangular 1

    values for samples with at least 1% of organic content

    13. Kerogen type II-III 1

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available.

    Bulk mineral constituents XRD % SourceAverage clay content (%)

    Average quartz-feldspars content (%)

    Average carbonate content (%) Min

    eral

    ogy

    REFERENCE LIST : 1. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology, vol.23(4), 399-424. 2. http://unmig.sviluppoeconomico.gov.it/videpi/pozzi/consultabili.asp

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 53

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Emma limestones1008

    Age: Upper Triassic-Lower JurassicBasin: Emma Basin

    Structural setting: Passive margin; synrift extentional tectonic

    Facies variability: High lateral and vertical variability.Country: IT

    1. Area extend (km2) 9365inferred from paleogeographic

    regional studies Offshore 5977 Onshore 3388

    2. Thickness (gross, m) 50 200 250

    thickness from well log stratigraphies and outcrops, net

    thickness from (1)2a. Thickness (net, m) 5 24 15 12b. Net/Gross (%) 6

    3. Depth (m) top 4500 >7000 6000

    depth info are inferred from deep well logs (not public available) and published geological cross sections

    3. Depth (m) bottom >7000

    4. Density (g/cm3) No data available.

    5. TOC (%) 0,05 48,3 4,68 triangular 1

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent No data available.

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg) No data available.

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index) 0,04 340,44 47 triangular 1

    13. Kerogen type I, II (S) 1,2,3

    the variation of the kerogene type is related to the different

    lithotypes (see report)

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available.

    Bulk mineral constituents XRD % Source MineralogyAverage clay content (%)

    Average quartz-feldspars content (%)Average carbonate content (%)Average carbonate content (%)

    REFERENCE LIST : 1. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology, vol.23(4), 399-424. 2. Andrè, P., and Doulcet, A. (1991). Rospo Mare Field – Italy , Apulian Platform, Adriatic Sea. AAPG Treatise of Petroleum Geology, Atlas of Oil and Gas Fields A-06, 29-54. 3. Mazzuca, N., Bruni, A., and Jopen, T. (2015). Exploring the potential of deep targets in the South Adriatic Sea: insight from 2D basin modeling of the Croatian offshore. Geologia Croatica, 68/3, 237–246.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 54

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Marne di Monte Serrone1009

    Age: Toarcian

    Basin: Umbria-Marche Basin

    Structural setting: Passive margin; synrift extentional tectonic

    Facies variability: High lateral and vertical variability.Country: IT

    1. Area extend (km2) 20792inferred from paleogeographic

    regional studies Offshore 11813 Onshore 8979

    2. Thickness (gross, m)2a. Thickness (net, m) 1 24 13 2 thickness from outcrops2b. Net/Gross (%)

    3. Depth (m) top 4000 5000 5000

    depth info are inferred from deep well logs (not public

    available) and seismic profiles 3. Depth (m) bottom

    4. Density (g/cm3) No data available.

    5. TOC (%) 0,19 2,34 0,95 triangular 1,2

    (2) proposed TOC values from 0,5 to 2,7 for black shale

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent No data available.

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg) No data available.

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index) 6,19 1

    The literature reported only mean value and the type of distribution is not indicated

    13. Kerogen type II-III 1

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available.

    Bulk mineral constituents XRD % SourceAverage clay content (%)Average quartz-feldspars content (%)Average carbonate content (%)Average carbonate content (%) M

    iner

    alog

    y

    REFERENCE LIST : 1. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology, vol.23(4), 399-424. 2. Parisi, G., Ortega Huertas, M., Nocchi, M., Palomo, Monaco, P., Martinez, F. (1996). Stratigraphy and geochemical anomalies of the early Toarcian oxygen-poor interval in the Umbria-Marche Apennines (Italy). GEOBIOS, 29 (4), 469-484.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 55

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Marne a Fucoidi1010

    Age: Aptian-Albian

    Basin: Umbria-Marche BasinStructural setting: Passive margin; synrift extentional tectonic

