29
Particle acceleration & magnetic field amplification in supernova remnants A.Marcowith (L.U.P.M.)

Particle acceleration & magnetic field amplification in ...€¦ · Hadrons Tycho. 11/6/12 MODE meeting Montpellier 5-7 November 2012 7 ... in spatial/energy scales. •Two approaches:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Particle acceleration & magneticfield amplification in supernova

    remnants

    A.Marcowith (L.U.P.M.)

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    2

    Outlines

    • Observations: Links between particle accelerationand magnetic field amplification: isolated youngsupernova remnants.

    • Theory: From modeling to first principles.• Some other special cases.• Conclusions.

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    3

    I/ Observations

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    4

    X-ray FilamentsCasA Tycho

    SN1006 Kepler

    RCW86

    Blue: synchrotron non-thermal X-rays @ keV(Vink’08)

    Filament size %Rsh

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    5

    X-ray filaments

    • Filament size => shockmagnetic field– Lower limit– (mostly) downstream MF.– Multi TeV electrons

    ΔRX=Max (ΔRdiff, ΔRadv)

    Parizot+06

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    6

    SNR at Gamma-rays

    Uchiyama+11, Morlino & Caprioli’12

    s=2.2 may be up to VHE

    ECR consistent with 10% ofESN for next=0.3 cm-3

    Fermi data more consistent withhadronic model = multi-TeVHadrons

    Tycho

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    7

    II/ Modeling

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    8

    The (30 years) theoreticalproblem

    Fluid thermal plasma +

    background magnetic field +

    radiation + microinstabilities

    Shock structure: Temperature, MF

    Obliquity, radiation precursor

    + Energetic particlesDiffusive shock

    Acceleration (DSA)

    Krymsky’77, Bell’78,Blandford & Ostriker’78

    Zeldovichbook

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    9

    Principles of DSA

    Bturb

    BISM

    ! " #

    $ % &

    2

    = Ma

    2 ush

    c

    ! "

    $ %

    PCR

    'ush

    2

    ! " #

    $ % &

    = 500( )2(1/50)(1/5) = 1000

    precursor

    r=4 strong shock

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    10

    The (30 years) theoreticalproblem

    Fluid thermal plasma +

    background magnetic field +

    radiation + microinstabilities

    Shock structure: Temperature, MF

    Obliquity, radiation precursor

    + Energetic particlesDiffusive shock

    Acceleration (DSA)

    Drury & Völk’ 81

    CR precursor and mediation

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    11

    Non-linear DSA

    CR Escape flux

    = More compression

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    12

    The (30 years) theoreticalproblem

    Fluid thermal plasma +

    background magnetic field +

    radiation + microinstabilities

    Shock structure: Temperature, MF

    Obliquity, radiation precursor

    + Energetic particlesDiffusive shock

    Acceleration (DSA)+ MF amplification

    CR precursor and Mediation

    MF “precursor”: pre-heating

    Bykov+12Caprioli+09

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    13

    MFA feed-back

    • MFA: reduce plasma compressibility andcompression ratio– Increase Va hence reduce U1=> U1-Va– Energy imparted into turbulence and heating

    Caprioli+09

    Va
(B0):
no
MFATrans:
Ua
in
the
kineticCR
Eq.Trans+Ampl:
Ua
in
thekinetic
CR
Eq.+growthrate

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    14

    Modeling: an updated view

    • Young (isolated SNRs): Magnetic field amplification +energetic particles– [Ekin:ECR:Em]=[1:0.1:(>)0.01]– CRs:

    • Modify the shock structure, increase compression (pressure,escape energy flux)

    • Non-liear effects: soft (s=2.5) => hard (s=1.5) spectrum

    – MFA:• Pump energy to CRs, increases Va• Reduce non-linear effects s=2.3-2.4• Help in confinement => higher CR energies (see next)

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    15

    New diagnostic? X-ray stripes

    Eriksen+11

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    16

    X-ray stripes: coherent turbulentpatterns

    Bykov+11

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    17

    III/ Theory

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    18

    Status

    • No model able to describe 9 orders of magnitudein spatial/energy scales.

    • Two approaches:– Simulations and analytical work from approximate

    models (see previous slides)– Analytical & numerical work from first principles or

    at different level of approximation.

