Peretmuan 12 Laplace in Circuits

Embed Size (px)

Citation preview

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    1/56

    THE LAPLACE TRANSFORM

    IN CIRCUIT ANALYSIS

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    2/56

    A Resistor in the s Domain

    R

    +

    vi

    v=Ri (Ohms Law).

    V(s)=RI(s)

    R

    +

    VI

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    3/56

    An Inductor in the s Domain

    +

    v L i

    Initial current of I0di

    v LdtV(s)=L[sI(s)-i(0-)]=sLI(s)-LI0

    +

    V

    sL I

    + LI0

    0( )( ) IV sI ssL s

    +

    V sL

    I

    I0s

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    4/56

    A Capacitor in the s Domain

    +

    v C

    i

    Initially charged to V0 volts. dvi Cdt

    0

    0

    ( ) [ ( ) (0 )] ( )

    1( ) ( )

    I s C sV s v sCV s CV

    VV s I s

    sC s

    I

    +

    V CV01/sC

    +V0/s

    1/sC+

    V

    I

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    5/56

    The Natural Response of an RC Circuit

    Rt=0

    i

    +

    vC+

    V0

    +

    VR

    I1/sC

    +V0/s

    0

    0

    0

    1

    0

    0

    1 ( ) ( )

    ( ) 1

    ( ) ( )t t

    RC RC

    VR

    RC

    V I s RI ss sC

    CV

    I s RCs s

    Vi e u t v Ri V e u t

    R

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    6/56

    The Step Response of a Parallel Circuit

    iL (t) = ?

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    7/56

    The Step Response of a Parallel Circuit

    2 1 1

    2 1 1[ ]

    dc

    dc

    dc

    I

    C

    RC LC

    I

    LCL

    RC LC

    IV VsCV

    R sL s

    Vs s

    Is s s

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    8/56

    5

    2 8

    5

    *1 2 2

    53

    1 8

    53 0

    2

    384 10

    ( 64000 16 10 )

    384 10( 32000 24000)( 32000 24000)

    32000 24000 32000 24000

    384 1024 10

    16 10

    384 1020 10 126.87

    ( 32000 24000)( 48000)

    ( ) [24 40

    L

    L

    L

    L

    Is s s

    Is s j s j

    K K KI

    s s j s j

    K

    Kj j

    i t e

    32000 0cos(24000 126.87 )] ( )t t u t mA

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    9/56

    Transient Response of a

    Parallel RLC Circuit

    Replacing the dc current source with a sinusoidal current source

    2 2

    1

    2 1 1

    2

    2 2 2 1 1

    2 2 2 1 1

    cos A ( )

    ( ) ( )( ) ( )

    ( )( )[ ( ) ( )]

    ( )( )

    ( )[ ( ) ( )]

    m

    m

    mg m g

    Cg

    RC LC

    IC

    RC LC

    ILC

    L

    RC LC

    sIi I t I s

    s

    s

    V s I ss s

    sV s

    s s s

    sV sI s

    sL s s s

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    10/56

    5

    2 8 2 8

    * *1 1 2 2

    53

    1

    24 , 40000 /

    384 10( )

    ( 16 10 )( 64000 16 10 )

    ( )40000 40000 32000 24000 32000 24000

    384 10 ( 40000)7.5 10 90

    ( 80000)(32000 16000)(32000 64000)

    m

    L

    L

    I mA rad s

    sI s

    s s s

    K K K KI s

    s j s j s j s j

    jK

    j j j

    05

    3 02

    32000

    384 10 ( 32000 24000)12.5 10 90

    ( 32000 16000)( 32000 64000)( 48000)

    ( ) (15sin40000 25 sin24000 ) ( )

    15sin40000

    tL

    Lss

    jK

    j j j

    i t t e t u t mA

    i t mA

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    11/56

    Mesh Analysis

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    12/56

    Mesh Analysis (cont.)

