91
Hadron structure Particle Physics - Chapter 2 Paolo Bagnaia last mod. 17-Mar-21

Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Hadron structureParticle Physics - Chapter 2

Paolo Bagnaia

last mod.17-Mar-21

Page 2: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

2 − Hadron structure1. Fermi gas model

2. Rutherford scattering

3. Kinematics

4. Elastic scattering e-Nucleus

5. Form factors

6. Electron-Nucleon scattering

7. Proton structure

8. Higher Q2

9. Deep inelastic scattering

10. Bjorken scaling

11. The parton model

12. The quark-parton model

13. F2(x,Q2)

14. Summary of cross-sections

Paolo Bagnaia - PP - 02 2

Au

α

Page 3: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

brief historical summary

Paolo Bagnaia - PP - 02 3

"Hegel remarks somewhere that all great, world-historical facts and personages occur (…) twice.He has forgotten to add: the first time as tragedy,the second as farce." [Karl Marx, The 18thBrumaire of Louis Bonaparte]

Despite this famous sentence, in thischapter a story is told, neither tragic norfarcical, which happened at least threetimes in the 20th century: in a scatteringexperiment, a projectile probes the deepstructure of the target; the scale of theobservation depends on the energy ofthe probe:

1. 1911 (Rutherford) α particles → gold(nucleus) [→ FNSN];

2. 1950-60 (Hofstadter) e− → H/D/He(nuclear structure);

3. 1965-80 (SLAC/CERN) e/ν →hadronic matter (quarks/partons)

4. 20xx [possibly, maybe you] a newsubstructure emerging ???

The deep meaning of the mechanismresides in Quantum Mechanics, whichrelates the space scale of a phenomenonwith the (transverse) momentum of thescattered particles.

The role of technology is also important:the observation is possible because ofpowerful accelerators and detectors.

We will follow the history and thereforewill study phenomena of ever smallersize [look the contents page].

Page 4: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

target NOT point-like

Standard Model

quarks/ partons ?assume point-like target

the treasure map for scattering

Paolo Bagnaia - PP - 02 4

Rutherford

Mott*

Mott

α,Au: point-like, no spin, mN >> mprobe

e,N: Dirac fermions,

spin ½

N recoil (mN ≠ ∞)

formfactorF(q2)

anomalous mag. moment

Rosenbluth

Bjorkenscaling

substru-cture ?

dependence on Q2 ?

p not Dirac ?

Start from here

Page 5: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

the scattering experiment

Paolo Bagnaia - PP - 02 5

(*) We call "kinematics" theequations which follow fromspace / angular momentumconservation and mass. Thegame is to study the"dynamics" after imposingthe "kinematical" constraints.

T(*)

α/e−

Tα/e−

Q : is the target a pointlike simple object ? if not,how to probe its shape ?

A : (à la Rutherford, but (a) he used α particles,(b) he did NOT see the nucleus size) take a probe: e.g. an electron (e−), study the scattering e−T, [T=Nucl-eus/on] measure the cross section σ(e−T), … and the angular distribution of the e−; … and detect the excited states or the

final state hadronic system ("inelasticinteractions").

Path:1. study the kinematics (*);2. compute σ(e−T) for pointlike nuclei in classical

electrodynamics (Rutherford formula);3. ditto in QM for spin ½ electrons and pointlike

nuclei (Mott formula);4. detect deviations from these models → derive

informations on nuclear structure;5. new theory @ smaller distance (i.e. higher

Q2) → experiment → deviations → newertheory → ... → ... → (possibly ad infinitum)

Page 6: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Fermi gas model

Paolo Bagnaia - PP - 02 6

Nuclei are bound states of protons (p)and neutrons (n).

A simple model: the Fermi gas:

• p, n identical, but charge :o little spheres r = r0, mass = m;o spin ½ fermions, pure Dirac-like;o bound inside the nucleus, otherwise

free to move;• define:o nneutr.(= N), nprot. (= Z), A = N + Z,o pFermi (= pF), EFermi (= EF);→ VNucl [∝ A] = 4πr0

3A/3;

• no e.m. interactions, only nuclear→ N = Z = A/2, pF

p = pFn, EF

p = EFn [better

approx (not here):different interactions → pFp ≠ pF

n];

• uncertainty principle → each p/n fillsVphase space = [2πℏ]3.

Therefore:

• well-shaped potential (⊔), identical forp/n, i.e. only interactions p↔p n↔n;

• Fermi statistics → two p/n per energylevel (spin );

[…next page…]

1/2

protons neutrons

EF

Page 7: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Fermi gas model: results

Paolo Bagnaia - PP - 02 7

From those approximations, anelementary computation :

Conclusions :

• Vspace ≈ 4/3πr03A → rnucl. ∝ A⅓;

• pF, EF not dependent on A (!!!);

• large pF, small kin. energy;

• when p/n hit by probe (e±/ν), if Eprobe>> 30 MeV → ignore Fermi motion.

• [more elaborated model, e.g. add e.m. and spininteractions, etc. – see literature]

2/2

[ ]

⇑ ⇓ ⇑ ⇓= = = = = = =

π × π = = = π

= = = = ππ

≈≈= ≈

3 30

n, n, p, p,

3 34 4space mom 3 30 FTOT3

space mom each part

3 30

Fkin 2F

0

F

3

F

F

3

F

30

A 4 Ar pN Z ;

p 250 MeV;

N Z An n n n2 2 4

V V r A pV V 2

2

p 9 /8;2

r 1.2 fm

Ar

E p /2m 33 Me

p ;9

9 r

V.

protons neutrons

EF

fit from form factors (see later)

p, E << m, so non-relativistic approx

Page 8: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering

Paolo Bagnaia - PP - 02 8

1/7

The birth of nuclear physics(Manchester, 1908-13):

α(Zα=2, Aα=4) → Au(ZAu=79, AAu=197)

• actually performed by H.Geiger andE.Marsden [E.M. was 20 y.o. !];

• alternative model by J.J.Thompson,with a diffused mass/charge ("softmatter");

• the first "fixed target" scatteringexperiment.

• already discussed in FNSN(pag 25);

• do NOT repeat the math,simply recall the results;

• discussion of the physics;• preparation for further

steps.

modern simulation (look):https://phet.colorado.edu/en/

Lord Ernest Rutherford

Page 9: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering: in a nutshell

Paolo Bagnaia - PP - 02 9

2/7

[an incredible mix of genius, skill and luck]• α-particles (i.e. ionized He) → Au foil;• Eα

kin ≈ few MeV;• sometimes, the α was scattered by θ >

90°; *VERY* rare in reality, butimpossible if matter were soft andhomogeneous;

• only explanation: "matter" actuallyconcentrated in small heavy bodies("nuclei");

→ the "matter" is essentially empty;• how model the scattering ? Rutherford

tried with a two-body scattering;• notice: Coulomb (electrostatic), non-

relativistic, no QM (obviously);• success !!! [within their limited

observation capabilities]

• a key point: the nucleus is smallenough, that the α "sees" always its fullcharge;

• [remember the Gauss' theorem: ifimpact parameter b > rNucleus , only seean effective point-like charge]

• but the matter is neutral ! yes, but theelectrons are so light, that they cannotstop/deflect the α (me/mα ≈ 1/8,000).

123

4θ1

Au

b

rminα

θ4

Page 10: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering: the math

Paolo Bagnaia - PP - 02 10

3/7

α (m, z) → nucleus (M, Z):• vα,init = v, vα,final = v', vnucleus = 0;• p = mv, p' = mv', m << M;

• Coulomb force only (F);• v << c → non-relativistic;• elastic → |p'| = |p|;• conserve E, ang. mom L ;• ∆px = 0 because of symmetry,

only ∆py matters;• integral over β, the angle wrt y;• if attractive force (e.g. +−), M →

the other focus of the hyperbola.

p

p'

M

θ

β

βF

mb

y

x

θ/2

( )

( )

( )

( )

+∞ +∞

−∞ −∞

π−θ

− π−θ

πε

β β= = × = × + β

∆ = − = θ

π

β∆ = = = =

β= β = θ

θ = →

ε πε

πε

=

θ

= −

∫ ∫

y y 2

2( )/2

2

2

0

2 2

0 0

2

( )

2

0

/2

2

cosp dtF dtr(t

dr d dˆˆ|L| pb |r mv| |r m( r r )| mr ;dt

)

cos mr md cos

dt dt

/2

zZe4

zZe ;r pb pb

mtan

zZe4 2

z

p |p p'| 2psin /2 ;

2psin /

/2 dbb

e

2

Z4 p

zZ( )

( ) ( )

( )

θθ

θσ = π = π πε θ θ

σ= = Ω θ

πε

πε πε −

2

02 2

22

2 20

2 2

4 4

2 2

0 04

m d .p 2sin /2

zZe m dd 2 bdb 2 ;4 p 2tan /2 sin /

e4

zZe z

2

d m 1 m 1 .d |p4p sin p

Z4 /

e'|2 2

d 2 sin d 4 sin( /2)cos( /2)dΩ = π θ θ = π θ θ θ

2 2

d[1/ tan( /2)] d[cos( /2)/sin( /2)]

d( /2)[1 cos ( /2)sin ( /2)].

θ = θ θ

= − θ + θ θ

Page 11: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering: more math

Paolo Bagnaia - PP - 02 11

4/7

p1

p'1

M

θ

mb

y

xθ/2

p2 = −p'2 d0

d

2

0

2 20 0

2 200 0

min

min

0

2

4 4

0

0

d d d .d 16sin (

d

zZed r (b 0) ;2

Useful formula

dtan ;2 2

d 4bd r (b)

2d 11 ;2 sin( /2

s

)

mv

/ )

b

2θ→

+ += =

σ= →

Ω θ

θ =

=

= +

= = =πε

θ

θ

• [if force attractive (e.g. +−), F → −F, then θ → , but everything else equal, e.g. same dσ/dΩ;]

• consider a particle p2 with b=0 → θ2 = 180°; define d0 = "distance of closest approach",

i.e. rmin (when r=d0, the particle is at rest); d0 is computed from energy conservation;

• define d0 = (zZe2)/(2 0mv2) also for b≠0;• write θ and dσ/dΩ as functions of d0;• define d as rmin, when b≠0;• d is computed from E and L conservation [hint in

the box, v0 is the velocity in d]:

( )

( ) ( )

0 0

2 2 20 0

2 20 0

2 20 0

2 20

L conserv mbv mdv v / v b/d

E conserv ½mv ½mv zZe / 4 d

½mv ½mv d /d

v / v b/d 1 d /d

d dd b 0 d ....

→ = → =

→ = + πε =

= +

→ = = − →

→ − − = → =

Page 12: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering: dσ/dΩ

Paolo Bagnaia - PP - 02 12

5/7

b

b+db θ

|dθ|

• [the calculations above are *NOT* difficult inmath: Newton could have done all 200 yearsearlier, had the correct model been made];

• the real difficulty was to assess whether thematter is soft and continuous or granular and"empty";

• b large → θ small → dσ/dΩ → ∞ [cutoffprovided by other Au nuclei].

A long and thorough investigation:• 1909: found some events θ > 90°: big shock;• 1911: falsification of the Thomson model,

correct assumptions, check of dσ/dΩ in therange 30 50°;

• 1913: check of dσ/dΩ in the range 5 150°;

• check that yield ∝ thickness of Au foil;• other nuclei : check that yield ∝ Z2 [roughly];• however Rutherford model clearly

inconsistent in its "planetary" part:acceleration of charged electrons → radiation→ collapse;

• after birth of QM, Rutherford computationredone in Born approx : → same dσ/dΩ [bigluck !] + no more inconsistency [next slides].

Gold, Z=79

Silver, Z=47Aluminum, Z=13

0° 30° 60° 90° 120° 150° 180°10-4

10-2

100

102

104

106

108

dσ/dΩ (barn/sr) Eαkin = 8 MeV

[1 barn=10-28 m2

= 100 fm2]

θ

→ ∞ ?

