46
PAX DETECTOR Tbilisi , 10/07/2014 V. Carassiti , P. Lenisa 1

PAX DETECTOR

Embed Size (px)

DESCRIPTION

PAX DETECTOR. SUMMARY DETECTOR LAYOUT COOLING SYSTEM SUPPORT READ-OUT FEED THROUGH OVERALL DIMENSIONS. DETECTOR LAYOUT. OVERALL VIEW. QUADRANT. TARGET CELL. SUPPORT. COOLING. FEED-THROUGH. QUADRANT. READ-OUT ELECTRONICS. DETECTOR COOLING BOX INCLUDING 3 LAYERS. - PowerPoint PPT Presentation

Citation preview

Page 1: PAX DETECTOR

PAX DETECTOR

Tbilisi , 10/07/2014 V. Carassiti , P. Lenisa

1

Page 2: PAX DETECTOR

V. Carassiti , P. Lenisa 2Tbilisi , 10/07/2014

SUMMARY

DETECTOR LAYOUT

COOLING SYSTEM

SUPPORT

READ-OUT FEED THROUGH

OVERALL DIMENSIONS

Page 3: PAX DETECTOR

V. Carassiti , P. Lenisa 3Tbilisi , 10/07/2014

DETECTOR LAYOUT

Page 4: PAX DETECTOR

V. Carassiti , P. Lenisa 4

OVERALL VIEW

Tbilisi , 10/07/2014

COOLING

FEED-THROUGH

QUADRANT

SUPPORTTARGET CELL

Page 5: PAX DETECTOR

V. Carassiti , P. Lenisa 5Tbilisi , 10/07/2014

READ-OUT ELECTRONICS

DETECTORCOOLING BOX INCLUDING3 LAYERS

QUADRANT

Page 6: PAX DETECTOR

V. Carassiti , P. Lenisa 6Tbilisi , 10/07/2014

SENSORS LAYER 1 : HERMES

SENSORS LAYER 3 : PAX

SENSORS LAYER 2 : PAX

READ-OUT LAYER 3

READ-OUT LAYER 2

READ-OUT LAYER 1

READ-OUT CONCEPT

Page 7: PAX DETECTOR

V. Carassiti , P. Lenisa 7Tbilisi , 10/07/2014

UPSTREAM

DOWNSTREAM

UPSTREAM/DOWNSTREAM VIEWS

Page 8: PAX DETECTOR

V. Carassiti , P. Lenisa 8Tbilisi , 10/07/2014

LEFT

RIGHT

LEFT/RIGHT VIEWS

Page 9: PAX DETECTOR

V. Carassiti , P. Lenisa 9Tbilisi , 10/07/2014

READ-OUT PCB

HERMES SENSOR

LAYER 1 + READ-OUT

Page 10: PAX DETECTOR

V. Carassiti , P. Lenisa 10Tbilisi , 10/07/2014

READ-OUT PCB

PAX SENSOR

LAYER 2 + READ-OUT

Page 11: PAX DETECTOR

V. Carassiti , P. Lenisa 11Tbilisi , 10/07/2014

READ-OUT PCB

PAX SENSOR

LAYER 3 + READ-OUT

Page 12: PAX DETECTOR

V. Carassiti , P. Lenisa 12Tbilisi , 10/07/2014

COOLING SYSTEM DESIGN

SENSORS COOLING SYSTEM

READ-OUT COOLING SYSTEM

FLOW RATE UNIFORMITY

Page 13: PAX DETECTOR

V. Carassiti , P. Lenisa 13Tbilisi , 10/07/2014

NOMINAL TUBE SIZE : ¼ in

FLEXIBLE TUBE : ¼ inCode : 321-4x2

THE COLD PLATE

COLD PLATE DIMENSIONS: 125 x 252,5 x 8 mm^3

TUBE AND PLATE WELDED BY DIFFUSION: PROCESS UNDER VACUUM (10E-4 Bar) ; PRESSURE BETWEEN THE PARTS : 0,4-1,6 Bar ; WELDING TEMPERATURE : 50-70% OF THE MATERIAL MELTING POINT

MANUFACTURER:THERMACORE EUROPE Ltd.ASHINGTON (UK)