    1 2

    1 2

    336(42 8.4 ) 42

    0 42 (90 10 )

    s I Is

    I s I

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    13/56

    1

    2

    40( 9) 15 14 1

    ( 2)( 12) 2 12

    168 7 8.4 1.4

    ( 2)( 12) 2 12

    sI

    s s s s s s

    Is s s s s s

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    14/56

    2 121

    2 122

    1

    2

    (15 14 ) ( ) ,

    (7 8.4 1.4 ) ( ) .

    336(90)( ) 15 ,

    42(48)

    15(42)( ) 7

    90

    t t

    t t

    i e e u t A

    i e e u t A

    i A

    i A

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    15/56

    Thevenins Theorem

    Use the Thevenins theorem to find vc(t)

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    16/56

    Thevenins Theorem (cont.)

    4

    4

    (480 / )(0.002 ) 480

    20 0.002 10

    0.002 (20) 80( 7500)6020 0.002 10

    Th

    Th

    s sV

    s s

    s sZs s

    IC= ?

    4

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    17/56

    4

    4 5

    2 6 2

    2

    5000 5000

    480 / ( 10 )

    [80( 7500) / ( 10 )] [(2 10 ) / ]

    6 6

    10000 25 10 ( 5000)

    30000 6

    5000( 5000)

    ( ) ( 30000 6 ) ( )

    C

    C

    C

    t tc

    sI

    s s s

    s sIs s s

    I ss

    i t te e u t A

    5 5

    2 2

    5 5000

    1 2 10 6 12 10

    ( 5000) ( 5000)

    ( ) 12 10 ( )

    c C

    tc

    sV I

    sC s s s

    v t te u t V

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    18/56

    MUTUAL INDUCTANCE EXAMPLE

    1 260(0 ) 5 , (0 ) 012

    i A i

    i2(t)=?

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    19/56

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    20/56

    MUTUAL INDUCTANCE EXAMPLE

    Using the T-equivalent of theinductors, and s-domainequivalent gives the following circuit

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    21/56

    2

    3

    2

    2.5 1.25 1.25( 1)( 3) 1 3

    ( ) 1.25( ) ( )t t

    Is s s s

    i t e e u t A

    1 2

    1 2

    (3 2 ) 2 10

    2 (12 8 ) 10

    s I sI

    sI s I

    2

    1 1 2

    10 2 2 (12 8 ) 103 2

    sII sI s I

    s

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    22/56

    THE TRANSFER FUNCTION

    The transfer function is defined as the ratio of the Laplace

    transform of the output to the Laplace transform of the inputwhen all the initial conditions are zero.

    ( )( )( )

    Y sH sX s Y(s) is the Laplace transform of the output,X(s) is the Laplace transform of the input.

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    23/56

    THE TRANSFER FUNCTION (cont.)

    1

    2

    22

    ( ) 1( )

    ( ) 1 /

    1

    ( ) 1( )

    ( ) 1

    g

    g

    I sH s

    V s R sL sC

    sC

    s LC RCs

    V sH s

    V s s LC RCs

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    24/56

    EXAMPLE

    Find the transfer function V0/Vg anddetermine the poles and zeros of H(s).

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    25/56

    EXAMPLE

    0 0 06

    0 2 6

    02 6

    1

    2

    1

    01000 250 0.05 10

    1000( 5000)

    6000 25 10

    1000( 5000)( )

    6000 25 10

    3000 4000,

    3000 4000

    5000

    g

    g

    g

    V V V V s

    s

    s

    V Vs s

    V sH s

    V s s

    p j

    p j

    z

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    26/56

    Assume that vg(t)=50tu(t). Find v0(t). Identify thetransient and steady-state components of v0(t).