    Facies variability: High lateral and vertical variability.Country: IT

    1. Area extend (km2) 20791inferred from paleogeographic

    regional studies Offshore 11810 Onshore 8981

    2. Thickness (gross, m) 82,53 1max thickness from reference

    section (1)

    2a. Thickness (net, m) 8 < 42 20 2, 3, 4

    max thickness from (4), min thickness from (2), mean from

    (3)2b. Net/Gross (%)

    3. Depth (m) top 2000 5000 4500

    depth info are inferred from deep published maps and geological cross section

    3. Depth (m) bottom

    4. Density (g/cm3) No data available.

    5. TOC (%) 0,05 25,01 1,82 triangular 2

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent No data available.

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg) No data available.

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index) 0,35 103,1 17,12 triangular 2

    13. Kerogen type II-III 2

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available. 19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available.

    Bulk mineral constituents XRD % SourceAverage clay content (%)Average quartz-feldspars content (%)Average carbonate content (%)Average carbonate content (%) M

    iner

    alog

    y

    REFERENCE LIST : 1. Coccioni, R., Jovane, L., Bancalà, G., Bucci, C., Fauth, G., Frontalini, F., Janikian, L., Savian, J., Paes de Almeida, R., Mathias, G. L., and Ferreira da Trindade, R. I. (2012). Umbria-Marche Basin, Central Italy: A Reference Section for the Aptian-Albian Interval at Low Latitudes. Sci. Dril., 13, 42-46. doi:10.5194/sd-13-42-2012. 2. Katz, B.J., Dittmar, E.I., and Ehret, G.E. (2000). Geochemical review of carbonate source rocks in Italy. Journal of Petroleum Geology, vol.23(4), 399-424. 3. Arthur, M., and Silva, I.P. (1982). Development of widespread organic carbon-rich strata in the Mediterranean Tethys. In: Schlanger, S. 0. and Cita, M. B. (Eds), Nature and Origin of Cretaceous Carbon-Rich Facies. Academic Press (London), 7-54. 4. Fiet N. (1998). Les black shales, un outil chronostratigraphique haute resolution. Exemple del' Albien du bassin de Marches-Ombrie (ltalie centrale). Bull. Soc. Geol. France, 169, 221-231. 5. Hu X., Jansa L., Sarti M., 2006. Mid-Cretaceous oceanic red beds in the Umbria–Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 233 (3), 163-186 6. Tornaghi, M.E., Premoli Silva, I., and Ripepe, M., 1989. Lithostratigraphy and planktonic foraminiferal biostratigraphy of the Aptian-Albian ‘‘Scisti a Fucoidi’’ in the Piobbico core, Marche, Italy: Background for cyclostratigraphy. Riv.Ital. Paleont. Strat., 95:223–264.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 56

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Argille Lignitifere

    1011

    Age: Tortonian-MessinianBasin: Ribolla Basin

    Structural setting: extentional tectonic; opening of the Tyrrhenian basin

    Facies variability: High lateral and vertical variability.Country: IT 1. Area extend (km2) 5564 1

    Offshore Onshore 5564 1

    2. Thickness (gross, m) 0 80 40 12a. Thickness (net, m) 0 8 8 12b. Net/Gross (%) 0 10 20

    3. Depth (m) top 1000 1 3. Depth (m) bottom

    4. Density (g/cm3) No data available.

    5. TOC (%) 1,38 56,14 20 triangular 1

    6. Porosity (%) No data available.

    7. Maturity (%VR) or graptolite equivalent 0,825 1,302 1,1 1

    8. Reservoir pressure (psi) No data available.

    9. Reservoir Temperature (°C) No data available.

    10. Gas saturation (%)(Sg)

    11. Oil Saturation (%) So) No data available.

    12. Gas generation mgHC/g TOC (Hydrogen index)

    13. Kerogen type

    14. Sorption capacity VReq. - 1,9 % (mmol/g) No data available.

    15. Matrix permeability (mDarcy) No data available.

    16. Adsorbed gas storage capacity (scf/ton) No data available.

    17. Compressibility factor (z) No data available.

    18. Bg - Gas formation volume factor No data available.

    19. Langmuir Pressure (pL, psi) No data available.

    20. Langmuir Volume (nL, scf/ton) No data available.

    Bulk mineral constituents XRD % Source

    Average clay content (%)Average quartz-feldspars content (%)