Page 13: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering: Rnucleus

Paolo Bagnaia - PP - 02 13

6/7

Ekin (MeV)

0 10 20 30 4010-15

10-14

10-13

10-12

d0 (m)

Gold, Z=79

Silver, Z=47Aluminum, Z=13

How large is the nucleus ?• [remember the Gauss' theorem]

• if the α trajectory is completely external to thenucleus, it does NOT probe its (possible) structure;

• the Rutherford experiment could only limit Rnucleus <10-14 m [still an important result !];

• to "see" 10-15 m → probes with Ekin > 20÷30 MeV.

non-relativistic ?

p

p'

M

θα

b

y

xθ/2

d

???

0° 30° 60° 90° 120° 150° 180°10-15

10-14

10-13

10-12

θ

d [= rmin](m)

Gold, Z=79

Silver, Z=47

Aluminum, Z=13

Eαkin = 8 MeV

no-recoil ?

Page 14: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Rutherford scattering: measure Rnucleus

Paolo Bagnaia - PP - 02 14

7/7

• plot [A]: b and rmin could *NOT* be measureddirectly for each event, but Rutherford point-likelaw (rpl) relates b ↔ θ; in fact bsmall ↔ θlarge;

• plot [B]: the Gauss' theorem predicts a deviationfrom rpl, when (Eα

kin large) → (rmin < Rnucleus) →shielding → "smaller θ";

• plot [C] (1961 !!!): a "Rutherford-like" scatteringα-Pb; at θ=60°, deviation for Eα

kin > 25 MeV;• at high θ, point-like target → larger σ, soft target

→ smaller σ (deviations from rpl related to size oftarget) [please, remember].

α(Z=2,A=4) → Pb(Z=82,A=207)θ=60°, as a function of Eα

kin

[Rev.Mod.Phys 33, 190 (1961)]

Q. find rmin for Pb, θ = 60°, Eαkin = 25 MeV

A. rmin = [ formula] = 14 fm.

B

123

4θ1

Nucleus

b

rminα

θ4

A

C

[=rpl]

Page 15: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics

This chapter (and many others) deals with scattering.A "probe", usually assumed point-like (e.g. e±) hits ahadronic complex system (a nucleus) [see box].

In the final state, the probe emerges unchanged,while the nucleus may or may not survive intact:

• elastic scattering, when the nucleus is unchanged,i.e. identical initial and final state particles (W=M);

• excitation, when the nucleus in the final state isexcited, i.e. heavier (W = M* > M);

• a new hadronic system, with n particles (i=1…n):EH = ∑i=1

n Ei; pH= ∑i=1n pi;

W = EH2− pH

2 = Mhad. sys. > M.

The underlying idea is to study (understand ?) thestructure of the hadrons by observing the scattering.

Paolo Bagnaia - PP - 02 16

1/10

Electron e−

(E, p)

Nucleus(M, 0)

(E’, p')

(EH, pH )

θ

e−N → e−HThis is a collection of kinematical computations. It isprobably useful to have all in the same place. Notice thathere we work in the LAB sys (= N at rest), not in the CM.

H

H

E + M = E' + E ;4-mom cons

electron e :

had. sys.

. p + 0 = p ' +

:

: p .

H H

(E', p '; m) [fin.(M, 0; M) [init.]

(

(

E, p ; m) [ini

E , p ; W) [

t.]

]

fin.]

Page 16: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: elastic scattering• To begin with, assume elastic scattering,

i.e. "H" = N;• Define, in the target nucleus ref.sys. :

• The relation between the observed quantities(E, E', θ) is [next slide] :

• Therefore, for known initial energy E and fixedM, the final state is defined by oneindependent variable (E' or θ).

Paolo Bagnaia - PP - 02 17

( ) ( )= = ≈

+ − θ + θ

2

E EE' |p'|;E 2E1 1 cos 1 sin /2M M

2/10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150

E = 10 GeV, A = 1 E= 0.5 GeV, A = 1 E = 10 GeV, A = 50 E = 0.5 GeV, A =50

θ

E’/E

±

H

H

p + 0 = p' + p ; 4-mom

electron e

nucleus

cons. E + M = E' + E

:

:

.

H H

(E', p '; m) [fin.(M, 0; M) [init.

(E, p

(E

; m) [in]

it.]

, p ; M) [f

]

in.]

Electron e−

(E, p)

Nucleus(M, 0)

(E’, p')

θ

e−N → e−N

(EH, pH)

E/M small → E' ≈ E → pH ≈ 0 → no recoil, independent of θ.

Page 17: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: elastic scattering - E' vs θ

Paolo Bagnaia - PP - 02 18

( ) ( )

−−

+ = + → = + − + = + → = −

− = = + + + −

H H

H

init

in

2 2 2 2 2 2H

H

fin

H Hfiit

H

n

(E', p';m);e(E, p;m);e(M

Square and

4-momentum E M E' E E E M E';conserva

E

,0;M)

tion p 0 p' p p p p

p M E

'

(E ,p

M E' 2EM 2Esubtract

M)N ; ;H;

;

( ) ( )− − + − θ

<< → ≈ ≈

2 2

e

Ultra-relativistic approx. M(m E,E')

E' 2M

(p

E' p p' 2pp'cos ;

E,p' E')=

2E +

2M +

2E + − − −2' 2EM 2EE' 2ME' E −

2E

( ) + θ

= − − + θ = − − θ +

= =θ+ − θ +

2

2' 2EE'cos ;0 EM EE' ME' EE'co

EM EE'2EM E(1 cos ) 1

s EM E' E 1 cos M ;

siq

nM 2

.e.d.

3/10

NB – The reaction is planar (why?). The finalstate is defined by 6 variables. There are 3(E, p) conservations and 2 (m2=E2−p2) rules.Therefore: 6-5=1 independent variable.

Electron e−

(E, p)

Nucleus(M, 0)

(E’, p')

θ

(EH, pH)

Page 18: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: Q2 in elastic scattering

Paolo Bagnaia - PP - 02 19

4/10

• in the following, (E, p, E', p', m, M, θ);[m = me small → E ≈|p|, E'≈|pʹ|]

• new (not independent) variable:

• [for elastic scattering one independentvariable → E' = E'(θ), Q2 = Q2(E')];

Study the kinematical limits:• θ = 0° : E' = E; Q2 = 0;

• θ =180°:E−E' = E M+2EM+2E − EM

M+2E = 2E2

M+2E(E >> M): E−E' ≈ E → E' ≈ 0;

• in conclusion E > E' > "0".• Plot Q2 vs 2M(E-E'): only a segment

allowed [useless for elastic scatt., but ...]:

( )

( )

( )

→ = → =

= − − = −

≡ −

θ

+ θ ≈

≈ − θ =

2 2e

2 2

relativistic equivalent (p and p' a

q p p' momentum tran " ";

E/M small p' p

re 4-mom):

E E',p p' ;

q 2m 2EE' 2|p||p'|cos

4EE'sin

sfer

q

/2

|q| 2|p|si

Q [i

p p

.

'

n /2

e. Q

( )= = =

+ θ +

= =+

→ +

→ =

2

2

2

2 2

2

EM EME 'M 2Esin /2 M Q /(2E')

2E '

EM 2EM 2E'M Q

> 0]

Q 2M(E

2E'M Q

;

E')

Q2

2M(E-E')

E' < 0forbidden

elastic scattering

θ = 0°E' = E

000

θ

2ME

θ = 180°E' ≈ 0

Page 19: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: why |q|, Q2

Paolo Bagnaia - PP - 02 20

5/10

The variable q is *very* important:• [if relativistic, use Q2 or its root √Q2];• it is related to the deBroglie wavelength

of the probe: ƛ = ħ/|q|;• it represents the "scale" of the

scattering;• i.e. structures smaller than ƛ ∼ 1/|q| are

not "visible" to the probe;• [the uncertainty principle ∆p∆x ≥ ħ/2

leads to the same conclusion – actually itis exactly the same argument;

Comments:• large q → large E, but not necessarily

the opposite: high-energy & largedistance processes do exist;

• the quest for smaller scales leadsinevitably to larger Q2 and therefore tolarger E [→ money and resources...]

________________[as usual] sometimes in the literature thenotation is confusing: Q2 = −t, see later;

• popular understanding:higher Q2 → smaller distance →

→ "better microscope".

• conclusion:Q2 is an important variable, possibly themost important in modern particle physics.

an advance of dynamics

Page 20: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: the inelastic case[in general, ℓN → ℓ'H (ℓ,ℓ' genericleptons); the kinematics is the same, ifEℓ , Eℓ' >> mℓ , mℓ']

Kinematical variables (ℓ N → ℓ' H) :

• [ℓ'=ℓ, H=N → elastic];

• 4-mom. in LAB sys (≡ had CM);

• p1= p, p2 = P, p3 = p', p4 = pH;

• q = p – p' [as in previous slides];

p (E, p;m)

γ* : q(E-E', p-p'; -q2=Q2)

P (M,0;M) pH (EH,pH;W)

p' (E’, p';m)

θ

Mass= W

4

3

2

1

Paolo Bagnaia - PP - 02 21

6/10

Lorentz – invariant variables:

• ν = q · P/M = E–E' [= energy lost by e− ];

• Q2 = – q2 = 2(EE' – pp’cosθ) – 2m2 ≈4 EE' sin2 (θ/2) [= – module of the 4-momentum transfer];

• x = Q2 / (2Mν) [later : x-Bjorken xB, thefraction of the hadron 4-momentumcarried by the interacting parton];

• y = (q · P) / (p · P) = ν / E [= the fractionof the energy lost by the lepton in thetarget frame];

• W2= (pH)2 = (P + q)2 = M2 – Q2 + 2 Mν[=(mass)2 of the hadron system in thefinal state] : W = M if elastic;

• [with these variables, the (energy)2 inthe CM is s = (p+P)2 = (p'+pH)2]

[computations in next slide]

Page 21: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: Q2, ν, x, y, W2

Paolo Bagnaia - PP - 02 22

7/10

− −

− −

θ = + − + θ ≈ − −

⋅ −ν ≡ =

θ = −

= −

≡ −

=

init

ini

2

fin

H H H

2

fin

2 2

t

2

q p p' (E E',p p');

q m m 2EE' 2pp'cos 2EE'(1 cos )

p' (E

4

', p';m );ep (E ,p ; W )

EE'sin Q ;2

p (E,p;m ); eP (M,0; M );N

q P (E E')M (E E'M

M

=

;H

⋅ − − ν≡ ≡ = =

ν ⋅

= = + = − + ν

2

2 2 2 2 2H

Q q P (E E')M E E'x ; y = ;2M p P EM E

W p (P q) M Q

E

)

2M

;

.

p, p', P, PW, q, Q2 Lorentz invariant;E,E', … Lab sys (= P at rest).

p, p', P, PH, q, Q2, M, ν, x, y, W2 Lorentz invariant;

warning: xB is very interesting, see later

m << E,M (safe approx.)

p (E, p; m)

γ* : q(E-E', p-p'; -q2=Q2)

P (M,0;M) pH (EH,pH;W)

p' (E’, p'; m)

θ

Mass= W

4

3

2

1

Page 22: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: the inelastic case - remarksRemarks :

• a lot of kinematical relations, e.g.W2 = M2 + 2MEy(1-x);Q2 = 2MExy;s = M2 + m2 + Q2/(xy);

• in the elastic case eN → eN [ep → ep], νand Q2 are NOT independent :

W2 = M2 = (P + q)2 = M2 – Q2 + 2 Mν→ Q2 = 2Mν → Q2 / (2Mν) = x = 1;

• therefore (obviously) in the elastic case,there is only one independentparameter (E' or θ, choice according tothe meas.);

• instead, in the inelastic scattering :Q2 = M2 + 2 Mν − W2 =

= 2Mν − (W2 − M2) ≤ 2Mν → x ≤ 1;if W not fixed, Q2 and ν are independent;

• therefore, in the inelastic case, there aretwo independent variables;

• in the analysis, choose two among allvariables, according to convenience, e.g.:

(E', θ), (Q2, ν), (x, y).

