21
3/27/2017 1 Oxidative Phosphorylation Pratt and Cornely, Chapter 15 Goal: ATP Synthesis

Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

Embed Size (px)

Citation preview

Page 1: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

1

Oxidative Phosphorylation

Pratt and Cornely, Chapter 15

Goal:  ATP Synthesis 

Page 2: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

2

Overview

• Redox reactions

• Electron transport chain

• Proton gradient

• ATP synthesis

• Shuttles

Standard Reduction Potential

• “potential to be reduced”

• Listed according to oxidized compound being reduced

• High RP means that the compound is a strong oxidizer (ie O2)

• Its conjugate is a strong reducing agent (ie NADH)

½ O2 + 2 e + 2 H+ H2O

Page 3: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

3

Half Reactions

• Reduction potential written in terms of a reduction half reaction

• Aox Ared

• Example: Calculate Eo for reduction of FMN by NADH, given the Eo of FMN to be ‐0.30V

• Then calculate Go’

NADH + FMN  NAD+ + FMNH2

Redox reactions:  electricity

• NAD+:  Eo’ = ‐.32

• FMN: Eo’=‐.30

• Eo’ = +0.02V• Calculate Go’:2 e‐transfer

• Go’ = ‐nFEo’ = ‐2(96485 J/molV)(0.02V)

= ‐3.9 kJ/mol

Page 4: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

4

Numerous Redox Substrates

• Chain of increasing reduction potential (potential to accept e‐)

• Mobile carriers vs. within Complex

• Types of redox groups– Organic cofactors

– Metals (iron/sulfur clusters)

– Cytochromes

– O2

Overall chain from NADH

• NADH

• Complex I

• Q

• Complex III

• Cytochrome c

• Complex IV

• O2

Page 5: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

5

Within Complexes

• FAD/FMN

– Prosthetic group

– Bridge from 2 e‐ donors to 1 e‐ donors

• Iron‐sulfur clusters

Coenzyme Q:  Mobile Carrier

• 1 or 2 e‐ carrier, 1 e‐acceptor/donor

• Ubiquinone is a mobile carrier

• Can diffuse through nonpolar regions easily

• “Q pool” made by Complex I and Complex II (and others)

Page 6: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

6

Cytochrome c

• Mobile carrier

• Protein/heme

• 1 electron carrier

Oxygen:  the final electron acceptor

• Water is produced—has very low reactivity, very stable

• Superoxide, peroxide as toxic intermediates

• Overall reaction

NADH + H+ + ½ O2 NAD+ + H2O

Page 7: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

7

Flow Through Complexes

Page 8: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

8

Compartmentalization

Protonmotive Force

• NADH + H+ + ½ O2 NAD+ + H2O + 10 H+ pumped

• succinate + ½ O2 fumarate + H2O + 6 H+ pumped

Page 9: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

9

Complex I

• NADH  Q through

– FMN

– Iron‐sulfur clusters

• “Q pool”

• 4 protons pumped

– Proton wire

Complex III

• QH2 cytochromes• 4 protons pumped• Through Q cycle• Problem 10: An iron‐

sulfur protein in Complex III donates an electron to cytochrome c. Use the half reactions below to calculate the standard free energy change. How can you account for the fact that this process is spontaneous in the cell?

FeS (ox) + e‐ FeS (red)            Eo’ = 0.280 VCyt c (Fe3+) + e‐ cyt c (Fe2+) Eo’ = 0.215 V

Page 10: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

10

Complex IV

• Cytochromes  O2

• Stoichiometry of half of an oxygen atom

Page 11: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

11

Complex II (and others)

• Non‐NADH sources

– Complex II (part of the citric acid cycle)

– Fatty acid oxidation

– Glycolysis NADH shuttle (Glycerol‐3‐phosphate) 

• Bypasses Complex I 

– Loss of 4 protons pumped

Two paths of NADH into Matrix

• NADH of glycolysis must get “into” matrix

• Not direct• Needs either

– malate‐aspartate shuttle (liver)

– Glycerol‐3‐phosphate shuttle (muscle)• Costs 1 ATP worth of proton gradients, but allows for transport against NADH gradient

Page 12: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

12

Glycerol‐3‐phosphate Shuttle

• Glycerol phosphate shuttle (1.5 ATP/NADH)

• Produces QH2

• Operational in some tissues/circumstances

Net ATP Harvest from Glucose

• Glycolysis = 2 ATP

– Plus 3 or 5 ATP from NADH

– What leads to difference in this case?