    Average carbonate content (%)

    Min

    eral

    ogy

    REFERENCE LIST : 1. Bencini, R., Bianchi, E., De Mattia, R., Martinuzzi, A., Rodorigo, S. and Vico, G. (2012). Unconventional Gas in Italy: the Ribolla Basin. AAPG, Search and Discovery Article #80203.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 57

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Noto Shale

    1012

    Age: RhaetianBasin: Ragusa

    Structural setting: foreland

    Facies variability: mediumCountry: Italy 1. Area extend (km2) 5090

    Offshore 1190 Onshore 3900

    2. Thickness (gross, m) 250 300 275 triangular 2, 42a. Thickness (net, m) 20 42b. Net/Gross (%) 7

    3. Depth (m) 2800 3100 2900 triangular 2,3,4

    4. Density (g/cm3)

    5. TOC (%) 0,2 10 4 triangular 1,2

    6. Porosity (%)

    7. Maturity (%VR) or graptolite equivalent

    8. Reservoir pressure (psi)

    9. Reservoir Temperature (°C)

    10. Gas saturation (%)(Sg)

    11. Oil Saturation (%) So)

    12. Gas generation mgHC/g TOC (Hydrogen index) 300 550 412 5

    13. Kerogen type II 1,2

    14. Sorption capacity VReq. - 1,9 % (mmol/g)

    15. Matrix permeability (nDarcy)

    16. Adsorbed gas storage capacity (scf/ton)

    17. Compressibility factor (z)

    18. Bg - Gas formation volume factor

    19. Langmuir Pressure (pL, psi)

    20. Langmuir Volume (nL, scf/ton)

    Bulk mineral constituents XRD % Source

    Average clay content (%) 71 2Average quartz-feldspars content (%) 23

    Average carbonate content (%) 6

    Min

    eral

    ogy

    REFERENCE LIST : 1 . Pieri, M., and Mattavelli, L. (1986). Geologic framework of Italian petroleum resources. AAPG Bull., 70, 2, 103-130 2. Brosse, E., Loreau, J.P., Huc, A.Y., Frixa, A., Martellini, L., Riva, A., 1988. The organic matter of interlayered carbonates and clays sediments — Trias/Lias, Sicily. Org. Geochem. 13, 433–443 3. Frixa, A., Bertamoni, M., Catrullo, D., Trinicianti, E., Miuccio, G., 2000. Late Norian —Hettangian palaeogeography in the area between wells Noto 1 and Polpo 1 (S-E Sicily). Mem. Soc. Geol. Ital. 55, 279–284. 4. http://unmig.sviluppoeconomico.gov.it/videpi/pozzi/consultabili.asp 5. Novelli, L., Welte, D.H., Mattavelli, L., Yalçin, M.N., Cinelli, D., and Schmitt, K.J. (1988). Hydrocarbon generation in southern Sicily. A three dimensional computer aided basin modeling study. Organic Geochemistry, 13 (1-3), 153–164.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 58

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Streppenosa Shale

    1013

    Age: Norian - Rhaetian - HettangianBasin: Ragusa

    Structural setting: foreland

    Facies variability: mediumCountry: Italy 1. Area extend (km2)

    Offshore 8535 Onshore 4065

    2. Thickness (gross, m) 20 3000 1510 1,2,3,42a. Thickness (net, m)

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Alum Shale Formation

    1014

    Age: M. Cambrian-E. OrdovicianBasin: Baltic Basin

    Structural setting: gently dipping succession to the south-south-east

    Northeast marings of the Baltic Basin also commonly known as

    the baltic Syneclise

    Facies variability: Inner and outer shelf black shale with anthracontie and limestone interbeds

    Country: Sweden 1. Area extend (km2)