Paolo Bagnaia - PP - 02 23

8/10

p (E, p; m)

γ* : q(E-E', p-p'; -q2=Q2)

P (M,0;M) pH (EH,pH;W)

p' (E’, p'; m)

θ

Mass= W

4

3

2

1

Page 23: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Q2

2Mν

kinematics: deep inelastic scatteringRedefine the kinematics of the scattering process inthe plane (Q2 vs ν) [more precisely (Q2 vs 2Mν)]:• both are Lorentz-invariant [but usually used in the

lab. frame, where the initial state hadron is at rest] ;• Q2 = 4 EE' sin2 (θ/2) ≥ 0 → only the 1st quadrant;• ν = E – E' → 0 ≤ ν ≤ E → only a band is allowed;• x = Q2 / (2Mν) ≤ 1 → 0 ≤ x ≤ 1 → only "lower

triangle";• y = (q · P) / (p · P) = ν / E → 0 ≤ y ≤ 1;• W2 = M2 + 2Mν - Q2 → the bisector x=1 ("/")

defines the elastic scattering, where W2 = M2;• on the bisector, only θ varies : θ = 0 → Q2 = ν = 0;• the loci W'2 = constant are lines parallel to the

bisector → some of them define the excited states(one shown in fig.);

• at higher distance from the bisector we have thedeep inelastic scattering (DIS) and (possibly) newphysics.

[see next slide]

Paolo Bagnaia - PP - 02 24

y

ν ≈ Ekinematically

forbidden

9/10

p (E, p; m)

γ* (-q2=Q2)

P (M,0;M) pH (EH,pH;W)

p' (E’, p'; m)

θ

Mass= W

4

3

2

1

reso-nances

W’2x<1

inelastic scattering

x = 1W2 = M2

x

Page 24: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

kinematics: a summary

Paolo Bagnaia - PP - 02 25

10/10

p (E, p; m)

γ* (-q2=Q2)

P (M,0;M) pH (EH,pH;W)

p' (E’, p'; m)

θ Q2

2Mν

E'/E≈0ν ≈ Ey = 1

x = 0.5

x = 0.25

E'/E=0.5ν=E/2y = 0.5

E'/E=0.75ν=E/4y = 0.25

W2 = M2 +2ME

W2 = M2 + ME

W2 = M2 +ME/2

x = 1; W2 = M2

elastic scatt.

E'/E=1ν ≈ 0y = 0

Q2=2ME

Q2=ME

Q2=ME/2

Q2=0θ=0°

x = 0

0 < x < 10 < y < 10 < ν < EM2 < W2 < M2+2ME0 < Q2 < 2ME0 < E' < E0° < θ < 180°limits (some only if E >> M).

Page 25: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

elastic scattering e-N : Rutherford + q.m.

Paolo Bagnaia - PP - 02 26

1/4

In the '20s QM entered in the game;• Rutherford formula works also in QM;• non-relativistic q.m. + Born approx.;• Coulomb potential;• initial (i) and final (f) particle as plane

waves [see introduction + box];• negligible recoil;• q = | p − p′| (as usual);• ℏ = c = 1;• V(r=∞) does NOT contribute, because

of other nuclei → in the lastintegration, do not use the value atr=∞ [YN1, 135 has a cutoff "µ"].

( )

− ⋅ ⋅

⋅ ⋅

α= −

= ψ = =Φ

= − θ θ ϕΦ

= ∆ = − = = θ

σ=

ψ =

ψ

α π α= −

Φ

π Φ==

πΦ Φ

Ω

ψ

ππ

∫∫∫

ip' r ip r

2

3

fi f i

2

2fi

3

iq r

ip r ip' r

2

i f

zZV(r

dn 4 p' ;dE'

1 e V(r)e d r

1 e r drsin d

q p p p';

e

q q 2psi

/ ;

) ; r

|V(r)|

zZ 4 z

n /2 ;

dd

d

1 24

Z ;r q

(2 ) v'

dndE

e / ;

M

M → = =Φ

απ α

= ΦΦ

Φ π=

v' c 1, p' E

2

2

2 2 2

'

4

2

2

v'

1 4 zZ

'

E' 4zZ Eq

'2 q2

( )

π ∞ ∞θ

− −

∞ =− −

ϕ θ = π = θ

π π π = − = + = −

∫ ∫ ∫ ∫ ∫

2 1 riqrcos iqt

0 0 1 0 r

r 0iqr iqr iqr iqr20

d rdr dcos e 2 dr e dt [t rcos ]

2 2 1 4dr e e e e .iq iq iq q

p

p '

Ze

Page 26: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Sir Nevill Francis Mott

elastic scattering e-N : 𝛔𝛔Mott(*)

• However, the scattering α-Nucleus takesplace between two nuclei (e.g. He++-Au);

• not suitable for measuring a (possible)nucleus structure → replace the α with atrue (?) point-like probe: electron (e−);

• the dynamics of the eN scattering can be described by the Rutherford formula with an adjustment [later], due to Mott :

• similar to the Rutherford formula, theMott* cross-section neglectsa) the nucleus dimension, if any;b) its recoil*;

• unlike Rutherford, Mott takes intoaccount the e− spin (=½).

_________________NB The "*" in the name "Mott*" means that the "no-recoil" approximation is used → leave it out when therecoil is considered ("Mott*" → "Mott"].

Paolo Bagnaia - PP - 02 27

2 2

RutheMott rford

2 2 2|p|/E 1 2 2

4Rutherford

*d d 1 sin

d d 2

d 4Z E'cos cos .d 2 |q| 2

β= →

σ σ θ = × −β → Ω Ω

σ θ α θ → = Ω

2/4

Electron e−

Nucleus(E’, p')

(E’P, Pʹ)θ

Page 27: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

elastic scattering e-N : helicityThe cos2(θ/2) factor in [dσ/dΩ]Mott comesfrom Dirac equation; it is understood byconsidering the extreme case of θ~180°.For relativistic particles ( 1), the helicity h(the projection of spin along momentum) isconserved :

The conservation requires the "spin flip" ofthe electron between initial and final state,because the momentum also flips at θ=180°.In this condition, the angular momentum isNOT conserved, if the nucleus does NOTabsorb the spin variation (e.g. because it isspinless). Therefore the scattering for 180° is forbidden.The factor cos2(θ/2) in the Mott formula isconnected to the spin and describes themagnetic part of the interaction.

(E, p)

(E’, p')

(E’P, Pʹ)

θ

Paolo Bagnaia - PP - 02 28

s ph .|s| |p|

⋅=

3/4

e.g. hinit = 1 → hfin=1 x

y

z

L = r × p

r

p

p’

s

s’

Page 28: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

elastic scattering e-N : experiment

Electron e−

Nucleus(E’, p')

(E’P, Pʹ)

θ

Is the experiment consistent with thekinematics of the elastic scattering ?Get e + 12C data.The plot of the number of events, forfixed Einit at fixed θ, shows many peaks:• the expected elastic (E' ≈ p' = 482

MeV),• a rich structure, due to inelastic

scattering:e + 12C → e + 12C*

[12C* = excited carbon, mass M*].

Paolo Bagnaia - PP - 02 29

4/4

• the expected elastic [e + 12C → e + 12C] is there; • but "more things in heaven, than in your philosophy";• back to elastic scattering !• kinematics ok, dynamics ?→ measure dσ/dΩ vs θ !!!

Num

ber o

f eve

nts

p' (MeV)

( )EE' ;E1 1 cos

M

=+ − θ

12C* excitation energy

e + 12C → e + 12C*

Page 29: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: definition• The experimental dσ/dΩ agrees with the

Mott cross-section only for small |q|;• otherwise, the cross section is smaller;• possibly the reason is the structure of the

nucleus, which results in a smallereffective charge, as seen by the projectile(Gauss' theorem);

→ define the form factor [F(q)], as theFourier transform of the chargedistribution function ρ:

• pointlike: ƒ(x) = δ(x) → F(q) = 1.

• if ρ(x) depends only on x [next slides]:[in the following, we will discuss onlythe case with spherical symmetryρ(r), when F(q) depends on q=|q|].

e + 12CE = 420 MeV(Hofstadter, ’50)- - homog. sphere real shape

∝θ-4

the shape withsharp minima isdue to ρ(r).

form factors are measurable, at least in principle.

Paolo Bagnaia - PP - 02 30

q xi3

3(x) Zeƒ(x), ƒ(x)d x 1; q p p

(q) e ƒ(x)d x

';

;⋅

=

ρ = = = −

F

1/10

θ ≈ 51°,r−1 = q/ℏ ≈ 1.8 fm−1

σ σ = Ω Ω × 2 2

Mottexp

* (q

d .d d

)d F

Page 30: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: qm definition

Paolo Bagnaia - PP - 02 31

2/10

q.m. calculation [Thomson, 166]• non-relativistic q.m. + Born approx.;• Coulomb potential;• negligible recoil;• initial (i) and final (f) particle as plane

waves with ƛ << nucleus size [see littlebox];

• charge distribution ƒ(r), normalized to 1;

• q = p − p' and F(q2) as defined before.

− ⋅ ⋅

⋅ − ⋅

− ⋅ −ψ =

= =Φ

α= − =

Φ π −

α= −

Φ π

α= −

π

= ψ

Φ ψ = Φ

ψ ∫

∫∫

ip' r

i(p x Et

ip r 3

iq r

) i(

3 3

iq (r r ') iq r '

p' x Et)i f

f i

3

i f |V(r)

Z ƒ(r ')V(r) d r ' ;4 r

1 e V(r)e d r

1 Z ƒ(r ')e d r 'd r4 r r '

1 Z ƒ(

e

r

r

/ ; e /

')e e4 r

|

;

'

r '

M

⋅ ⋅

=

α = − × =

σ σ → = × Ω Ω

Φ π

=

×

∫ ∫

point 2fi

22

non- pointpoint

3 3

iqR 3 iq r ' 3

d d

d r 'd r

1 Ze d R ƒ(r ')

(q ) .d d

(

e d r '4 R

q )M F

Fp

p '

Zeƒ(r )

= −

R r r '

Φ = volume

Page 31: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

In principle, the function ρ(r) may becomputed by measuring F(q2) and then,e.g. numerically:

However, the range of q accessible toexperiments is limited; therefore, thebehavior of F(q2) for q2 large (i.e. r small,the interesting region) has to beextrapolated with reasonable assumptions.In the next slides, examples of ρ(r) andF(q2) are computed (e.g. the case of ahomogeneous sphere of radius R).

Compute the symmetrical case(1); neglect thenuclear recoil :

___________________(1) dσ/dΩ, both Rutherford and Mott, is scale-independent. However, if ρ(r) depends on ascale (e.g. by a sphere radius), form factorsbreak the scale invariance of the dynamics.

form factors: radial symmetry

Paolo Bagnaia - PP - 02 32

( )−ρ =

π ∫all

2 iqr 33 q

Ze(r) (q )e d q.2

F

3/10

( )

∞ θ

∞ −

= =

π= θ =

π = − =

π

=

=

== π

∫ ∫

2 iq x 3

12 iqrcos

0 1

2 iqr iqr

0

2

0

2

0

1(q ) e ƒ(x)d xS2 ƒ(r) r dr e dcosS

2 2 1ƒ(r) r e e drS 2

[ƒ(x)

iqr4 sin(qr)ƒ r r dr;S qr

S 4 ƒ(r)

ƒ(r) ]

[ 1 if nor dr rmaliz ;ed]

F

Page 32: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: examples

Charge distribution ƒ(r) form

factor F (q2) example

point-like δ(r)/(4π) constant 1 e±

exponential (a3/8π)exp(-ar) dipolar 1/(1+q2/a2 )2 p (1)

gaussian [a2/(2π)3/2]exp( -a2r2/2) gaussian exp[-q2/

(2a2)]6Li

homog. sphere

3/(4πR3) r≤R0 r>R oscill. 3α-3(sinα-αcosα)

α=|q|R − (see)

sphere with soft surface

ρ0 / [1 + e (r-c)/a] oscill. 40Ca

r q

Paolo Bagnaia - PP - 02 33

4/10

( )( )

∞−

π= π= ∫∫ 2 iq 2 23

3 0

r sin(qr)(q1ƒ(r) (q )e d q2

) 4 ƒ r r drqr

FF

ƒ(r) ƒ(|r|)=

Fermi (Woods-Saxon) function

(1) the proton shape depends on Q2: from apointlike body to a quark/gluon composite.