Page 14: PAX DETECTOR

V. Carassiti , P. Lenisa 14Tbilisi , 10/07/2014

Box Aluminum Surface = Bas = 0,337 m^2Box Silicon Surface = Bss = 0,033 m^2

Box Temperature = Tb = -10 °CRoom Temperature = Tr = 30 °C

COOLING POWER = Pc = 5,672E-8 x [Ae x Bas + Se x Bss] x (Tr^4 – Tb^4) = 12,5 W

Aluminum emissivity = Ae = 0,09Silicon emissivity = Se = 0,9

PDESIGN = 15 W

BOX COOLING POWER CALCULATION

ABSORBED RADIATION FROM ISOLATED BOX IN ROOM TEMPERATURE ENVIRONMENT

Page 15: PAX DETECTOR

V. Carassiti , P. Lenisa 15

25 50 75 100 125 150 175 200 225 250 275 300-120

-100

-80

-60

-40

-20

0

Tfluid

Tdelivery

α (W/m^2C°)

T (C

°)

COOLING FLUID PROPERTIES (SENSORS BOX)

Tbilisi , 10/07/2014

COOLING FLUID : ETHANOL ALCOHOOL °C W/m^2C°

Boiling point 78,5

Freezing point -114

Convection coefficient α 250

Delivery temperature Td -19

Wall temperature Tw -10

Fluid temperature Tf = (Td + Tw)/2 -14

ETHANOL PROPERTIES @ Tf and atmospheric pressure

Density (Kg/m^3) ρ 818

Specific heat (J/KgK) Cp 2287

Thermal conductivity (W/mK) λ 0,13

Kinematic viscosity (m^2/s) ν 2,69E-06

Kinematic viscosity @ Tw (m^2/s) νw 2,54E-06

COOLING FLUID TEMPERATURE VS CONVECTION COEFFICIENT

Tube diameter = D = 4,55 × 10−3 (m)

Wall temperature = TW = −10 (°C)

Circuit length = CL = 0,95 (m)

Fluid temperature = TF = TW −PC

α × π × D × CL

= −10 −15

α × π × 4,55 × 10−3 × 0,95= −10 −

1105

α (C°)

Delivery fluid temperature = TD = 2 × TF − TW = 2 × (−10 −−1105

α) +10 (C°)

COOLING FLUID & CONVECTION COEFFICIENT SELECTION

Page 16: PAX DETECTOR

V. Carassiti , P. Lenisa 16

25 50 75 100 125 150 175 200 225 250 275 300

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

flow rate (Kg/h)

Tfluif (°C)

Tdelivery (°C)

flow resistance (Pa/100)

α (W/m^2C°

T (°C

)

Tbilisi , 10/07/2014

FLOW SPEED, FLOW RATE AND FLOW RESISTANCE

Nu =α × d

λ=

250 × 0,0045

0,13= 8,75

Pr =Cp × ρ × υ

λ=

2287 × 818 × 2,69 × 10−6

0,13= 38,7

CL

D=

0,95

0,0045= 209

Re =Nu

1,86 × Pr ×D

CL

⎝ ⎜

⎠ ⎟

0,33

×υ

υw

⎝ ⎜

⎠ ⎟0,14

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

3

= 539

Vf =Re × υ

d= 3,19 × 10−1 m/s = 19,1 m/min flow speed

F = Vf ×π × d2

4× 3600 = 1,9 × 10−2 m3/h = 15,3 Kg/h flow rate

ΔT =PC × 3600

F × CP

=15 × 3600

15,3 × 2287= 1,5 °C in - out temperature difference

ξ =64

Re= 0,12 friction factor

Leq = CL + (6 × 30 × D) = 1,77 m equivalent linear length of the circuit

Δp = ξ ×Leq

D×ρ × Vf 2

2= 1917 Pa flow resistance

COOLING FLUID OPERATING CONDITIONS (SENSORS BOX)

α=250 W/m^2K

Page 17: PAX DETECTOR

V. Carassiti , P. Lenisa 17Tbilisi , 10/07/2014

PDESIGN = 10 W

READ-OUT PCBs COOLING

Single PCB power = 1,25 W

PCB number/cooling plate = 4

Total power = 4 x 2 x 1,25 = 10 W

PCB Temperature = Tb = 30 °C

Room Temperature = Tr = 30 °C

Page 18: PAX DETECTOR

V. Carassiti , P. Lenisa 18

25 50 75 100 125 150 175 200 225 250 275 3000

5

10

15

20

25

30

35

TfluidTdelivery

α (W/m^2C°)