• Pyruvate DH = 5 ATP

• Citric Acid Cycle = 20 ATP

• Total: 30‐32 ATP/glucose

Page 13: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

13

Overall

• Chemiosmosis

• 10 protons shuttled from matrix to intermembrane space

• Makes pH gradient and ion gradient 

Protonmotive Force and Oxidative Phosphorylation

• Flow of electrons is useless if not coupled to a useful process– Battery connected to wire

• Proton gradient across mitochondrial membrane

Page 14: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

14

Proton Gradient

• Gradient driven by concentration difference + charge difference

– Assume pH 0.5 and 170mV membrane potential

Using the Gradient

• Coupled to ATP synthesis

• Uncouplers used to show link of oxygen uptake and ATP synthesis

Page 15: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

15

Uncouplers

• “Uncouple” protonmotive force from ATP synthase

– DNP pKa / solubility perfectly suitable

Respiratory Poisons

• Other respiration poisons

– Cyanide—binds Complex IV in place of oxygen

Page 16: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

16

Complex V: ATP Synthase

• Molecular motor

• Rotor: c, , – Proton channel

Proton Channel• Protons enters channel between rotor and stator 

• Rotor rotates to release strain by allowing proton to enter matrix

• 8‐ 10 protons = full rotation– Species dependent

Page 17: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

17

• “Stalk” () moves inside the“knob”—hexameric ATP synthase

• Knob held stationary by “b”

Page 18: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

18

Hexameric Knob

Binding‐Change Mechanism

• Stalk causes ATP synthase to have three different conformations: open, loose, tight

• In “tight” conformation, energy has been used to cause an energy conformation that favors ATP formation

Page 19: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

19

Problem 39

• How did these key experiments support the chemiosmotic theory of Peter Mitchell?– The pH of the intermembrane space is lower than the pH of the mitochondrial matrix.

– Oxidative phosphorylation does not occur in mitochondrial preparations to which detergents have been added.

– Lipid‐soluble compounds inhibit oxidative phosphorylation while allowing electron transport to continue.

Energy Accounting• ATP costs 2.7 protons

– 8 protons produces 3 ATP

• NADH pumps 10 protons when 2 e‐ reduce ½ O2

– 4 protons in Complex I, 4 protons in Complex III, and 2 protons in Complex IV

• P/O ratio‐‐# of phosphorylation per oxygen atom– 10H+/NADH (1 ATP/2.7 H+) = 3.7 ATP/NADH

– 6H+/QH2 (1 ATP/2.7 H+) = 2.3 ATP/QH2

• In vivo, P/O ratio closer to 2.5 and 1.5 due to other proton “leaking”– i.e. importing phosphate

Page 20: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

20

Active Transport of ATP

• ATP must go out, ADP and Pi must go in

• Together, use about 1 proton of protonmotiveforce

Regulation of Oxidative Phosphorylation

• Electron transport is tightly coupled to ATP production

– Oxygen is not used unless ATP is being made

– Avoid waste of fuels

– Adding ADP causes oxygen utilization

– Respiratory control

Page 21: Oxidative Phosphorylation - Indiana University Bloomingtoncourses.chem.indiana.edu/c483/documents/Lecturech15… ·  · 2017-03-27Oxidative Phosphorylation Pratt and Cornely, Chapter

3/27/2017

21

Problem 47

• A culture of yeast grown under anaerobic conditions is exposed to oxygen, resulting in dramatic decrease in glucose consumption. This is called the Pasteur effect. Explain.

• The [NADH]/[NAD+] and [ATP]/[ADP] ratios also change when an anaerobic culture is exposed to oxygen. Explain  how the ratios change and what effect this has on glycolysis and the citric acid cycle in yeast.