    0 2 6 2

    *

    31 1 22

    4 0 41 2 3

    4 3000 00

    4

    1000( 5000) 50( ) ( ) ( )

    ( 6000 25 10 )

    3000 4000 3000 4000

    5 5 10 79.7 , 10, 4 10

    [10 5 10 cos(4000 79.7 )

    10 4 10 ] ( )

    g

    t

    sV s H s V s

    s s s

    KK K Ks j s j ss

    K K K

    v e t

    t u t V

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    27/56

    The transient component is generated by the poles of

    the transfer function and it is:

    4 3000 010 5 10 cos(4000 79.7 )te t The steady-state components are generated by the polesof the driving function (input):

    4(10 4 10 ) ( )t u t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    28/56

    Time Invariant Systems

    If the input delayed by a seconds, then

    1( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    as

    as

    L x t a u t a e X s

    Y s H s X s e

    y t L Y s y t a u t a

    Therefore, delaying the input by a seconds simply delays theresponse function by a seconds. A circuit that exhibits thischaracteristic is said to be time invariant.

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    29/56

    Impulse Response

    If a unit impulse source drives the circuit, the response of thecircuit equals the inverse transform of the transfer function.

    1( ) ( ) ( ) 1

    ( ) ( )

    ( ) ( ) ( )

    x t t X s

    Y s H s

    y t L H s h t

    Note that this is also the natural response of the circuitbecause the application of an impulsive source is equivalentto instantaneously storing energy in the circuit.

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    30/56

    CONVOLUTION INTEGRAL

    ( ) ( )x t t

    ( ) ( )y t h t

    y(t)

    a b t

    x(t)

    a bt

    Circuit N is linear with no initial stored energy. If we know theform of x(t), then how is y(t) described? To answer thisquestion, we need to know something about N. Suppose we knowthe impulse response of the system.

    Nx(t) y(t)

    Nx(t) y(t)(1)

    t t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    31/56

    ( )t ( )h t

    Instead of applying the unit impulse at t=0, let us suppose that it isapplied at t=. The only change in the output is a time delay.

    N

    Next, suppose that the unit impulse has some strength other thanunity. Let the strength be equal to the value of x(t) when t= . Sincethe circuit is linear, the response should be multiplied by the same

    constant x()

    ( ) ( )x t N ( ) ( )x h t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    32/56

    Now let us sum this latest input over all possible values of anduse the result as a forcing function for N. From the linearity, theresponse is the sum of the responses resulting from the use of all

    possible values of

    ( ) ( )x t d N ( ) ( )x h t d From the sifting property of the unit impulse, we see that the input is

    simply x(t)

    N ( ) ( )x h t d X(t)

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    33/56

    ( ) ( ) ( ) ( ) ( )y t x t z h z dz x t z h z dz

    ( ) ( )* ( )y t x t h t

    ( ) ( ) ( )y t x h t d

    ( ) ( )* ( ) ( ) ( ) ( ) ( )y t x t h t x z h t z dz x t z h z dz

    Our question is now answered. When x(t) is known, and h(t), theunit impulse response of N is known, the response is expressed by

    This important relation is known as the convolution integral. Itis often abbreviated by means of

    Where the asterisk is read convolved with. If we let z=t-,then d=-dz, and the expression for y(t) becomes

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    34/56

    ( ) ( )* ( ) ( ) ( ) ( ) ( )y t x t h t x z h t z dz x t z h z dz

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    35/56

    Convolution and Realizable Systems

    0( ) ( )* ( ) ( ) ( ) ( ) ( )ty t x t h t x z h t z dz x t z h z dz

    For a physically realizable system, the response of the systemcannot begin before the forcing function is applied. Since h(t)is the response of the system when the unit impulse is applied at t=0,h(t) cannot exist for t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    36/56

    EXAMPLE

    http://www.youtube.com/watch?v=MEDjw6VcDTY

    http://240p%20%20%20128%20kbit%20convolution%20examples%20_%20convolution%20integ.mp4/http://www.youtube.com/watch?v=MEDjw6VcDTYhttp://www.youtube.com/watch?v=MEDjw6VcDTYhttp://240p%20%20%20128%20kbit%20convolution%20examples%20_%20convolution%20integ.mp4/
  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    37/56