T (C

°)

COOLING FLUID PROPERTIES (READ-OUT PCB)

Tbilisi , 10/07/2014

COOLING FLUID : ETHANOL ALCOHOOL °C W/m^2C°

Boiling point 78,5

Freezing point -114

Convection coefficient α 150

Delivery temperature Td 25

Wall temperature Tw 30

Fluid temperature Tf = (Td + Tw)/2 28

ETHANOL PROPERTIES @ Tf and atmospheric pressure

Density (Kg/m^3) ρ 782

Specific heat (J/KgK) Cp 2476

Thermal conductivity (W/mK) λ 0,14

Kinematic viscosity (m^2/s) ν 1,25E-06

Kinematic viscosity @ Tw (m^2/s) νw 1,18E-06

COOLING FLUID TEMPERATURE VS CONVECTION COEFFICIENT

Tube diameter = D = 4,55 × 10−3 (m)

Wall temperature = TW = 30 (°C)

Circuit length = CL = 1,9 (m)

Fluid temperature = TF = TW −PC

α × π × D × CL

= 30 −10

α × π × 4,55 × 10−3 × 1,9= 30 −

368

α (C°)

Delivery fluid temperature = TD = 2 × TF − TW = 2 × (30 −368

α) − 30 (C°)

COOLING FLUID & CONVECTION COEFFICIENT SELECTION

Page 19: PAX DETECTOR

V. Carassiti , P. Lenisa 19

25 50 75 100 125 150 175 200 225 250 275 3000.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

flow rate (Kg/h)

Tfluif (°C)

Tdelivery (°C)

flow resistance (Pa/100)

α (W/m^2C°

T (°C

)

Tbilisi , 10/07/2014

FLOW SPEED, FLOW RATE AND FLOW RESISTANCE

Nu =α × d

λ=

150 × 0,0045

0,13= 4,9

Pr =Cp × ρ × υ

λ=

2476 × 782 × 1,25 × 10−6

0,14= 17,3

CL

D=

2,1

0,0045= 462

Re =Nu

1,86 × Pr ×D

CL

⎝ ⎜

⎠ ⎟

0,33

×υ

υw

⎝ ⎜

⎠ ⎟0,14

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

3

= 454

Vf =Re × υ

d= 1,25 × 10−1 m/s = 7,5 m/min flow speed

F = Vf ×π × d2

4× 3600 = 7,3 × 10−3 m3/h = 5,7 Kg/h flow rate

ΔT =PC × 3600

F × CP

=10 × 3600

5,7 × 2476= 2,5 °C in - out temperature difference

ξ =64

Re= 0,14 friction factor

Leq = CL + (14 × 30 × D) = 4 m equivalent linear length of the circuit

Δp = ξ ×Leq

D×ρ × Vf 2

2= 756 Pa flow resistance

COOLING FLUID OPERATING CONDITIONS (READ-OUT PCB)

α=150 W/m^2K

Page 20: PAX DETECTOR

V. Carassiti , P. Lenisa 20Tbilisi , 10/07/2014

DETECTOR/PCBs COOLING SUMMARY TABLE ( Troom = 30 °C )

DETECTOR (1/4) PCBs (1/4)

TEMPERATURE (°C) -10 30

POWER (W) 15 10

FLOW RATE (Kg/h) 15,3 5,7

FLOW RESISTANCE (Pa) 1917 756

Page 21: PAX DETECTOR

V. Carassiti , P. Lenisa 21Tbilisi , 10/07/2014

TOTAL POWER = 15 × 4 = 60 W

DETECTOR COOLING SYSTEM (SENSORS BOX)

COLD PLATE

SUPPLYING-COLLECTING RINGS

OUTPUT

INPUT

MANUFACTURER:NORDIVAL Srl SWAGELOCK ITALIAROVATO (ITALY)