    Offshore 10121 Onshore 106

    2. Thickness (gross, m) 20 35 25 1Only south Öland, where the

    thickness exceeds 20 m2a. Thickness (net, m) 15 25 202b. Net/Gross (%) 75 83 80

    3. Depth (m) 0 800 300 1, 3

    Outcrops on south Öland, deepest in offshore areas,

    estimated mean. 728-758,5 m in the Yoldia-1 well

    4. Density (g/cm3) n.d. n.d. n.d.

    5. TOC (%) 7 14 11 normal 4

    6. Porosity (%) n.d. n.d. n.d.

    7. Maturity (%VR) or graptolite equivalent 0,4 0,77 0,61 2

    8. Reservoir pressure (psi) 14,5 1160 435Hydrostatic pressure calculated

    from depth data (3)

    9. Reservoir Temperature (°C) 8* 35** 15* mean annual surface grouns

    temperature**Based on BHT in Yoldia-1

    10. Gas saturation (%)(Sg) n.d. n.d. n.d.

    11. Oil Saturation (%) So) n.d. n.d. n.d.

    12. Gas generation mgHC/g TOC (Hydrogen index) 282 458 358 5,6

    13. Kerogen type II II II 2,5

    14. Sorption capacity VReq. - 1,9 % (mmol/g) n.d. n.d. n.d.

    15. Matrix permeability (nDarcy) n.d. n.d. n.d.

    16. Adsorbed gas storage capacity (scf/ton) n.d. n.d. n.d.

    17. Compressibility factor (z) n.d. n.d. n.d.

    18. Bg - Gas formation volume factor n.d. n.d. n.d.

    19. Langmuir Pressure (pL, psi) n.d. n.d. n.d.

    20. Langmuir Volume (nL, scf/ton) n.d. n.d. n.d.

    Bulk mineral constituents XRD % Source

    Average clay content (%) n.d.Average quartz-feldspars content (%) n.d.Average carbonate content (%) n.d. M

    iner

    alog

    y

    REFERENCE LIST : 1 . Dahlman, B., 1977: Öands Alunskiffer. Sveriges geologiska undersökning rapport DOCNO 31188. 2. Schovsbo, N., 2002: Uranium enrichment shorewards in balck shales: A case study from the Scandinavian Alum Shale. GFF 124, 107-115. 3. Completion report Yodia-1, OPAB. 1988. 4.Andersson, A., Dahlman, B., Gee, D.G. & Snäll, S., 1985: The Scandinavian Alum Shales. Sveriges geologiska undersökning Ca 56, 50 pp. 5. Wrang, P., 1984: Organic Geochemical Investiation of Selected Palaeozoic Samples from Sweden. GEUS report 43. 6.Pedersen, J.H., Karlsen, D.A., Lie, J.E., Brunstad, H. & di Primio, R., 2006: Maturity and source-rock potential of Palaeozoic sediments in the NE European Norhtern Permian Basin. Petroleum Geoscience 12, 13-28.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 60

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Alum Shale Formation 1015Age: M. Cambrian-E. OrdovicianBasin: Sorgenfrei Tornquist Zone

    Structural setting: complex strucural setting with several local and regional fault bounded rock blocks being uplifted during L. Cretaceous inversion 1,2

    Facies variability: Outer shelf black shale with some limestone and antraconite interbedsCountry: Sweden 1. Area extend (km2) 2835

    Offshore 450 Onshore 2385

    2. Thickness (gross, m) 61 98,5 80 2, 3, 42a. Thickness (net, m) 762b. Net/Gross (%) 95 Assessed

    3. Depth (m) 0 1000* 800

    Assessed maximum depth. Mean depth is representative for the Colonus Shale Trough

    4. Density (g/cm3) 2,33 2,81 2,54 4

    Density values taken from Shell exploration wells (depth range 685-950 m)

    5. TOC (%) 0,5 13,7 7,5 normal 4TOC also from Shell deep exploration wells

    6. Porosity (%) 1 10,2 6,1 4

    Dry helium porosity % of bulk volume. Data from Shell deep exploration wells

    7. Maturity (%VR) or graptolite equivalent 2,12 2,5 2,29 4

    1,8 4,91 2,65 5,68. Reservoir pressure (psi)