    EXAMPLE

    ( ) 2 ( )th t e u t

    0

    0

    ( ) ( ) ( 1)

    ( ) ( )* ( ) ( ) ( )

    [ ( ) ( 1)][2 ( )]z

    x t u t u t

    y t x t h t x t z h z dz

    u t z u t z e u z dz

    h(t)

    x(t)

    t

    y(t)

    1

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    38/56

    Graphical Method of Convolution

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    39/56

    0( ) 2 2(1 ) 0 1

    t z ty t e dz e t

    1( ) 2 2( 1) 1

    t z t

    ty t e dz e e t

    Since h(z) does not exist prior to t=0 and vi(t-z) does not existfor z>t, product of these functions has nonzero values only inthe interval of 0

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    40/56

    EXAMPLE

    Apply a unit-step function, x(t)=u(t), as the input to a system whoseimpulse response is h(t) and determine the corresponding outputy(t)=x(t)*h(t).

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    41/56

    h(t)=u(t)-2u(t-1)+u(t-2),

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    42/56

    0( ) 1 0 1

    ty t dz t t

    1 1

    0 10 1( ) 1 1 2 , 1 2

    t t t t

    tty t dz dz z z t t

    When t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    43/56

    1

    2 1( ) 1 1 0 2

    t t

    t ty t dz dz t Finally, when t>2, h(t-z) has slid far enough to the right so that itlies entirely to the right of z=0

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    44/56

    Convolution and the Laplace Transform

    1 2 1 2( )* ( ) ( ) ( )L f t f t L f f t d 1 2 1 20 0( )* ( ) [ ( ) ( ) ]stL f t f t e f f t dt d

    Let F1(s) and F2(s) be the Laplace transforms of f1(t) and f2(t),respectively. Now, consider the laplace transform of f1(t)*f2(t),

    Since we are dealing with the time functions that do not existprior to t=0-, the lower limit can be changed to 0-

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    45/56

    1 2 1 20 0( )

    1 20 0

    1 20 0

    1 20

    2 10

    1 2

    ( )* ( ) ( )[ ( ) ]

    ( )[ ( ) ]

    ( ) [ ( ) ]

    ( ) [ ( )]

    ( ) ( )

    ( ) ( )

    st

    s x

    s sx

    s

    s

    L f t f t f e f t dt d

    f e f x dx d

    f e e f x dx d

    f e F s d

    F s f e d

    F s F s

    f1() does not depend on t, and it can be moved outside the innerintegral

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    46/56

    STEADY-STATE SINUSOIDAL RESPONSE

    If the input of a circuit is a sinusoidal function ( ) cos( )x t A t

    2 2 2 2

    2 2

    2 2

    ( ) cos cos sin sin

    ( cos ) ( sin )( )

    cos sin )=

    cos sin )( ) ( )

    x t A t A t

    A s AX ss s

    A(s

    s

    A(sY s H s

    s

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    47/56

    The partial fraction expansion of Y(s) is

    *1 1( ) terms generated by the poles of H(s)

    K KY s

    s j s j

    If the poles of H(s) lie in the left half of the s plane, the correspondingtime-domain terms approach zero as t increases and they do notcontribute to the steady-state response. Thus only the first two terms

    determine the steady-state response.