Page 33: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: homogeneous sphere

Paolo Bagnaia - PP - 02 34

5/10

Homogeneous sphere with unit charge : By comparing the first minimum with theexperiment of 12C (q/ℏ ≈ 1.8 fm-1), we get :

R ≈ 4.5 rmin = 4.5/1.8 ≈ 2.5 fmi.e. 12C is approximately a sphere withradius of 2.5 fm.

12C 2R ≈ 5 fm

( ) 0 3

3 r R(r) ƒ r 4 R

0 r R

ρ = ≤ρ = = π >

1e-05

1e-03

F 2(q2)

1e-01

0 5 10 15 20qR

if qR [= t] → 0F ≈ 3/t3 [(t – t3/6) –

– t(1–t2/2)] = 1.

first minimum :qR = tan(qR) → qR ≈ 4.5

( )

( )

[ ]

( ) ( )

( ) ( )

∞= π =

πρ= = = =

πρ πρ= = − =

πρ= − =

= −

2 2

0

R0

0

W W0 03 3 00

03

3 3

sin(qr)(q ) 4 ƒ r r drqr

4 rsin qr dr w qr;W qRq

4 4wsinwdw sinw wcoswq q

4 sin qR qRcos qRq3 sin qR qRcos qR

q R

F

Page 34: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: <r2>

Paolo Bagnaia - PP - 02 35

6/10

Study the behavior for q → 0 : The parameter <r2> is a measure of the(size)2 of the [charge of the] particle.

( )

2 iqrcos 2

122 20 1

2 2 4

0 0

2 2

3 2

0

2R

2 2

2

S

2

M

(q ) e ƒ(r)r drdcos d

1 iqrcos2 ƒ(r)r dr dcos1 qr cos

244 ƒ(r)r dr 0 q ƒ(r)r dr ...6

11 q r ...6

with ƒ(x)d x 4 ƒ(r)r dr.

d (q )r r 6

r

d

r r

θ

∞ ∞

= θ ϕ =

+ θ − = π θ = − θ +

π= π + − + =

= − < > +

< >≡

= < > = −

= π

∫∫∫

∫ ∫

∫ ∫

∫∫∫ ∫

F

F

22

q 0q.

=

F 2(q2)

qR

F 2 → F → <r2>

Page 35: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: solution

Paolo Bagnaia - PP - 02 36

7/10

Simple problem : check that for thehomogeneous sphere, both directlyand from the definition :<r2> = 3R2/5.

+ +

=

π= = =

π π= = =

+ + π

=+

→ ==

∫∫∫ ∫Rn n 3 n 2

0

n 3 n 3

3

n

n 2 2 2

1 4r r d x r r drV V4 R 4 R 3V n 3 n 3 4 R3 R

n 3

[qed, too easy to enj

3r R5

oy]

F 2(q2)

qR

F 2 → F → <r2>

Page 36: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

form factors: q→0 vs q→∞

Paolo Bagnaia - PP - 02 37

8/10

The limits q → 0, → ∞ have a deep meaning:

q is (approximately) the conjugate variableof b, the impact parameter of theprojectile wrt the target center:→ for q very small (i.e. b very large), the

target behave as a point-like object;→ for q quite small (i.e. b quite large) it

behaves as a coherent homogeneouscharged sphere with radius √<r2>;

→ large q probes the nucleus at small b;

"new physics" (a substructure emerging atvery small distance) requires very large q,which in turn is only possible if a largeprojectile energy is available.

The same story has repeated many times,from Rutherford to the LHC, but at smaller b(i.e. larger q). This fact is the mainjustification for higher energy accelerators …… and (unfortunately) larger experiments,larger groups, more expensive detectors,politics, troubles, ... [the usual "laudatiotemporis acti", forgive me]

ppʹ

b

q = |p − p'|

F 2(q2)

qR

F 2 → F → <r2>

Page 37: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Summary of systematic study of the formfactors for nuclei [just results, no details]:

• heavy nuclei :NOT "homogeneous spheres" with a

sharp edge; similar to spheres with a soft edge; charge distribution is well reproduced

by a standard Fermi function :ρcharge(r) = ρ0 / [1 + e (r-c)/a];

for large A (see figure) :c ≈ 1.07 fm × A1/3 ["radius"]a ≈ 0.54 fm ["skin"];

• light nuclei (4He, 6,7Li, 9Be) moreGaussian-like;

• all these nuclei have spherical symmetry;

• lanthanides (rare earths) are more likeellipsoids [think to an experiment toshow it].

form factors: shape of nuclei

Barrett and Jackson, Nuclear Sizesand Structure, 1977

Paolo Bagnaia - PP - 02 38

9/10

Vnucleus ∝ A → c ≈ rnucleus ∝ A1/3

Page 38: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Compute the nuclear densities of p and n[qp ρQ = dq/dV , mp ρp = dmp/dV] :• assume homogeneous and equal

distribution of p and n;• then: ρQ = ρp = proton density; ρn = neutron density = ρp; ρT = nuclear density = ρp + ρn ;

• compute : ρT = ρp + ρn = ρp + N ρp / Z = A ρQ/Z; A = V ρT = 4/3 πR3ρT; ρT = 0.17 nucleons / fm3

(from ρ0 of previous slide);

• in fair agreement with "c" [previousslide] and with the slope of the fig.:

r0|exp = 1.23 fm.

form factors: nuclear density

de Jager et al., Atomic data andNuclear Data Tables 14, 479 (1974).

Paolo Bagnaia - PP - 02 39

10/10

π π=

= ≈π

30 3

3

T

30

R 3 A 1

4 4R

r 1.

r A

12

3 3

fm .4 AA

for light nuclei, the model isNOT valid: do NOT plot them.

Page 39: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

e-N scattering: higher energyProbing smaller space scales requires largerenergies, both in the initial and final state[today experiments work at the TeV scale →~10-18 m = 10-3 fm].High-energy + q.m. corrections to theRutherford formula [1st already discussed]:• consider the electron spin [Rutherford had

only bosons !!!];• include the target recoil in the Mott cross

section [Perkins-1971, 197];• use 4-vectors p and p’ to describe the

scattering [instead of p and pʹ]:

• for scattering eN, consider the magneticmoment of the nucleons, by introducingthe parameter τ=Q2/(4M2) [next slide].

Description of the scattering

Paolo Bagnaia - PP - 02 40

( ) ( )( )

( )

= − = − − θ

≈ − θ

≡ − ≈ θ

22 2

2

2 2 2

q p p' 2m 2 EE' p p' cos

4EE'sin /2 ;

Q q 4EE'sin /2 .

no electron spin, no recoil, no magn. moment

+ electron spin

+ recoil

2 2 2

4R

2

+ mag

utherford

Ruthe

n.

Mott rford

MottMo

2

tt

d 4Z E' ;d q

* d d ;d d

*

1 sin2

Ed 'E

d ;d d

σ α = Ω

σ σ =θ

Ω Ω

σ σ = Ω Ω

× −β

×

point, Mottspin½

m

2

om

2

e

2

nt

d d Q1 2 tan4d 2

.d M

σ σ = Ω Ω

θ× +

1/5

"τ"

( )2cos /2≈ θ

Page 40: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

e-N scattering: magnetic momentsFor particles of mass m, charge e: point-like, spin ½;

the Dirac equation assigns an intrinsicmagnetic dipole moment

µC = g e ℏ / (4 m);g = "gyromagnetic ratio" = 2;

• an ideal "Dirac-electron" has a magneticdipole moment

µe = eℏ/(2me) ≈ 5.79 × 10-5 eV/T;

• the first measurements roughlyconfirmed this value.

• for neutral particles (neutron ?) µN = 0;

• this effect adds to the cross-section aterm, corresponding to the "spin flip"probability, proportional to [Povh § 6.1]:

sin2(θ/2) [cfr. the "Mott* factor"]; 1/cos2(θ/2) (to remove the non-flip

dependence); µN

2 (∝ 1/M2); Q2 (mag field induced by the e )2;

s

• Therefore the spin-flip is particularlyrelevant for large Q2 and large θ.

Paolo Bagnaia - PP - 02 41

2/5

electron spin

electron magnetic dipole moment µ

"Dirac electron"

point, Mottspin

22

½

2

Q2 td an4M

d 1 .d d 2

σ σ θ= × + Ω Ω

Page 41: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

e-N scattering: anomalous magnetic momentsIn the nuclei and nucleons sector theexperiments measured the followingquantities :

nuclear magnetism is a combination ofthe intrinsic magnetic moments of thenucleons and their relative orbitalmotions;

all nuclei with Z=even and N=evenhave µnuclei = 0;

define for the nucleons (proton andneutron) the Dirac value

µN = eℏ/(4mN) ≈ 3.1525×10-14 MeV/T;

if p and n were ideal Dirac particles,they should have

µp = 2µN, µn = 0,i.e. in conventional notation

gp/2 = µp/µN = 1, gn/2 = 0;

instead, experiments found anomaliesgp/2 = +(2.7928473508±0.0000000085),gn/2 = −(1.91304273 ±0.00000045);

therefore, there are other effectswhich contribute to the magneticmoments, i.e. p and n are NOT idealspin-½ point-like Dirac particles;

[maybe] they are NOT point-like;

in this case, their "g" is due to their(possibly complicated) internalstructure, in analogy with the nuclearcase.

Paolo Bagnaia - PP - 02 42

3/5

Page 42: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

e-N scattering: Rosenbluth cross-sectionIn the eN scattering, the main contributionis from single photon exchange [see fig.].

The eeγ* vertex is well under control, withthree point-like, well-understood particles.

Instead, the NN'γ* vertex is the unknown,due to the internal structure of the proton.

Strategy : assume a simpler process (N =Dirac fermion), compare it with exp., thenmodify the theory, inserting parameterswhich model the nucleon structure.

Take also into account the spin andmagnetic moment, both of the electron

and the nucleon."Generalize" the cross section by definingthe Rosenbluth cross-section, function ofTWO form factors, both dependent on Q2:• Ge(Q2) for the electric part (no spin-flip);• GM(Q2) for the magnetic one (spin-flip).[formerly : Ge(Q2) = F (Q2), no GM].

For a charged Dirac fermion ƒD, proton,neutron :

ƒD : GEƒ (any Q2) = 1, GM

ƒ (any Q2) = 1; p : GE

p(Q2 = 0) = 1, GMp (Q2=0) ≈ 2.79;

n : GEn(Q2 = 0) = 0, GM

n (Q2=0) 1.91.

Paolo Bagnaia - PP - 02 43

4/5

e−

γ* (Q2)

N W

e−

θ

( ) ( )

+ τ θ× + τ +

σ σ = Ω Ω

τ

τ

=

= =

2 22 2E MM

2

Rosen M

2E E M

ottblu

2

h

M2

t

G G 2 G tan ;1 2

G G Q

d

Q ;4

; G G

d

M

d

Q

d

.