    9. Reservoir Temperature (°C) 10* 33 28 4

    * average surface annual temp. Max temp calculated using a gradient of 3.3 deg/100 m, based on temp data from logs in deep wells

    10. Gas saturation (%)(Sg) 7,5 53,2 20,6 4 % of pore volume

    11. Oil Saturation (%) So) 0 27,9 3,56 4 % of pore volume

    12. Gas generation mgHC/g TOC (Hydrogen index)

    13. Kerogen type II II II

    14. Sorption capacity VReq. - 1,9 % (mmol/g)

    15. Matrix permeability (nDarcy) n.d. n.d. n.d.

    16. Adsorbed gas storage capacity (scf/ton) n.d. n.d. n.d.

    17. Compressibility factor (z) n.d. n.d. n.d.

    18. Bg - Gas formation volume factor n.d. n.d. n.d.

    19. Langmuir Pressure (pL, psi) n.d. n.d. n.d.

    20. Langmuir Volume (nL, scf/ton) n.d. n.d. n.d.

    Bulk mineral constituents XRD % Source

    Average clay content (%) 48 4Average quartz-feldspars content (%) 33Average carbonate content (%) 7,5 M

    iner

    alog

    y

    Central Scania including both deep occurrences of Alums Shale as well as shallow occurrences on the Linderödsåsen ridge flanking the Colonus Shale Trough to the NE

    REFERENCE LIST : 1. Calner, M., Erlström, M., Eriksson, M., Ahlberg, P. & Lehnert, O., 2013: Regional geology of the Skåne province, Sweden. In M. Calner, P. Ahlberg, O. Lehnert & M. Erlström (eds.) The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway. Filed Guide for the 3rd Annual Meeting of the IGCP project 591. SGU, Rapporter och meddelanden 133, 37 39. 2 . Erlström, M., Sivhed, U. ,Wikman, H. &Kornfält, K.-A., 2004: Beskrivning till berggrundskartorna 2D Tomelilla NV, NO, SV, SO, 2E Simrishamn NV, SV, 1D Ystad NV, NO och 1E Örnahusen NV. Sveriges geologiska undersökning, Af 212-214. 141 s. 3. Sivhed, U. ,Wikman, H. & Erlström, M., 1999: Beskrivning till berggrundskartorna 1C Trelleborg NV och NO samt 2C Malmö SV, SO, NV och NO. Sveriges geologiska undersökning, Af 191-196, 198. 143 s 4. Shell exploration. Documentation from exploration activites in Skåne 2008-2011. Sveriges geologiska undersökning. Dnr 212-924-2011. 5. Buchardt, B. & Cederberg, T. 1987: Stabil isotop geokemi i moderbjergarter, olie og gas i Danmark. Afsluttende rapport, EFP-83 projekt, Kobenhavn, 33 p. (In Danish) 6. Buchardt, B., Nielsen, A.T., Schovsbo, N. & Wilken, U. G., 1994: Source rock potential and thermal maturity of Lower Paleozoic black shales in Baltoscandia. PREWSOR-Project Group, Geological Institute, University of Copenhagen, Copenhagen, 58 pp.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 61

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Alum Shale Formation1016

    Age: M. Cambrian-E. Ordovician

    Basin: Danish Basin, Höllviken Halfgraben

    Structural setting: Foreland basin, affected by Variscan and Alpine wrench faulting coupled with extension 1

    Facies variability: Outer shelf black shale with some limestone and antraconite interbedsCountry: Sweden 1. Area extend (km2)