Page 22: PAX DETECTOR

V. Carassiti , P. Lenisa 22Tbilisi , 10/07/2014

DETECTOR COOLING SYSTEM – HYDRAULIC CIRCUIT SCHEME

FrD1

Fr = box cooling flow rate = 18,7 (l/h)

FrD4

FrD3

FrD2

4Fr = QinLi1

2FrLi2

FrLi3

FrLo3Fr

Fr 2Fr

2Fr

2FrLo2

4Fr = QoutLo1

Collecting ring

Supplying ring

Box circuit

L = length of the branches (m)

Page 23: PAX DETECTOR

V. Carassiti , P. Lenisa 23Tbilisi , 10/07/2014

DETECTOR COOLING SYSTEM - FLOW RATE UNIFORMITY BETWEEN THE PLATES

CALCULATION PROCESS

Q = flow rate (m3/s)

L = branch length (m)

d = tube inner diameter (m)

A = π × d2

4= tube cross section (m2)

c =Q

A= flow velocity (m/s)

Re =ρ × c × d

μ= Reynolds number

λ =64

Re (Re ≤ 2300) λ = 0,316 × Re−0,25 (Re > 2300) Friction factor

ΔPL = λ ×L

d

⎝ ⎜

⎠ ⎟×ρ × c 2

2

⎝ ⎜

⎠ ⎟= linear flow resistance (Pa)

ΔPC =K ×ρ × c 2

2

⎝ ⎜

⎠ ⎟= local flow resistance (Pa)

ΔPT = ΔPL + ΔPC = total flow resistance (Pa)

QD2

QD1

=ΔPT2

ΔPT1

⎝ ⎜

⎠ ⎟

0,5

= flow rate ratio between the cooling plates

Page 24: PAX DETECTOR

V. Carassiti , P. Lenisa 24Tbilisi , 10/07/2014

DETECTOR COOLING SYSTEM - FLOW RATE UNIFORMITY BETWEEN THE PLATES

CALCULATION PROCESS

Branch Lo1 Lo2 Lo3 D1 Li3 Li2 Li1

Q (m^3/s) 2,07E-05 1,04E-05 0,52E-05 0,52E-05 0,52E-05 1,04E-05

2,07E-05

L (m) 0,523 0,344 0,642 2,442 0,642 0,344 0,523

d (m) 4,55E-03 7,73E-03 7,73E-03 4,55E-03 7,73E-03 7,73E-03

4,55E-03

A (m^2) 1,63E-05 4,7E-05 4,7E-05 1,62E-05 4,7E-05 4,7E-05 1,63E-05

c (m/s) 1,27 0,22 0,11 0,32 0,11 0,22 1,27

Re 2154 637 319 541 319 637 2154

λ 0,03 0,1 0,2 0,12 0,2 0,1 0,03

ΔPT (Pa) 2598 100 86 2679 86 100 2598

input pressure @ cooling plate D1 :

ΔPT1 = ΔPLo1 + ΔPLo2 + ΔPLo3 + ΔPD1 = 5463 (Pa)

input pressure @ cooling plate D2 :

ΔPT 2 = ΔPLo1 + ΔPLo2 + ΔPLo3 + ΔPD1 + ΔPLi3 = 5549 (Pa)