Page 43: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

+σ σ = Ω Ωτ θ

× + τ + τRosen Mot

2 22

tblu

2E MM

th

G G 2 G ta2

d ndd 1d

.

e-N scattering: remarks on σRosenbluthA non-exhaustive personal classification(*)

of "physics formulae":

1. "principles" [F = ma] – They require thea-priori knowledge of all entitiesinvolved; not direct empirical laws;

2. "natural laws" [the gravitational/Hookelaw] – (semi-)empirical descriptions ofthe behavior of the Nature;

3. "positions" [K = ½mv2] – They define anew entity, using other well-knownentities;

4. "theorems" [the Gauss law] – Relationsamong well-known entities, mathderived from other laws;

5. … other types (???) …

The "Rosenbluth formula" is another typeof math-logical relation:• it is a model, which includes some

constraints (e.g. the θ dependencecannot be modified);

• but it is "open" (e.g. GE and GM dependson the unknown Nucleon structure);

• it contains in-se no full predictive power;• but it is a powerful working tool to study

the phenomena and incorporate newknowledge in a (quasi-)formal theory.

A "frontier" approach, quite common inmodern research, which requires somecare by the users/students.

Paolo Bagnaia - PP - 02 44

5/5

Page 44: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: Mark 3 Linac

Paolo Bagnaia - PP - 02 45

1/10

Mark 3 electron Linac − Stanford University − 1953

Maybe you think that this is old and obsolete;in this case, go and look:https://home.cern/news/news/physics/meet-amber

Page 45: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: setup

Stanford - 1956

Robert Hofstadter

Paolo Bagnaia - PP - 02 46

2/10

Page 46: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: Mark 3 detector

Paolo Bagnaia - PP - 02 47

3/10

A summary of Hofstadterexperiments, see later

dN/d

cosθ

(arb

itrar

y sc

ale)

Hofstadter et al., Phys. Rev. 92, 978 (1953)p(e−) = 125 MeV

cosθ

Page 47: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: MAMI-B

MAMI-B[Mainzer

Mikrotron]

~12 m

modern magnetic spectrometer

Paolo Bagnaia - PP - 02 48

4/10

Page 48: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: quality checkIn 1956 the Hofstadter spectrometermeasured the elastic ep → ep. Itmeasured θ in the range 35°-138°, andtherefore Q2, using the relations :

Plot E' for E = 185 MeV at fixed θ (60°,100°, 130°) [in a perfect experiment,expect δDirac].

Show the plot θ = θ(E') .

Result:Kinematics ok. Experiment undercontrol. Study the dynamics.

Paolo Bagnaia - PP - 02 49

( )( )

=+ − θ

= − θ2

EE' ;1 E 1 cos /M

Q 2EE' 1 cos .

5/10

Page 49: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: resultsStudy [dσ/dΩ]Lab (→ legend):• small θ (= small Q2 → dσ/dΩ independent

from GM): all formulas agree → GE(Q2=0) ≈ 1;• large θ (= large Q2, small distance, dσ/dΩ

dependent on GM): it disagrees with ANYtheoretical prediction → GE, GM ?;

• the disagreement with (a) and (b) wasforeseen (proton gp ≠ 2 );

• the one with (c) shows a dependence on Q2

(on scale) → proton is NOT point-like ;• Hofstadter measured (rrms≡ <r2>, see) :

rrmsp = (0.77±0.10) × 10-15 m;

rrmsα = (1.61±0.03) × 10-15 m.

… and got the 1961 Nobel Prize in Physics.

Paolo Bagnaia - PP - 02 50

6/10

LEGEND (a) Mott (b) Dirac (c) A-Dirac (d) Exp.GE 1 1 1 fix GE(Q2) ≈ 1GM no 1 2.79 fix GM(Q2) ?point-like p ? yes yes "yes" ? nofit low Q2 ? yes yes yes def.fit high Q2 ? no no no def.

Page 50: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: GE,Mp,n vs Q2

Write the Rosenbluth formula, at fixed Q2, :

→ Ratio(E, θ, fixed Q2) = A + B tan2(θ/2);→ measure (A, B at fixed Q2) vs tan2(θ/2);→ get GE

p, GMp , (GE

n, GMn ) at fixed Q2

(example shown)

Paolo Bagnaia - PP - 02 51

+ θσ σ = + Ω Ω τ

τ+ τ

2

Rosen Mottb

2

lut

2E M 2

h

Md d t2G an .d d

G1

G2

By repeating it at many Q2,the full dependence canbe measured (SLAC, '60s).

7/10

Ratio

tan2(θ/2)

Q2 = 2.5 GeV2

A

B

θ

E'Q2

Page 51: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Proton structure: GE,Mp,n - remarks

• The fig. shows that the electric andmagnetic form factors tend to a"universal" function of Q2, with a dipolarshape :

• From the curve, it is possible to derive thefunction ρ(r), at least where the 3- and 4-momentum coincide, i.e. at small Q2. Itturns out :

ρ(r) ≈ ρ0 e−ar, a ≈ 4.27 fm-1.

• The nucleons do NOT look like point-likeparticles, nor homogeneous spheres, butlike diffused non-homogeneous systems.

• From the values at Q2=0 :

Paolo Bagnaia - PP - 02 52

( ) ( ) ( ) ( )

( )

p 2 n 2M Mp 2 2

E

2 222 2

G Q G QG Q G Q

2.79 1.911 ; A 0.71 GeV

1 Q / A

≈ ≈ ≈ =−

= ≈+

=

< > = − =

= ≈

< > ≈

2

22 2

dipole 2q 0

22

2dipole

dG(q )r 6dq

12 0.66 fm ;a

r 0.81 fm.

8/10

Page 52: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The form factors of the nucleons showthree different ranges :1. Q2 << mp

2 : τ small, GE dominates thecross section; in this range we measurethe average radius of the electriccharge : <rE> = 0.85 ± 0.02 fm;

2. 0.02 ≤ Q2 ≤ 3 GeV2 :GE and GM are equally important;

3. Q2 > 3 GeV2 : GM dominates.

Notice also that, if the proton were point-like, one would find :GE

p(Q2) = GMp (Q2) = 1, independent of Q2

[and in addition would not understand why "2.79"].

Proton structure: comments

Paolo Bagnaia - PP - 02 53

9/10

σ σ = Ω Ω

=

+=

θ+ +

σ σ = Ω Ω

τ

τ

ττ

2

2

Q

2 22 2E

0

Rosen Mottblu

MM

Rosen

th

2

Mottbluth

G G 2 G tan ;1 2

d d

d dd d

lim .d d

therefore

.4M

Q

Q2 [fm-2]

GEGM

Q2 [fm-2]

Page 53: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

r q

r q

Proton structure: interpretationDifferences between nuclei and nucleons :

1. nuclei exhibit diffraction maxima/minima; this fact corresponds to chargedistributions similar to homogeneousspheres with thin skin;

2. nucleons have diffused, dipolarlydistributed form factors → exp. charge;

3. at this level, it is unclear whether thenucleons have substructure(s) → needexperiments at smaller value ofdistances (i.e. larger values of Q2);

4. [maybe that] the structure of thenucleons in the elastic scattering,described by the Rosenbluth formula, isan average with insufficient resolution;

5. at higher Q2, one can expect a widervariety of phenomena :

a. elastic scattering : ep → ep;

b. excitation : ep → e "p*"(e.g. ep → e∆+, ∆+ → pπ0);

c. new states : ep → eX+

(X+ = system of many particles).

Paolo Bagnaia - PP - 02 54

10/10

r, q NOT same scale

Page 54: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

higher Q2: H2OSend 246 MeV electrons → water vapor.The scattering shows a complexdistribution, with different phenomena inthe same plot. At fixed θ of the electronin the final state, with increasing E' :

• e p → e ∆+ (excitation of p from H);• e p/n → e p/n (elastic on 16O nucleons);• e p → e p (elastic on H, E'≈160 MeV);• e p → e X+ (nuclear excitations);• e 16O → e 16O (nucl. exc. / elastic)

The distribution depends also on theelectron energy E and the final stateangle θ.

[Problem: the ∆+ has m ≈ 1230 MeV, Γ ≈ 120 MeV. Inthe plot only the tail of ep→e∆+ is shown. "Compute"the effect of the Breit-Wigner in mass in the E'variable. Is it sufficient to predict the E' plot ?]

Paolo Bagnaia - PP - 02 55

1/5

E'e (MeV)

dN/d

E'

MAMI-A (Mainz)e− (H2

16O)E = 246 MeVθ = 148.5°

Elastic scatteringon 16O nucleons.

ep → e∆+.Nuclear excitations + elastic on 16O.

Elastic peak ep :

( )= =

+ − θ

EE'1 E 1 cos /M160 MeV.

Page 55: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

higher Q2: He4, θ = 45°Another of these experiments (Hofstadter 1956,see fig.). Observe :

A. the elastic scattering e 4He [expected];

-- the elastic peak for ep → ep at the same Eand θ, shown for comparison [no problem];

BCDEF. the elastic scattering ep / en (p/n actinglike free particles) [maybe unexpected, butunderstandable]; notice the peak width, dueto the Fermi motion of nucleons inside thenucleus;

G. the production of π− (i.e. of ∆'s), whichenhances the cross section (otherwise F.);notice : smaller E' → larger energy transfer[the new entry in the game].

e 4He → XE(e) = 400 MeVθ = 45°

E' (MeV)

dN/d

E'

Paolo Bagnaia - PP - 02 56

2/5

( )

⇒ ⇒

=+ −

↓↑ ↑

θEE'

1 E 1 cos /

E/MM E'

M

Page 56: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

higher Q2: He4, θ = 60°

Same as before, but θ = 60°, i.e. larger Q2

[Q2≈4EE'sin2(θ/2)]. Notice :• smaller elastic peak, both for (e− 4He)

and (e−p);• wider ep/en (p/n inside 4He) peak;• (roughly) constant π production (seems

independent from Q2, as expected forpoint-like (?) particles;

Possible conclusions [possibly wrong] :• everything under control for elastic and

quasi-elastic data;• the high-Q2 part shows no evidence for

sub-structures;• maybe Q2 is still too small (or maybe

there are no substructures … !?);→ go to even higher Q2 !!!

E' (MeV)

dN/d

E' e 4He → XE(e) = 400 MeVθ = 60°

Paolo Bagnaia - PP - 02 57

3/5

Page 57: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

d) finally, at very large Q2, the most (∼ only)important process is eq → eq (with all thepossible inelastic companions).

[just a sketch, not a reproduction of real experiments]

(a) (b)

(c) (d)

higher Q2: summaryFollow [BJ 444] to understand thedependence of dσ/dΩ on Q2:

• scattering electron ("e−") nucleus("A");

• A with "N" nucleons (use "p", butneutrons similar);

• p with "n" hypothetical components("q");

• plot vs adimensional variablex=Q2/(2Mν), 0 < x < 1;

• from (a) to (d), Q2 increases;a) at small Q2, there are both

scatterings with A and p;b) increasing Q2, the eA scattering

disappears, while the epscattering stays constant;

c) increasing Q2, the constituents (ifany) appears as eq → eq;

dσ/d

Ω

1 x1/N

eA→eA(elastic)

eA→eA*(excited)

ep→ep

dσ/d

Ω

1 x1/N

eA→eA(elastic)

eA→eA*

ep→ep

1 x1/N

dσ/d

Ω

eq→eq

1/(nN)dσ

/dΩ

1 x1/N1/(nN)

ep→ep

ep*→ep*(excited)

eq→eq

Paolo Bagnaia - PP - 02 58

4/5

Page 58: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

higher Q2: constituents show up

∆(1232)

∆(1688)N(1450)

elastic × 15

E = 4.879 GeVθ = 10°

DESY Elektrosynchrotron – 1968

(new)

Paolo Bagnaia - PP - 02 59

5/5

Scattering ep → eX (DESY 1968) :

• Electron energy ≈ 5 GeV (higherthan SLAC);

• resonances (R) production ep →eR clearly visible;

• new region at small E' ( = high W);

• in this "new" region :

continuum (NO peaks);

rich production of hadrons;

NO new particles, only (p nπ's); i.e. the proton breaks, but(different from the nucleus)NO constituent appears;

the constituents, if any, do notshow up as free particles;

→ Do quarks exist ???are they confined ??? why ???