    Offshore 1106 Onshore 504

    2. Thickness (gross, m) 35 44 40 22a. Thickness (net, m) 35 44 402b. Net/Gross (%) 100

    3. Depth (m) 1370 2500 2300 2

    4. Density (g/cm3)

    5. TOC (%)

    6. Porosity (%)

    7. Maturity (%VR) or graptolite equivalent 2,9 3,2* 3 3 From Håslöv-1

    8. Reservoir pressure (psi)

    9. Reservoir Temperature (°C)

    10. Gas saturation (%)(Sg)

    11. Oil Saturation (%) So)

    12. Gas generation mgHC/g TOC (Hydrogen index)

    13. Kerogen type

    14. Sorption capacity VReq. - 1,9 % (mmol/g)

    15. Matrix permeability (nDarcy)

    16. Adsorbed gas storage capacity (scf/ton)

    17. Compressibility factor (z)

    18. Bg - Gas formation volume factor

    19. Langmuir Pressure (pL, psi)

    20. Langmuir Volume (nL, scf/ton)

    Bulk mineral constituents XRD % Source

    Average clay content (%)Average quartz-feldspars content (%)Average carbonate content (%) M

    iner

    alog

    y

    REFERENCE LIST : 1. Calner, M., Erlström, M., Eriksson, M., Ahlberg, P. & Lehnert, O., 2013: Regional geology of the Skåne province, Sweden. In M. Calner, P. Ahlberg, O. Lehnert & M. Erlström (eds.) The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway. Filed Guide for the 3rd Annual Meeting of the IGCP project 591. SGU, Rapporter och meddelanden 133, 37 39. 2 . Sivhed, U. ,Wikman, H. & Erlström, M., 1999: Beskrivning till berggrundskartorna 1C Trelleborg NV och NO samt 2C Malmö SV, SO, NV och NO. Sveriges geologiska undersökning, Af 191-196, 198. 143 s. 3. Buchardt, B., Nilesen, A.T. & Schovsbo, N.H., 1997: Alun Skiferen i Skandinavien. Geologisk Tidskrift 3, 1-30.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 62

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Alum Shale Formation1017

    Age: M. Cambrian-E. OrdovicianBasin: Fennoscandian Shield 1, 2, 3 Västergötland, Östergötland

    Structural setting: Shield platform

    Facies variability: Inner black shale with limestone and antraconite interbedsCountry: Sweden 1. Area extend (km2)

    Offshore Onshore 1497

    2. Thickness (gross, m) 11 24 20 9

    22-24 m in Västergötland, 11-20 in Östergötland, 13-19 m in

    Närke2a. Thickness (net, m) 9 19 162b. Net/Gross (%) 0,8 Assessed

    3. Depth (m) 0 150 30

    0-170m in Östergötland, 0-30m in Närke, 0-150 m in Västergötland (ref 9)

    4. Density (g/cm3)

    5. TOC (%) 0,5 22 11 normal 3, 4, 5, 6

    6. Porosity (%)

    7. Maturity (%VR) or graptolite equivalent 0.43 6,34 0,6 log normal 3, 4, 5, 6, 7, 8

    High values related to thermal impact from Permian dolerite dykes(sills) in Västergötland(

    Ref 9)