QD2

QD1

=ΔPT2

ΔPT1

⎝ ⎜

⎠ ⎟

0,5

= 1,008 flow rate ratio between the cooling plates

TOTAL FLOW RATE = 75 l/h

TOTAL PUMPING PRESSURE = 8250 Pa

FLOW RATE UNIFORMITY WITHIN 1%

Page 25: PAX DETECTOR

V. Carassiti , P. Lenisa 25Tbilisi , 10/07/2014

TOTAL POWER = 10 × 4 = 40 W

PCBs COOLING SYSTEM

COLD PLATES

SUPPLYING-COLLECTING RINGS

OUTPUT

INPUT

Page 26: PAX DETECTOR

V. Carassiti , P. Lenisa 26Tbilisi , 10/07/2014

PCBs COOLING SYSTEM - FLOW RATE UNIFORMITY BETWEEN THE PLATESCALCULATION PROCESS

Branch Lo1 Lo2 Lo3 D1 Li3 Li2 Li1

Q (m^3/s) 8E-06 4E-06 2E-06 2E-06 2E-06 4E-06 8E-06

L (m) 0,523 0,365 0,730 5,344 0,730 0,365 0,523

d (m) 4,55E-03 7,73E-03 7,73E-03 4,55E-03 7,73E-03 7,73E-03

4,55E-03

A (m^2) 1,63E-05 4,7E-05 4,7E-05 1,62E-05 4,7E-05 4,7E-05 1,63E-05

c (m/s) 0,5 0,1 0,05 0,12 0,05 0,1 0,5

Re 1792 527 264 448 264 527 1792

λ 0,04 0,12 0,24 0,14 0,24 0,12 0,04

ΔPT (Pa) 436 18 17 1000 17 18 436

input pressure @ cooling plate D1 :

ΔPT1 = ΔPLo1 + ΔPLo2 + ΔPLo3 + ΔPD1 =1471 (Pa)

input pressure @ cooling plate D2 :

ΔPT 2 = ΔPLo1 + ΔPLo2 + ΔPLo3 + ΔPD1 + ΔPLi3 =1488 (Pa)

QD2

QD1

=ΔPT2

ΔPT1

⎝ ⎜

⎠ ⎟

0,5

= 1,005 flow rate ratio between the cooling plates

TOTAL FLOW RATE = 30 l/h

TOTAL PUMPING PRESSURE = 1942 Pa

FLOW RATE UNIFORMITY WITHIN 1%

Page 27: PAX DETECTOR

V. Carassiti , P. Lenisa 27Tbilisi , 10/07/2014

DETECTOR SUPPORT

SUPPORT GEOMETRY

CONSTRAINTS & STRUCTURAL COMPARISON

Page 28: PAX DETECTOR

V. Carassiti , P. Lenisa 28Tbilisi , 10/07/2014

DETECTOR SUPPORT

QUADRANT SEATS

QUADRANT ASSEMBLING SCREWS

CS1

CS3

CS2SUPPORT CROSS SECTIONS :CS1 = 80 x 20 mm^2CS2 = CS4 = 40 x 20 mm^2CS3 = 33 x 20 mm^2CS5 = 20 X 20 mm^2

CS5

CS4

CHAMBER MOUNTING WALL

CHAMBER WALL

Page 29: PAX DETECTOR

V. Carassiti , P. Lenisa 29Tbilisi , 10/07/2014

DETECTOR SUPPORT

QUADRANT SEAT

QUADRANT ASSEMBLED

Page 30: PAX DETECTOR

V. Carassiti , P. Lenisa 30Tbilisi , 10/07/2014

DETECTOR SUPPORT – STATIC SCHEME

FIXED END

BEARINGP1P4

P2

P3

R2

R1

APPLIED LOADS :P1 = P4 = 104 NP2 = P3 = 92 NTHE TOTAL LOADAPPLIED TO ONLYONE SUPPORT

LOADS :P support = 40 NP detector quadrant = 72 NP cooling system = 22 NP target cell = 42 NP target cell support = 3 N

R1 , R2 = REACTIONS

Page 31: PAX DETECTOR

V. Carassiti , P. Lenisa 31Tbilisi , 10/07/2014

DETECTOR SUPPORT STRUCTURAL COMPARISON

FIXED END P4

CS2P2+P3CS3

P1

L3

L2

L1

APPLIED LOADS :P1 = P4 = 104 NP2 + P3 = 184 N

LENGTHS:L1 = 143 mmL2 = 250 mmL3 = 357 mm

FIXED END

MP1 = P1 × L3 = 37,1 Nm (bending moment load P1)

MP 2+P 3 = P2 + P3( ) × L2 = 46 Nm (bending moment load P2 +P3)

MP 4 = P4 × L1 =14,9 Nm (bending moment load P4)

MCS1 = MP1 +MP 2+P 3 +MP 4 = 98 Nm (bending moment @ cross section CS1)

MCS2 = P1× L3 − L1( ) + P2 + P3( ) × L2 − L1( ) = 41,9 Nm (bending moment @ cross section CS2

MCS3 = P1× L3 − L2( ) =11,1 Nm (bending moment @ cross section CS3)

TCS1 =MCS1 −MCS2

L1= 392 N (shearing load @ cross section CS1)