[NB in 1968 color was proposed but notreally understood, QCD did not exist]

Page 59: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering: structure functionsThe usual parameterization of the cross section inthe DIS region is the formula:

• the inelastic cross section requires 2final-state variables; since Q2 and ν are L-invariant, they are more convenient;

• W1 and W2 are combinations of GE andGM for DIS [next slide]; sometimes adifferent normalization is used:

• the dynamics of the scattering depend onthe structure of the target; W1,2 (F1,2)are the "containers" of this information;

• they are known as structure functionsand must be measured (or computed in adeeper theory);

• [no deep difference W1,2 ↔ F1,2 ;→ use the most convenient, but modernpapers at high √s use only F1,2.]

Paolo Bagnaia - PP - 02 60

( ) ( )

( ) ( ) ( )

( ) ( )

2 2 22 1

2 2 22 1

2 2

Mott

22 2 22

4

2

DIS

2

42

2 1

22

dd

4Z c E'co

W Q , 2W Q , tan2

W Q , 2W Q , tan2

W Q , c

s2qc

4 E' .Q

os 2W Q , si

dd dE'

n2 2

θ ν + ν

θ ν + ν

σ = = Ω σ Ω

α θ= × =

α

θ θ ν + ν = ×

1/8

p (E, p; m)

γ* (-q2=Q2)

P (M,0;M) PW (EW,pW;W)

p' (E’, p'; m)

θ

Mass= W

4

3

2

1

F1(x,Q2) = MW1(Q2,ν);F2(x,Q2) = νW2(Q2,ν).

Page 60: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : GE,M vs W1,2

Summary of σ's for p:• Mott and Rosenbluth

σ's;• the relation GE,M vs

W1,2 and F1,2.• notice:

(Q, ν, M) ∼ E1;(τ, GE,M, F1,2) ∼ E0;(W1,2) ∼ E-1;σ, dσ/dΩ ∼ E-2.

• also:(GE,M, F1,2, W1,2) = ƒ(Q2).

Paolo Bagnaia - PP - 02 61

2 2 2 32 2

4 4RutheMott Mott* Mottrford

2 3 2 22 2 2E M

M4Rosen RosenMottbluth bluth

2

Rosenb

d 4 E' E' 4 E'cos cos ;d Q 2 E EQ 2

d 4 E' G Gcos 2 G tan ;d EQ 2 1 2

dd dE'

→ →

σ α θ α θ = = Ω

σ α θ + τ θ = + τ Ω + τ

σ Ω

( ) ( )

( ) ( )

( ) ( ) 2 2 2 22 2p E M2 2 E M

2 2 2 22 2 2E M

M4

luth

2

22 2 21

1 M

2 2 2

2 22 2 2 2

2 14DIS

p

M2p

12 E' G G cos 2 G sin ;EQ 1 2 2

d 4 E' W Q , cos 2W Q , sin

4M G Q GF x,y 3 G G 3W Q

;d dE'

F x,y 3 3QW Q , G G ;M E 4EM

,E 1 E 4M Q

Q 2 2

α + τ θ θ= + τ + τ

σ α θ θ = ×

+ + τν

ν + ν

ν = = τ =

= = = ν + τ

Ω

+

.

2/8

An interesting question.Do you understand why ?

Rutherford, Mott* and Mott dσ/dΩ's do NOT depend on the proton mass.Rosenbluth dσ/dΩ depends on τ (Q2/4M2) + any hidden dependence in GE,M.W1,2 have *NO* dependence: wait'n see.

Page 61: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : SLAC

SLACStanford Linear

Accelerator Center

the beginning of the story (1960)

… and this is NOT the end (1990)

Taylor Friedman KendallWolfgangPanofsky

2 miles longEmax = 25 GeV

Experiment

Paolo Bagnaia - PP - 02 62

3/8

Page 62: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : SLAC experiment

The 8 GeV spectrometer – 1968 (notice the men at the bottom)

Paolo Bagnaia - PP - 02 63

4/8

Page 63: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : layout

Layout of the three spectrometers : they can be rotated about their pivot, as shown in the figure. [75 ft ≈ 23 m]

Paolo Bagnaia - PP - 02 64

5/8

Page 64: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : layout detailsDraw of the 8 GeVspectrometer [the 20GeV is NOT shown]:

B : bending magnets(dipoles);

Q : quadrupoles;

Čerenkov counters;

scintillationhodoscopes,

shower counters fore-π discrimination;

dE/dx counters.

a big effort for physics and engineering of 50 years ago !!!not to be compared with modern experiments …

Paolo Bagnaia - PP - 02 65

6/8

Page 65: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : d2σ/dΩdE'

Paolo Bagnaia - PP - 02 66

7/8

ep → eX, θ = 4°, d2σ/dΩdE' vs W (= hadr. mass)

Notice :

• the intervals in W and Q2, due to fixed E and θ;

• the elastic scattering (W = Mp) is out of scale;

• the decrease in cross section (the verticalscale) when E increases;

• the presence of excited states of the nucleon(resonances → peaks), e.g. ∆+(1232);

• the "fading out" of resonances, when Wincreases at fixed E and θ;

• the continuum at high W, with ~const σ (1-2µb / GeV sr, independent from E and Q2).

???

Page 66: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Deep inelastic scattering : dσ/dθ vs dσ/dθMottRatio R = exp./Mott = W2 + 2 W1 tan2 θ/2 = R(Q2).

Notice that the structure functions appear to be nearlyindependent of Q2. Instead, the elastic scattering for anon-pointlike target has a strong Q2 dependence !!!

I.e., for DIS, the target (whatever it be), behaves like apoint-like particle [F(Q2)=const , cfr the Rutherfordformula] !!! [NB constant, but << 1 → charge < 1 ]

This Q2 independence is another confirmation that theDIS "breaks" the proton : the scattering happens withone of its constituents. The constituents looks "quasi-free" and "quasi-pointlike", at least at this scale of Q2.

Paolo Bagnaia - PP - 02 67

8/8

large λ (→ small Q2)coherent scattering ep

small λ (→ large Q2)scattering eq

λ ≈ 2π/|q|≈ 4πMx/Q2

R=(dσ exp /dθ)/(dσ Mott*/dθ)|θ=10°

Q2 (GeV)2

dipole form factor:• R(Q2=0) = 1;• R(Q2) ∝ Q-8

Page 67: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Bjorken scaling: (F1, F2) vs (x, Q2)

Paolo Bagnaia - PP - 02 68

1/5

x

F 2p (x,Q

2 )

Q2 (GeV2)

F 2p (x,Q

2 )

Plot the data as F1 and F2 vs x and Q2:• F2 depends on x, but NOT on Q2;• are F1 and F2 correlated ? if the nucleons

are made by point-like, spin ½ objects,

from the DIS formula the Callan-Grossrelation can be derived [next slide] :

2xF1(x) = F2(x)

Seen as functions of x and Q2, F1,2 appear NOT to depend on Q2 for a large range of it.

Page 68: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Bjorken scaling : Callan-Gross formula a) the cross sections of pointlike spin ½ particle of mass m (à la Rosenbluth with GE=GM=1) :

b) from the kinematics of elastic scattering of point-likeconstituents of mass m :

Assume the nucleon (mass M,spin ½) be made of pointlikecostituents q (mass m, spin ½).

Warnings :

• don't confuse the inelasticscattering ep with the elasticscattering eq;

• x refers to the inelastic case;

• an hypothetical [nobody uses it]variable ξ, analogous to x butfor the constituent scattering;in this case, Q2=2m , ξ = 1;

• we learn that x = m/M[REMEMBER].

Paolo Bagnaia - PP - 02 69

( )( )

σ α θ θ = + τ Ω

σ α θ θ = + Ω θ θ θ θ + = + τ

τ= = = = τ =

ν1

2 2

point-li

22 2

4

2 2 22 2

2 14

2 2 2 2

ke,spin1

2 1

11 2

DI

2

/

S

2

2

d 12 E' cos 2 sin ;d dE' EQ 2 2

d 4 E' W cos 2W sin ;d dE' Q 2 2

3W cos 2W sin cos 2 sin ;2 2 E 2 2

3 3 WW ; F xF

W ; E x

M

E W

2

2

Q4m

;

( )( )

( ) ( )

= = ν →

= =

ν

ν

=

= =ν

=

ν→

21

22

2

2

1 2

2M x ;

M M 1 ; 4

F xm

Q 2m

2

m x

2 2x

2xF

M

m

x

Q MF x 4m

F

m

x . Callan-Gross

2/5

Page 69: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Bjorken scaling : parton modelAssume that the nucleon be made ofpartons (point-like, spin ½, mass mi), whichscatter elastically in the ep process.

Then the DIS cross section

reduces to an incoherent sum ofconstituent cross sections, qelectronei beingthe charge of each of them :

where the δ() means that, at theconstituent level, the scattering is elastic,i.e. Q2 = 2miν.

For such partons [next 2 slides]:

i.e. F1 and F2 do NOT depend on Q2 and νseparately, but only on their ratio. F1 andF2 are also related by the Callan-Grossequation.

This mechanism (the Bjorken scaling) wasinterpreted by Feynman in 1969 as thedominance of partons in the nucleondynamics (the parton model).

Richard Feynman James Bjorken

Paolo Bagnaia - PP - 02 70

2 2 22 2

2 14

d 4 E' W cos 2W sin ;d dE' Q 2 2

σ α θ θ = + Ω

θ θ+

σ α = Ω δ ν −

∑i

22 2 2i 22 2 2

i4 i 2

m

i

Qe cos sin2 2m 2d 4 E' ;

d dE' Q Q2m

= = ν = ν

= = ν ν = ν

2j jj

2j

22

1 1

22

j2 j2

QF x MW (Q , )2m

1 e ƒ (x)2

x e ƒ (QF x W (Q , )2m

x)

3/5

Page 70: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Bjorken scaling : σDIS → W1,2

Paolo Bagnaia - PP - 02 71

4/5

( ) ( ) σ α θ θ = ν + ν Ω

σ

Ω

2 2 22 2 2 2

2 14DIS

2

e"q

DIS formula for ep, p NOT pointlike, mass=M:

Elastic scattering e"q", pointlike, spin ½, charge e, mass m=Mx:

d 4 E' W Q , c

dd dE'

os 2W Q , sin d dE' Q 2 2

α θ θ = + δ ν −

2 2 2 22 2 2 2

4 2"

4 E' Q Qe cos e sinQ 2 2m 2 2m

[ ]

= δ ν −

= δ ν − =

= =ν ν

2

22

2 x

22

2

22

Q 2x2M

2

similarly:

QW e ;2Mx

QW e ƒ(x)dx2Mx

Q e xƒe ƒ(x)2

(x).M

[ ]

=

= →

δ =

= ν − → =νν

→ = =

0

0

0 0

2 2

0

2 2

0 2 2x x

if B(x=x ) 0

A(x) B(x) dx A(x )/ B'(x ) ,

Q QB(x) x ;2Mx 2M

Q 2MB'(x ) .2Mx Q

2

2 2 2 2 2 2

1 2 2 2x

2 2 2 2 2 2

1 2 2 2 2

2 2 2

Q2 x2M

ƒ(x) : x-distribution of (a single) subs

e Q Q e Q QW ;4m 2m 4M x 2Mx

e Q Q e Q ƒ(x)dx QW ƒ(x)dx4M x 2Mx

[at fixed x]

4M x 2Mx

e Q Qƒ(x)4M 2

tr t e

M

uc ur ;

= δ ν − = δ ν −

= δ ν − = δ ν − =

=

ν

∫ ∫

( )( )( )( )

2 2

2

2 2 2 1 2 2 1 2 2 22

4 2 e ƒ(

Q2M

e ƒ(x x)2M

) 2 M Q .

− + − − + − − + −

= ν

= ν =

here ONLY ONE parton"q", with m, e, x=m/M.