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    19

    Magnetic field amplification atshocks

    • Analytical approach (limited to linear analysis)– Source of free energy: Shock kinetic energy

    Shock kinetic energy ρvsh2

    Cosmic RaysρCR,JCRF(p,x,θ)

    Magnetic instabilities

    • Streaming instabilities (non-resonant, resonant) (CR current) (Bell’78’04,Pelletier+06, Amato &Blasi’09)

    • Firehose/Mirror instabilities (anisotropy in CR pressure) (Bykov+11)• Acoustic instability (spatial CR pressure gradient) (Drury & Falle’86) or related

    (Beresnyak+09)• Instabilities independent of CRs (Giacalone & Jokipii’07)

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    20

    Streaming instability

    Bell’04

    resonant Non resonant

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    21

    Streaming Instability

    JCR

    F(x,p)

    Vch

    precursor

    MIS

    Non resonant

    Resonant

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    22

    MF amplification• Non-resonant instability:

    – Fastest especially at high shockvelocity (Pelletier, Lemoine, AM’06)

    – Expected MF amplitude at the shockfront (B ∝ Vsh3/2)

    – But:• only small scales : Issue for

    confinement of high-energyparticles (but see Bykov+11)

    Bturb

    BISM

    ! " #

    $ % &

    2

    = Ma

    2 ush

    c

    ! "

    $ %

    PCR

    'ush

    2

    ! " #

    $ % &

    = 500( )2(1/50)(1/5) = 1000

    Vink’09

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    23

    Different numerical approaches

    Particle‐In‐Cell
(PIC):
all
species
kinetic:
Small
scales
l
~
rthi
:instabilities
that
mediate
the


    shock
formation
‐
injection
problem.
(Riquelme
&
Spitkovsky’09’10)

    “Hybrid”
(electron
as
fluid,
ions
as
kinetic):
Dominant
instability
for
particle
acceleration
‐


    back
reaction
over
the
CR
current
(Gargaté
&
Spitkovsky’12)

    Kinetic‐magneto‐hydrodynamic
(MHD)
(electron+ion
fluid,
energetic
particles
as
kinetic):
Large
scales
l~rCR
‐
long
term


    evolution
of
the
dominant
Instability
‐
CR
transport
and
escape.
(Reville+08,
AM
&
Casse’10,
Reville
&
Bell’12)

    Microscopic M

    esoscopic Macroscopic

    Numerical simulations => non-linear stages

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    24

    Numerical highlightsPIC
Riquelme
&
Spitkovsky’09 Di‐Hybrid
Gargaté
&
Spitkovsky’12

    Non-resonant instability saturation non-linear effect due to feed-back over CR current

    Non-thermal acceleration bythe Fermi process for differentAlfvén Mach numbers (// shock)

    Solid blue: 3D simulations transverse MFDotted: longitudinal MF

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    25

    Numerical highlightsPIC
Riquelme
&
Spitkovsky’09 Di‐Hybrid
Gargaté
&
Spitkovsky’12

    Non-resonant instability saturation non-linear effect due to feed-backover CR current rL~Lturb

    Non-thermal acceleration bythe Fermi process for differentAlfvén Mach numbers (// shock)

    Solid blue: 3D simulations transverse MFDotted: longitudinal MF

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    26

    IV/ Other special cases

    1. Very young SNRs2. SNR in interaction with molecular clouds3. Multiple shocks in various contexts (massive star

    clusters, molecular clouds)

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    27

    Very young SNR: SN 1993J case

    • Acceleration & instability amplification timescales decrease:– Fast shocks (NB relativistic shocks issues with precursor size)– Higher CR densities

    • Points towards very young (year) SNR propagating into dense stellar windslike SN 1993J (Type IIb).

    • Radio observations– MF strengths ~ a few Gauss (Fransson+06) >> equipartition wind fields

    (mG)• CR (e/p) acceleration model coupled with MF dynamics (Tatischeff’09,

    Renaud+in prep) + MFA:

    ! max"1

    =50#

    PeV

    $0.03u73ncm

    years

    NR inst. Young SNR NR inst. 93J

    !max

    "1=

    1000#PeV

    $0.03u93J

    3n93J

    seconds

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    28

    SNR / cloudinteraction

    • MF Amplification due to turbulentmedium (shock rippling) that isshocked (Giacalone & Jokipii’07)– B grows due to velocity shear

    along mean B– B => few hundred microG

    • Network secondary shocks– M < 2 (M=√5 in the dense cloud

    limit)– Behind the blast wave =>

    propagate in an ionized medium.– Can re-accelerate CRs

    Ino

    ue+0

    9+1

    0

    2D MHD simulations (perpstrong shock)

  • 11/6/12 MODE meeting Montpellier 5-7November 2012

    29

    V/ Conclusions

    • Observations:– Evidences particle acceleration and magnetic field amplification are

    connected.– Highest energies are found in relation with MFA.

    • Modeling:– Fluid-CR-MF have to be considered as a whole.– MFA contributes to reduce compression and produce softer CR spectra.– Turbulence diagnostics: polarization.– HE gamma-rays from very young objects/SNR-cloud interaction.

    • Theory:– Simulations at multi-scales with different adapted strategies.– PIC/Hybrid: MF effectively amplified and DSA regime recovered.