TCS2 =MCS2 −MCS3

L2 − L1= 288 N (shearing load @ cross section CS2)

TCS3 =MCS3

L3 − L2=104 N (shearing load @ cross section CS3)

Cross section CS1

JCS1 =20 × 803

12= 853333 mm4 (moment of inertia) ; ACS1 = 20 × 80 =1600 mm2 (area)

WCS1 =JCS180 2

= 21333 mm3 (flexural stiffness)

σCS1 =MCS1

WCS1

= 4,6 MPa ; τ CS1 =3 × TCS12 × ACS1

= 0,4 MPa ; σ EQ = σCS12 + 3 × τ CS1

2 = 4,7 MPa < σ AMM

Cross section CS2

JCS2 = 2 ×20 × 403

12= 213333 mm4 ; ACS2 = 2 × 20 × 40 =1600 mm2 ; WCS2 =

JCS2

40 2=10667 mm3

σCS2 =MCS2

WCS2

= 3,9 MPa ; τ CS2 =3 × TCS2

2 × ACS2

= 0,3 MPa ; σ EQ = σCS22 + 3 × τ CS2

2 = 3,9 MPa < σ AMM

Cross section CS3

JCS3 = 2 ×20 × 333

12

⎝ ⎜

⎠ ⎟+ ACS3 ×1072

( ) ⎡

⎣ ⎢

⎦ ⎥= 30345150 mm4 ; ACS3 = 2 × 20 × 33 =1320 mm2

WCS3 =JCS3

107= 283600 mm3

σCS3 =MCS3

WCS3

= 0,04 MPa ; τ CS3 =3 × TCS3

2 × ACS3

= 0,08 MPa ; σ EQ = σCS32 + 3 × τ CS3

2 = 0,15 MPa < σ AMM

CS1

MATERIAL : ALUMINUM 6061σR=290 MPaσS=240 MpaσAMM=240/1,6= 150 MPa

Page 32: PAX DETECTOR

V. Carassiti , P. Lenisa 32Tbilisi , 10/07/2014

DETECTOR SUPPORT STRUCTURAL COMPARISON

FIXED END P4

CS2P2+P3CS3

P1CS4

L3

L2

L1

APPLIED LOADS :P1 = P4 = 104 NP2 + P3 = 184 N

LENGTHS:L1 = 143 mmL2 = 250 mmL3 = 357 mmL4 = 415 mm

FIXED END + BEARING

MP1 = P1 ×L4 − L3( ) × L32

2 × L43

⎣ ⎢

⎦ ⎥× L4 − L3 − 2 × L4( ) = 4,15 Nm (bending moment load P1 @ CS4)

MP1−CS1 = P1×L4 − L3( ) × L3

2 × L42

⎣ ⎢

⎦ ⎥× L4 − L3 − L4( ) = 2,23 Nm ( bending moment load P1 @ CS1)

MP 2+P 3 = P2 + P3( ) ×L4 − L2( ) × L22

2 × L43

⎣ ⎢

⎦ ⎥× L4 − L2 − 2 × L4( ) = 8,83 Nm (bending moment load P2+P3 @ CS3)

MP 2+P 3−CS1 = P2 + P3( ) ×L4 − L2( ) × L2

2 × L42

⎣ ⎢

⎦ ⎥× L4 − L2 − L4( ) = 5,51 Nm (bending moment load P2 +P3 @ CS1)

MP 4 −CS2 = P4 ×L4 − L1( ) × L12

2 × L43

⎣ ⎢

⎦ ⎥× L4 − L1− 2 × L4( ) = 2,26 Nm (bending moment load P4 @ CS2)

MP 4 −CS1 = P4 ×L4 − L1( ) × L1

2 × L42

⎣ ⎢

⎦ ⎥× L4 − L1− L4( ) =1,68 Nm (bending moment load P4 @ CS1)

TP1−CS5 = P1 ×L32

2 × L43

⎝ ⎜

⎠ ⎟× L4 − L3 − 2 × L4( ) = 71,58 N (shearing load @ cross section CS5)

TP1−CS1 = P1 −TP1−CS5 = 32,42 N (shearing load @ cross section CS1)