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    48/56

    1

    ( ) ( cos sin )

    ( ) ( cos sin )

    2

    ( ) (cos sin ) 1

    ( )2 2

    s j

    j

    H s A sK

    s j

    H j A j

    j

    H j A j

    H j Ae

    ( )

    [ ( )]1

    ( ) ( )

    ( )2

    ( ) ( ) cos[ ( )]

    j

    j

    ss

    H j H j e

    AK H j e

    y t A H j t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    49/56

    EXAMPLE

    If the input is 120 cos(5000t+300)V, find the steady-state expression for v0

    2 6

    6 6

    0

    0 00

    0

    1000( 5000)( )

    6000 25 10

    1000(5000 5000)( 5000)25 10 5000(6000) 25 10

    1 1 245

    6 6

    120 2cos(5000 30 45 )

    6

    =20 2 cos(5000 15 )

    ss

    sH s

    s s

    jH jj

    j

    j

    v t

    t V

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    50/56

    THE IMPULSE FUNCTION

    IN CIRCUIT ANALYSIS

    The capacitor is charged to an initial voltageV0 at the time the switch is closed. Find theexpression for i(t) as R 0

    0 0

    1 2

    1 1 1

    1 2

    1 2

    ( ) ( ) ( )e

    V Vs R

    sC sC RC

    e

    I R s

    C CC

    C C

    /0( ) ( )et RCV

    i t e u tR

    As R decreases, the initial current (V0/R)increases and the time constant (RCe)decreases. Apparently i is approaching animpulse function as R approaches zero.

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    51/56

    The total area under the i versus t curve represents the total chargetransferred to C2 after the switch is closed.

    /000Area=

    et RC

    e

    V

    q e dt V C R

    Thus, as R approaches zero, the current approaches an impulse

    strength V0Ce. 0 ( )ei V C t

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    52/56

    Series Inductor Circuit

    Find v0. Note that opening the switch forcesan instantaneous change in the current L2.

    1 2(0 ) 10 , (0 ) 0i A i

    10000

    0

    0

    5

    0

    [( ) 30] 02 15 3 10

    40( 7.5) 12( 7.5)

    ( 5) 5

    60 1012

    5

    ( ) 12 ( ) (60 10 ) ( )

    s

    t

    VVs s

    s sV

    s s s

    Vs s

    v t t e u t V

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    53/56

    Does this solution make sense? To answer this question, first letus determine the expression for the current.

    100

    5

    ( ) 30 4 2

    5 25 5

    ( ) (4 2 ) ( )

    s

    t

    I

    s s s

    i t e u t A

    Before the switch is opened, current through L1 is 10A and in L2 is 0 A,

    after the switch is opened both currents are 6A. Then the current in L1changes instantaneously from 10 A to 6 A, while the current in L2 changesinstantaneously from 0 to 6 A. How can we verify that these instantaneousjumps in the inductor current make sense in terms of the physical behaviorof the circuit?

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    54/56

    Switching operation places two inductors in series. Any impulsive voltageappearing across the 3H inductor must be balanced by an impulsivevoltage across the 2H inductor. Faradays law states that the inducedvoltage is proportional to the change in flux linkagebefore switching

    After switching

    ( )d dtv

    1 1 2 2 3(10) 2(0) 30 Wb-turnsL i L i

    1 2( ) (0 ) 5 (0 )

    30(0 ) 6

    5

    L L i i

    i A

    Thus the solution agrees with the principle of the conservationof flux linkage.

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    55/56

    Impulsive Sources

    When the voltage source is applied, the initialenergy in the inductor is zero; therefore the initialcurrent is zero. There is no voltage drop across R,so the impulsive source appears directly across L

    000

    1 ( ) (0 )t Vi V x dx i AL L

    Thus, in an infinitesimal

    moment, the impulsive voltagesource has stored

    2 20 01 1

    2 2

    V Vw L J

    L L

    ( )0 ( )

    RL tVi e u t

    L

    Current in the circuit decays to

    zero in accordance with thenatural response of the circuit

  • 8/2/2019 Peretmuan 12 Laplace in Circuits

    56/56

    EXAMPLE

    100

    5

    0

    50

    50 30

    25 5

    12 4

    5

    ( ) (12 4) ( )

    60 60(15 2 ) 325

    ( ) 32 ( ) (60 60) ( )

    s

    t

    t

    Is

    s s

    i t e u t A

    V s Is s

    v t t e u t V

    Find i(t) and v0(t) for t>0