3

1

2

4

5

Page 71: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Bjorken scaling : W1,2 → F1,2

Paolo Bagnaia - PP - 02 72

5/5

( ) ( )

σ α θ θ = + δ ν − Ω

σ α θ θ = ν + ν Ω

=

=

2 2 22 2 2 2

2

2 2 2 2 22 2 2 2

4 2e"q

2 2

1 2

14DI

"

S

d 4 E' Q Qe c

a single subs

os e sin ;d dE'

tructure e,

d 4 E' W Q , cos 2W Q , sin ;d dE' Q

e ƒ( xm= ) e xW W2

Mx ;

Q 2 2

2

m 2m

2

M

2

νƒ(x).

=

=

= → = → =

= → = → ν =ν ν

− =→

∑ ∑

∑∑

21 j jj

j

22 j

22j j

j

1 1 1j

22j j

2 2 2j

1

j

jj

2

1F (x) e ƒ (x)2

Many sub-structures: for each e, x, ƒ(x) :

e ƒ (x)e ƒ(x)W W MW ;2M 2M

e ,

e xƒ (x)e xƒ(x)W W W ;

Callan Gross :

F (x) x e ƒ (x)

2xF (x

x , ƒ (x)

) F (x) .

previous page

this form ("Σ...") is actually very important (why ?)

Page 72: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The parton modelSummary: the nucleons are made up of partons,later identified with quarks; partons are:• point-like (at least at the scale of Q2 accessible

to the experiments, both then and now);• spin ½ fermions;

• define : xFeynman = xF = |pparton| / |pnucleon| =

≈ |ppartonlong | / |pnucleon|

[cfr. xBjorken = xB = Q2/(2Mν) = m/M];• the interaction e-parton is so fast and violent,

that they behave like free particles (similar,mutatis mutandis, to the collisionapproximation in classical mechanics);

• the other partons [at least in 1st approx.] doNOT take part in the interaction ("spectators");

• it follows xF = xB = x [next slide];• the DIS is an incoherent sum of processes on

the partons; at high Q2 the nucleons as suchare mere containers, with no role [F1,2 = Σ...].

e−

γ* (-q2=Q2)

P

e−

θ

p=xP

Despite the formal identity between xF andxB, they have a different dynamical origin :• xF is defined in the hadronic system (=

fraction of the nucleon momentum);• xB comes from the lepton part

(momentum transfer and leptonenergies).

Paolo Bagnaia - PP - 02 73

1/5

Page 73: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The parton model : xF ↔ xBShow : xFeynman ≡ xF = xBjorken ≡ xB

In the "infinite momentum frame" (IMF),where all the masses are negligible :

(ppartoninit ∙ qtransf) is L-invariant; compute it

in the lab frame:

Warning : the equality holds only in theIMF. It is also a reasonable approx. in the"ultra-relativistic" case, when the massesare negligible wrt momenta.

Paolo Bagnaia - PP - 02 74

( ) ( )( )

initnucleon IMF

init initparton F nucleon F FIMF

fin initparton parton transfIMF

2 2fin initparton parton transf

2 inittransf parton transf

p (p,p,0,0);

p x p (x p,x p, 0, 0);

p p q ;

p 0 p q

0 q 2 p ·q ;

=

= =

= +

= = + =

= + +

( )( )

init initproton parton FLAB LAB

transf LAB

2 initparton tran

2transf sf

2

F

F B

p (M,0); p (Mx ,0);

q (E E' ,q);

x Q / 2M

2q p ·q 2Mx

x .

Q

= =

= − = ν

− = == ν →

= ν ≡

2/5

e−

γ* (-q2=Q2)

P

e−

θ

p=xP

In the following (also next chapters):• drop the subscript xF = xB = x;• usually interpret x à la Feynman, as

the fraction of the nucleon 4-mom.carried by the parton.

Page 74: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The parton model : sum rulesRemarks and comments (discuss theproton, the neutron is similar):

• experimentally, it is enough to controlthe initial state (Ee-, M) + measure theleptonic final state (E', θ);

• the model implies that Σi xi = 1, whenthe sum runs over ALL the partons;

• at the time there was no clue about thenature of the partons, nor if they arecharged or neutral (i.e. not interactingwith the electrons); therefore:

Σ'i xi ≤ 1(the sum is only over those partons,which interact with the electron);

• given the intrinsic q.m. structure of thenucleon, the values xi are not fixed, butdescribed by a distribution ƒj

p(x) forpartons of type "j" in the proton:

→ Σj ∫dx [xƒjp(x)] = Σ'j <|pj|> / |pp| ≤ 1,

with the same caveats over the sum.

• if partons are spin ½, then the Callan-Gross relation 2xF1(x) = F2(x) holds;

• instead, spin = 0 → τ = 0 → F1(x) = 0;

• but … can we measure it ? YES, it's OK !!!

Paolo Bagnaia - PP - 02 75

3/5

xB

A.Bodek et al., Phys.Rev. D20, 1471 (1979).

spin ½

spin 0

2xF1(x)/F2(x)

Page 75: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The parton model : summary

Paolo Bagnaia - PP - 02 76

4/5

e−

γ* (-q2=Q2)

P

e−

θ

p=xP

( ) ( )

( ) ( ) ( )

( )( )

2 2 22 2 2 2

2 14

21

22

22 2 2

1 24

2j jj

2

2

2j jj

1

22

4 s xy F x,Q 1- y F x,

d 4 E' W Q , cos 2W Q , s

ddxdy

F x, Q

QQ

1 e ƒ (x)2

x e

in ;d dE' Q 2 2

;

MW (

F x, Q

Q , ) ;

W (Q , ) ).ƒ (x

πα +

σ α θ θ = ν + ν

Ω

=

= ν =

= ν

σ

ν =

∑∑

A summary of the model, with final formulæ[box and next slide]:

• at high Q2, a hadron (p/n) behaves as amixture of small components, the partons.

• partons are pointlike, spin ½;

• each parton in each interaction is described byits fraction of the 4-momentum of the hadron,i.e. |pi

parton| / |phadron| = xi;

• the xi are qm variables, describedby their distribution functionsƒi

p(x) [called "PDF"];

• in principle the PDF are differentfor each parton and each hadron;

• Σj ∫dx x ƒjp(x) ≤ 1;

• parton spin = ½ → Callan-Gross2xF1(x) = F2(x).

nextslide

Page 76: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The parton model : d2σ/dxdy

Paolo Bagnaia - PP - 02 77

( )( )∂ − ∂

= = = − = −∂ θ ∂

∂ ∂−∂ θ ∂= =

∂ ∂∂ θ ∂

∂ −∂

∂ θ −∂ θ θ 2 2

2x E 1 y y 1; ;cos M y E' E

x x1 ycos E'J .

y y Myc

x s 1 ysin /

os E

si2 M

n /2 1cos 2y

'

5/5

L-inv : s, M, ν, x, y, Q2. Labo : E, E', θ, Ω.

[YN1], probl. 17.7 :page 697, 698, 911.

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

α −σ π σ π θ = = × + = θ − ν − π α

= + = −− πα − +

22 22 2 222 1

22

2 1

4

22

14 4

4 E 1 y F x,y 2F x,yd 2 d 2 My M xycosdxdy J dcos dE' 1 y Q 2 M s 1 y

s 4 F x,y Mxy y E 1 y 4 s 1 y F x,y xy F 2F x, x,yE

Ey .

Q Ey s 1 y Q

( ) ( )

( )

( )

ν − θ θ = ν = − = = − = − = = = −

− θθ −

= = =

θ θ θ = = − ≈ −

ν −

2

22 2 2

22

22 2

22

2

E' s 1 y ss 2EM; E E'; y 1 ; E' E 1 y ; Q 4EE'sin 1 y sin .E E M 2 2 M 2

1 s 1 yx sin ;2M 2M M y 2

M xys

1E

in ; cos 1 sin2 s 1 y 2 2

Q s 1 y sinE E'2E

M

1.

∂ θ ∂ − θ = = − ∂ θ ∂ θ 2 1 cos 1sin

cos 2 cos 2 2

Kinematics

θ→

Jacobiancos ,E'

x,y

result

σ=

Ωα θ θ = +

2

2 22 2

2 14

dd dE'

4 E' W cos 2W sin .Q 2 2

L-inv : s, M, ν, x, y, Q2.Labo : E, E', θ, Ω.

Page 77: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The quark-parton model

Which is the dynamical meaning of F1,2 ?Can we measure them ? [yes, of course]• in principle the proton and the neutron

have different structure functions;• also a given process could result in a

different structure [e.g. the electronscattering could "see" different F1,2 fromneutrino- or hadron-hadron interactions];

• in this picture, e.g. we will refer to"F1

ep(x)", meaning F1(x) for the proton,when probed in DIS by an electron;

• similarly "F2ep(x)", "F2

en(x)", "F2νp(x)", …

• however, these functions are NOTindependent : if they parametrize theactual structure of nucleons, they mustbe correlated.

• assume that the nucleons are made bythree quarks [Nature is much morecomplicated, but wait …];

• call them "valence quarks" [why ???];• each of them is described by a x

distribution, identified with "ƒjp(x)" [e.g.

"up(x)" = the x distribution for u-quarksin the proton];

• e.g. up(x)dx = number of u quarks in theproton, with x in the interval (x, x+dx);

• then dp(x), ūp(x), up (x), un(x), u n (x),…;

→ the qN(x) [q=u,d,ū,…; N=p,n], the PDF(parton distribution functions), tellthe structure of nucleons at high Q2.

(continue …)

Paolo Bagnaia - PP - 02 78

1/9

Page 78: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model: up, un, dp, dn, …(… continue)

Some obvious relations hold [the green oneswith a (*) are provisional, we'll modify them] :

• particle-antiparticle symmetry : up(x) = ūp(x);

• quark model + isospin invariance : up(x) ≈ dn(x);

• ditto : up(x) ≈ 2 un(x);

• ditto : dn(x) ≈ 2 dp(x);

• (*) for valence quarks only, ūp(x) = 0;

• (*) for valence quarks only, sp(x) = 0;

• (*) therefore, e.g.

… many more formulæ, all quite intuitive.

Paolo Bagnaia - PP - 02 79

2/9

e−

γ* (-q2=Q2)

P

e−

θ

p=xP

+= =

p pep 2

2 j jj

4u (x) d (x)F (x) x e ƒ (x) x ;9

Page 79: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model : valence and sea• According to the uncertainty principle,

for short intervals q.m. allows quark-antiquark pairs to exist in the nucleons;

• in the hadrons some neutral particlesexist, called gluons [??? ... wait].

Therefore, let us modify the scheme:• in the nucleons, 3 types of particles : valence quarks [already seen] with

distribution qV(x) [e.g uVp (x) [already

defined with the simpler notation up(x)]; sea quarks, i.e. the quark-antiquark

pairs, described by distributions qS(x)[e.g uS

p(x), sSp(x), uS

p(x), sSp(x)];

gluons, described by the distributionsgp(x) and gn(x).

Obviously only sums can be measured:up(x) ≡ uV

p(x) + uSp(x);

dp(x) ≡ dVp(x) + dS

p(x);

ūp(x) ≡ uVp(x) + uS

p(x) = uSp(x);

sp(x) ≡ sVp(x) + sS

p(x) = sSp(x);

Relations (final, no further refinement) :• particle-antiparticle constraint :

up(x) = ūp(x);

• from quark model + isospin invariance : uV

p(x) ≈ dVn(x) ≡ uV(x);

dVp(x) ≈ uV

n(x) ≡ dV(x);• from quark model : uV

p(x) ≈ 2 uVn(x);

• from quark model : dVn(x) ≈ 2 dV

p(x);• from quantum mechanics and isospin

invariance [but neglecting quark masses] :uS

p(x)= uSp(x) ≈dS

p(x) = dSp(x) ≈

≈ sSp(x) = sS

p(x) ≡ qSp(x) ≈ qS

n(x);• … many more, all quite intuitive.