    8. Reservoir pressure (psi) n.d. n.d. n.d.

    9. Reservoir Temperature (°C) n.d. n.d. n.d.

    10. Gas saturation (%)(Sg) n.d. n.d. n.d.

    Data might be availble from Gripen Gas exploration in

    östergötland

    11. Oil Saturation (%) So) n.d. n.d. n.d.

    12. Gas generation mgHC/g TOC (Hydrogen index) 332 1000 513 5,6

    13. Kerogen type II

    14. Sorption capacity VReq. - 1,9 % (mmol/g) n.d. n.d. n.d.

    15. Matrix permeability (nDarcy) n.d. n.d. n.d.

    16. Adsorbed gas storage capacity (scf/ton) n.d. n.d. n.d.

    17. Compressibility factor (z) n.d. n.d. n.d.

    18. Bg - Gas formation volume factor n.d. n.d. n.d.

    19. Langmuir Pressure (pL, psi) n.d. n.d. n.d.

    20. Langmuir Volume (nL, scf/ton) n.d. n.d. n.d.

    Bulk mineral constituents XRD % Source

    Average clay content (%) 40 9Average quartz-feldspars content (%) 35

    Average carbonate content (%) 1 Min

    eral

    ogy

    REFERENCE LIST : 1. Calner, M., Erlström, M., Eriksson, M., Ahlberg, P. & Lehnert, O., 2013: The Lower Palaeozoic of southern Sweden and the Oslo Region, Norway. Filed Guide for the 3rd Annual Meeting of the IGCP project 591. SGU, Rapporter och meddelanden 133, 96 pp. 2. Andersson, A., Dahlman, B., Gee, D.G. & Snäll, S., 1985: The Scandinavian Alum Shales. Sveriges geologiska undersökning Ca 56, 50 pp. 3. Schovsbo, N., 2002: Uranium enrichment shorewards in balck shales: A case study from the Scandinavian Alum Shale. GFF 124, 107-115. 4. Dahl, J., Hallberg, R. & Kaplan, I.R., 1988: The effects of radioactive decay of uranium on elemental and isotope ratios of Alum Shale kerogen. Applied Geochemistry 3, 583-589. 5. Pedersen, J.H., Karlsen, D.A., Lie, J.E., Brunstad, H. & di Primio, R., 2006: Maturity and source-rock potential of Palaeozoic sediments in the NE European Norhtern Permian Basin. Petroleum Geoscience 12, 13-28. 6 . Krüger, M., van Berk, W., Arning, E.T., Jimenéz, N., Schovsbo, N.H., Straaten, N. & Schultz, H.M., , 2014: The biogenic methane potential of European gas shale analogues: Results from incubation experiments and thermodynamic modelling. International Journal of Coal Geology 136, 59-74. 7. Thomsen, E., 1984: A coalification study of Lower Palaeozoic deposits from Denmark and Sweden. GEUS report 36. 8. Buchardt, B. & Lewan, M.D., 1990: Reflectance of Vitrinite-Like Macerals as a Thermal Maturity Index for Cambrian-Orodovician Alum Shale, Southern Scandinavia. The American Association of Petroleum Geologists Bulletin 74, 394-406. 9. Hessland, I. & Armands, G., 1978: Alunskiffer. Utredning från Statens industriverk, SIND PM 1978:3, 1-94. 10. Armands, G., 1972: Geochemical studies of uranium, molybdenum and vanadium in Swedish alum shale. Stockholm Contributions in Geology 27, 1-148.

    Appendix B Shale layer characteristics from NGS Overview of shale layers characteristics in Europe

    Source: Schovsbo, N.H., Anthonsen, K.L., Pedersen, C.B., Tougaard, L., 2017. Overview of shale layers characteristics in Europe relevant for assessment of unconventional resources.

    Delivery T6b of the EUOGA study (EU Unconventional Oil and Gas Assessment) commissioned by JRC-IET to GEUS.

    Page 63

  • EUOGA Critical Parameter (Screening criteria) Min Max Mean Distribution

    Source (Ref.list) Comments

    Shale Name: Mikulov Marl

    1018

    Age: Malmian (Upper Jurassic)Basin: Vienna Basin

    Structural setting

    Facies variability: uniform MarlsCountry: A, CZ 1. Area extend (km2)

    Offshore Onshore 729

    2. Thickness (gross, m)2a. Thickness (net, m) 150 900 525 10.

    2b. Net/Gross (%)(Cross-Sections & Wells see Ref.

    10)

    3. Depth (m) 4000 7000 5500 10.(Cross-Sections & Wells see Ref.

    10)4. Density (g/cm3) 2,24 6.

    5. TOC (%) 1,5 10 2 1.,3.,4.

    6. Porosity (%) 0 9 5 5.

    7. Maturity (%VR) or graptolite equivalent 0,7 2,2 1,2 2., 4.

    1,2% at "mean depth" of 5500m

    8. Reservoir pressure (psi) 5800 22000 13900 8.

    9. Reservoir Temperature (°C) 70 230 150 5.,7., 8.

    10. Gas saturation (%)(Sg) no published data

    11. Oil Saturation (%) So) no published data

    12. Gas generation mgHC/g TOC (Hydrogen index) 150 400 300 1.

    13. Kerogen type III II II-III 1.

    14. Sorption capacity VReq. - 1,9 % (mmol/g) no published data