TP 2+P 3−CS5 = P2 + P3( ) ×L22

2 × L43

⎝ ⎜

⎠ ⎟× L4 − L2 − 2 × L4( ) = 53,5 N (shearing load @ cross section CS5)

TP 2+P 3−CS1 = P2 + P3 −TP 2+P 3−CS5 =130,5 N (shearing load @ cross section CS1)

TP 4 −CS5 = P4 ×L12

2 × L43

⎝ ⎜

⎠ ⎟× (L4 − L1− 2 × L4) = 8,30 N (shearing load @ cross section CS5)

TP 4 −CS1 = P4 −TP 4 −CS5 = 95,7 N (shearing load @ cross section CS1)

MCS1 = MP1−CS1 +MP 2+P 3−CS1 +MP 4 −CS1 = 9,42 Nm (total bending moment @ CS1)

MCS3 =12,49 Nm (maximum bending moment along the beam @ CS3)

TCS1 = TP1−CS1 +TP 2+P 3−CS1 +TP 4 −CS1 = 258,62 N (total shearing load @ CS1)

TCS5 = TP1−CS5 +TP 2+P 3−CS5 +TP 4 _CS5 =133,38 N (total shearing load @ CS5)

CS1

MATERIAL : ALUMINUM 6061σR=290 MPaσS=240 MpaσAMM=240/1,6= 150 MPa

BEARINGCS5

L4

Page 33: PAX DETECTOR

V. Carassiti , P. Lenisa 33Tbilisi , 10/07/2014

DETECTOR SUPPORT STRUCTURAL COMPARISON

FIXED END FIXED END + BEARING

MCS1 (Nm) 98 (max) 9,4

MCS3 (Nm) 11,1 12,5 (max)

TCS1 (N) 392 258,6

TCS5 (N) - 133,4

98 Nm

392 N

9,4 Nm

258,6 N 133,4 N

VACUUMCHAMBER

12,5 Nm11,1 Nm

Page 34: PAX DETECTOR

V. Carassiti , P. Lenisa 34Tbilisi , 10/07/2014

READ-OUT FEED THROUGH

Page 35: PAX DETECTOR

V. Carassiti , P. Lenisa 35

THE READ-OUT FEEDTHROUGH

Tbilisi , 10/07/2014

50 PINS CONNECTOR

DNCF100 FLANGE

Page 36: PAX DETECTOR

V. Carassiti , P. Lenisa 36

THE READ-OUT FEEDTHROUGH

Tbilisi , 10/07/2014

Page 37: PAX DETECTOR

V. Carassiti , P. Lenisa 37Tbilisi , 10/07/2014

DETECTOR OVERALL DIMENSIONS

ALLOWED ASSEMBLING SPACE

SKETCHES

Page 38: PAX DETECTOR

V. Carassiti , P. Lenisa 38

DETECTOR EXTRACTING/INSERTING ALLOWED SPACE

Tbilisi , 10/07/201439

7

mm

INSERTION/EXTRACTION168

mm

INSERTION WINDOW = 397 mm ; DETECTOR SIZE = 390 mm

Page 39: PAX DETECTOR

V. Carassiti , P. Lenisa 39

SCKETCH - 1

Tbilisi , 10/07/2014

Page 40: PAX DETECTOR

V. Carassiti , P. Lenisa 40

SCKETCH - 2

Tbilisi , 10/07/2014

Page 41: PAX DETECTOR

V. Carassiti , P. Lenisa 41

SCKETCH - 3

Tbilisi , 10/07/2014

Page 42: PAX DETECTOR

V. Carassiti , P. Lenisa 42

SCKETCH - 4

Tbilisi , 10/07/2014

Page 43: PAX DETECTOR

V. Carassiti , P. Lenisa 43

SCKETCH - 5

Tbilisi , 10/07/2014

Page 44: PAX DETECTOR

V. Carassiti , P. Lenisa 44

SCKETCH - 6

Tbilisi , 10/07/2014

Page 45: PAX DETECTOR

V. Carassiti , P. Lenisa 45

SCKETCH - 7

Tbilisi , 10/07/2014

Page 46: PAX DETECTOR

V. Carassiti , P. Lenisa 46

THANK YOU !!

Tbilisi , 10/07/2014