Paolo Bagnaia - PP - 02 80

3/9

the "valence-ness" is not an observable, i.e. au-quark "does not know" whether (s)he is v or s.

Page 80: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model : Fproton(x) vs Fneutron(x)Putting everything together, we have [neglecting heavier quarks] :

(a) if sea dominates (see little sketch);

(b) if valence dominates [if (uV>>dV) → Rnp ≈ ¼].

The measurement shows that case (a) happensat low x, while (b) dominates at high x.

In other words, there are plenty of qq pairs atsmall momentum, while valence is important at high x.…

Paolo Bagnaia - PP - 02 81

[ ] [ ] [ ]

= + + + + + =

= +

= + + + + =

+

= =

+

= +

ep p p p p p p2

en ep2 2

V S V S S

V V

en2 V V S

p

S

n

4 1 1F (x) x u (x) u (x) d (x) d (x) s (x) s (x)9 9 94 1 1x u (x) 2q (x) d (x) 2q (x) 2q (

1 4 4F (x) x u (x) d (x) q (x) ;

F F R

x)9 9 94 1 4x u (x) d (x) q (x) ;9 3

3 1

9 9

9

[ ] [ ]+ +V V V V4d (x) u (x) 4

(a)u (x) d (x) (b

;

)

.

4/9

x

F2en(x)/F2

ep(x)

A.Bodek et al., PL 51B (1974) 417.

x

F2(x)

xqs(x)

xuv(x),xdv(x)

???drop

the "p"

use iso-spin

i.e. uV = uV

p ≈ dVn

Page 81: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

x11/3

11/3

11/3

11/3

Dirac point-likeparticle

three freequarks

three boundquarks

morecomplicated(= reality ?)

F 2(x

)

The q-p model : toy models for F2(x)

Sum rules (from momentum conservation) :

Hypothetical (NOT CORRECT) shapes of F2(x) from naïve dynamical models :

Paolo Bagnaia - PP - 02 82

1 1p p pV0 0

1 1p p pV0 0

1 p p

0

dx u (x) u (x) dxu (x) 2;

dx d (x) d (x) dxd (x) 1;

dx s (x) s (x) 0.

− = =

− = =

− =

∫ ∫∫ ∫∫

5/9

a naive artist viewof a proton

1

jpartons

1

jpartons 0

0

x

ƒ (x)dx undefined (but large

ƒ

).

(x)dx 1;

=

<

∑ ∫∑ ∫

Page 82: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model : F2ep(x) – F2

en(x)From :

F2ep(x) = x [4uV(x) + dV(x) + 12 qS(x)] / 9;

F2en(x) = x [ uV(x) + 4dV(x) + 12 qS(x)] / 9;

we get

F2ep(x) − F2

en(x) = x [uV(x) − dV(x)] / 3;

If, moreover, from the naïve quark model

uV(x) ≈ 2 dV(x)

we get

F2ep(x) − F2

en(x) = x dV(x) / 3;

i.e. this difference, which is an observable,roughly corresponds to ⅓x × [the x-distribution of the "lone" valence quark (dV

p

or uVn)].

Paolo Bagnaia - PP - 02 83

6/9

x

Friedman, Kendall - Ann.Rev.Nucl.Sci. 22, 203 (1972)

F2ep(x) − F2

en(x)

no valence at x=0(!!!)

Page 83: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model : the gluonThe integrals of F2(x) are both calculable andmeasurable. By neglecting the smallcontribution of ss :

where ƒu,d are the fractions of the protonmomentum carried by the quark u,d (+ therespective q).From direct measurement, we get :

Result (important) :

ƒu + ƒd ≈ 50 %.

Only ≈ ½ of the nucleon momentumis carried by quarks and antiquarks.

The rest is "invisible" in the DIS by acharged lepton.

This was one of the first (and VERYconvincing) evidences for theexistence of the gluons, the carriersof the hadronic force.

The gluons are neutral and do not"see" the e.m. interactions.

Paolo Bagnaia - PP - 02 84

1 1ep p p20 0

1 p pu d0

1 1en p p20 0

1 p pd u0

4dxF (x) x u (x) u (x) dx91 4 1 x d (x) d (x) dx ƒ ƒ ;9 9 94dxF (x) x d (x) d (x) dx91 4 1 x u (x) u (x) dx ƒ ƒ ;9 9 9

= + +

+ + = +

= + +

+ + = +

∫ ∫

∫ ∫

≈= + ≈ → ≈ = + ≈ + ≈

1 epu2 u d0

d1 en2 d u u d0

4 1 ƒ 0.36;dxF (x) ƒ ƒ 0.18;9 9 ƒ 0.18;4 1dxF (x) ƒ ƒ 0.12; ƒ ƒ 0.54.9 9

7/9

meas.

Page 84: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model : e−p vs νp DISCompute F2

eN(x) for an isoscalar target N, i.e. a target with nprotons =nneutrons, both quasi-free (Fermi-gas approx) :

Notice that in neutrino DIS (see) the dynamics is different, but theeffective structure function for an isoscalar target turns out to bevery similar, up to a factor, as in the purely e.m. case :

The experimental value (see) is F2eN / F2

νN = 0.29 ± 0.02, verycompatible with this prediction (5/18 = 0.278).

Paolo Bagnaia - PP - 02 85

= + + + + +

= + + + + +

+≡ =

= + + + + +

ep p p p p p p2

en p p p p p p2

ep eneN 2 2

2

p p p p p p

4 1 1F (x) x u (x) u (x) d (x) d (x) s (x) s (x) ;9 9 94 1 1F (x) x d (x) d (x) u (x) u (x) s (x) s (x) ;9 9 9

F (x) F (x)F (x)2

5 1x u (x) u (x) d (x) d (x) s (x) s (x)18 9 →

→ + + +

neglect s

p p p p5x u (x) u (x) d (x) d (x) .18

ν = + + + = N p p p p eN

2 25F (x) x u (x) u (x) d (x) d (x) F (x) .

18

8/9

why "isoscalar" ?

because (especiallyin ν scattering) thetarget has to beheavy, i.e. made ofheavy nuclei, wellreproduced by thisapproximation.

i.e. the structurefunctions dependon real propertiesof the nucleonstructure, and arenot dependent onthe interaction.

Page 85: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

The q-p model : hadrons in the final state Consider the hadrons on the on the bottom right:is it possible ?

• free quarks do NOT exists (§ 2 and § 6);

• only (qqq) (qqq) (qq) hadrons observable (§ 6);

• therefore some "recombination" must occur[see a possible example, in general it is morecomplicated];

• these effects are called "final state interactions"[f.s.i.];

• usually f.s.i. are factorized, i.e. they are treatedas a "phase 2" process, which does NOTinterfere with "phase 1" (i.e. the DIS);

• at higher energy and higher Q2, quarks in thefinal state fragment into hadron jets.

[all that – and much more – for next semester, e.g.in the "Collider Physics" course: see you there].

Paolo Bagnaia - PP - 02 86

9/9

e−

γ* (-q2=Q2)

P

e−

θ

p=xP

f.s.i.

p

π0

p

Page 86: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

F2(x,Q2) : Scaling violationsModern experiments have probed thenucleon to very high values of Q2.Now electrons are often replaced withmuons, which have the advantage ofintense beams of higher momenta.Or, even better, the experiments arecarried out at e−p Colliders (HERA).

There are data up to Q2 ≈ 105 GeV2:when plotting F2 as function of Q2 atfixed x, some Q2-dependence appears,incompatible with Bjorken scaling [seeplot and sketch, and the next slides].

Paolo Bagnaia - PP - 02 87

1/6

x 1

F 2(x

,Q2 )

low Q2

high Q2

F 2(x

,Q2 )

ln Q2

low x

medium x

high x

x Q2

Q2

Page 87: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

F2(x,Q2) : Q2 evolutionHowever, this effect (scaling violations), isNOT attributed to sub-structures or othernovel physics, but to a dynamical changein F2, well understood in QCD.

In QCD : higher Q2

→ smaller size probed→ more qq and gluons→ less valence quarks.

Paolo Bagnaia - PP - 02 88

2/6

a modern parameterizationof the PDF [NNPDF3.0-(NNLO)] shows clearly thedifference in the PDF whenQ2 = 10÷104 GeV2:• uV, dV → down;• ū, d, [= uS, dS,] g → up;• s, c, b → up (more phase

space)x

10-3 10-2 10-1 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g/10

uV

dV

d

c

s

ū

xf(x,µ2=10 GeV2)

x

g/10

uV

dV

d

ū

s

c

b

xf(x,µ2=104 GeV2)

10-3 10-2 10-1 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

jpartons 0

1

jpartons 0

xƒ (x)dx 1;

ƒ (x)dx undefined (but large).

< =

∑ ∫∑ ∫

Page 88: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

For modern experiments with hadrons theknowledge of F2

p,n(x) is a necessaryingredient of the data analysis.

• The structure functions are an effect ofthe hadronic forces. However, being acomplicated result of an ill-definednumber of bodies in non-perturbativeregime, they cannot be reliablycomputed with today's technology(lattice QCD is still a hope).

• Similar to the chemistry of complicatedmolecules, which is a difficult subject,although the fundamental interactionsare [supposed to be] well understood.

• When studying hadron interactions atlarge Q2, the initial state is parameterizedby its structure function, as anincoherent sum of all the PDF's, includingthe gluon.

• In practice, all the computations (e.g. theHiggs production) must use a numericalparameterization of the PDF's, and takeinto account their uncertainties.

• the PDF's are probabilistic, i.e. the valueof x is different for each event !!!

• consequence: the 4-mom conservation atparton level is a difficult constraint in thecomputation !!! (see later)

F2(x,Q2) : parton distribution functions

Paolo Bagnaia - PP - 02 89

3/6

An artist's view of the pp interaction [from the CERN ATLAS www site]

Page 89: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

Summary of cross-sections

Paolo Bagnaia - PP - 02 90

1

Ruthe Rutherfo

2 2 2

4

2

rd rford

*

Rutherford

*

Mott

non-Mott poi

2 2

2(*)

Mott Mont

2

. tt

4Z E'q

1 si

dd

;

d d ;d d

d d; .

n cos2

d d

dd

d dd d

2

E' F(q )E

β→

=

σ σ = × → ×

α

θ θ −β Ω Ω

σ σ = × = × Ω Ω

σ Ω

σ Ω

σ σ Ω Ω

( ) ( ) ( )

( ) ( )

point-likespin1/2

Rosenbluth

2

DI

22

2 2

2 2 2 2E M 2 2 2

M

M

2 2 22 1

ott

Mott

2 2

S4

Q1 2 tan2 4M

dc

G Q G Q2 G Q ta

d

dd

d ; ;d

d ;d

4 E'

n1 2

W Q , cos 2W Q , sdd d

in2E' Q

σ = × Ω

σ = × Ω

σ Ω

σ

α= ×

θ + τ τ

Ω

σ Ω

=

+ τ θ+ τ

+ τ

θν + ν

( ) ( ) ( )

2

2 22

DIS

2

42

1 2

2

xy F x,Q

;

4ddxd

1 y F x Qy

sQ

, .πα

θ

σ

+ −× =

Q2 scale

Page 90: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

References1. [Povh, 6,7,8]

2. [BJ, 12]

3. M. N. Rosenbluth, Phys.Rev. 79 (1950)615.

4. R. Hofstadter, Rev. Mod. Phys. 28 (1956)214.

5. J.Friedman, H.Kendall, Ann. Rev. Nucl. Sci.22 (1972) 203.

Paolo Bagnaia - PP - 02 91

/10

/100Follower of Hieronymus Bosch – Christ in Limbo(particular) – Indianapolis Museum of Art

Page 91: Particle Physics - Chapter 2 Hadron structurebagnaia/particle_physics_06/2... · 3. Kinematics 4. Elastic scattering e-Nucleus 5. Form factors 6. Electron-Nucleon scattering 7. Proton

End of chapter 2

End

Paolo Bagnaia - PP - 02 92