28
Phase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah , Jie Wang COMSOL Conference 2009, October 14 – 16, Milano INSTITUTE FOR MATERIALS RESEARCH II KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association www.kit.edu Presented at the COMSOL Conference 2009 Milan

Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Phase-field Modeling of Ferroelectric Materials

Benjamin Völker, Marc Kamlah, Jie Wang

COMSOL Conference 2009, October 14 – 16, Milano

INSTITUTE FOR MATERIALS RESEARCH II

KIT – University of the State of Baden-Württemberg andNational Large-scale Research Center of the Helmholtz Association www.kit.edu

Presented at the COMSOL Conference 2009 Milan

Page 2: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Contents

theory of phase-field modeling of ferroelectric materials

parameter identification in free energy densityparameter identification in free energy density

finite element implementation:

PDE formPDE form

weak form

periodic boundary conditions:

electrical

mechanical

domain configurations

intrinsic and extrinsic contributions to small signal properties

Institute for Materials Research II 2 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

Page 3: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Technical applications

- NEMS

Institute for Materials Research II 3 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

- NEMS - Memories

Page 4: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Ferroelectric materials

Institute for Materials Research II 4 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

Page 5: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Phase-field modeling

polarization as continuous order parameter

fluctuating at the scale of domain dimensions

Total Helmholtz Free Energy densitygy y

,

, ,0

( , , , )

1ˆ ( , ) ( )( )2

i i j ij i

ijkl i j k l ij i i i i i

P P D

G P P P D P D P

System Free Energy

0

, ,0

21ˆ ˆ( ) ( , ) ( )( )

2Lan em

ijkl i j k l i ij i i i i iG P P P P D P D P

( ( ) ( ))P P P dV System Free Energy

equilibrium condition for order parameter

,( ( ), ( ))i i k i j kv

P P x P x dV

ˆ 0P Mi

temporal and spatial evolution: relaxation towards equilibrium:

, ,

: 0ii i i j j

P MinP P P

( )P t

Institute for Materials Research II 5 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

( , ) i ki

P x tP

Page 6: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Boundary value problem

field equations

balance of momentum

G i l,ij j i ib u

D q

Gaussian law

time dependent Ginzburg-Landau eqn.

boundary conditions

,

, ,

i i

ijkl k l ij jji

D q

G P PP

boundary conditions

ijij tn or iumechanical:

electrical: iinD or

potential relations

ii

polarization: 0, jji nP or iP

and

kinematicsij

ij

i

i DE

1

Institute for Materials Research II 6 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

and ijjiij uu ,,21

jiE ,

Page 7: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Structure of Helmholtz Free Energy density

(I)

free energy contains crystallographic and boundary information:

(II)

(III)

(IV)

ε: mechanical strainD: dielectric displacementP: polarization (order parameter,

ti d i ll )

(I) exchange energy: allows formation of domain walls with finite thickness(II) non-convex energy surface minima at spontaneous polarization states (Landau energy)

(IV) continuous on domain walls)

(II) non convex energy surface, minima at spontaneous polarization states (Landau energy)(III) adjustment of material properties (electromechanical coupling, elastic properties of

spontaneous polarized states)(IV) energy stored within free space occupied by material

Institute for Materials Research II 7 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

Page 8: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Adjustment of free energy density

Phenomenological approach:Phenomenological approach:

– fit to first order phase transition– based on experimental observationsp– requires κ(TC), PS(TC), TC, T0

however: ab-initio calculations can‘t yield this information [Devonshire1954]

Gi b L d th

this project: virtual material development (BMBF WING, COMFEM)new approach needed for multiscale simulation chain

b i iti / t i ti

piezoelectric coefficients dijk

dielectric permittivity κij

mechanical stiffness Cfree energy parameters

α

Ginzburg-Landau-theoryab-initio / atomistic

Aim:development

fmechanical stiffness Cijkl

spontaneous strain εS

spontaneous polarization PS

domain wall energy (90°/180°) γ90/180

αijklmnqijklcijklGijkl

of a new

adjustmentmethod

Institute for Materials Research II 8 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

domain wall energy (90 /180 ) γ90/180

domain wall thickness (90°/180°) ξ90/180

method

Page 9: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Adjustment of free energyadjustment for PbTiO : <111>

ab-initio/atomistic

(input)phase-field (adjusted)

adjustment for PbTiO3:

<110>

<111>

PS [C/m²] 0,880 0,880

ε11S -7,388E-03 -7,388E-03

ε33S 4 209E-02 4 209E-02

<100>

ε33 4,209E-02 4,209E-02

κ11 53,7 53,7

κ33 16,91 16,9

Px

C11 [N/m²] 2,86E+11 2,86E+11

C12 [N/m²] 1,17E+11 1,17E+11

C44 [N/m²] 6,70E+10 6,70E+10Py

ξ90 [nm] 0,478 0,478

γ90 [mJ/m²] 64 63.8

ξ180 [nm] 0,390 0,390 adjustment completely with ab-initio/atomistic results

Institute for Materials Research II 9 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

γ180 [mJ/m²] 156 156results

method works fine for PbTiO3

Page 10: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Finite element implementation

electric enthalpy: Legendre transformation

, ,( , , , ) ( , , , )ij i i i j ij i i i j i ih E P P D P P D E

potential relations

, ,j j j j

h hD h h , , ,

mechanical strain-displacement relations and electric potential

ijij ij

i

i

DE

i iP P

, ,i j i jP P

primary nodal variables for finite element formulation, , , ,( , , , ) ( , , , )ij i i i j i j j i i jh E P P h u P P

u P

physical principle: minimize System Free Energy WRT for given

, ,i iu P

( )i kP x ( ), ( )ij k i kx D x

Institute for Materials Research II 10 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

y gy g( )i k ( ), ( )ij k i k

Page 11: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Implementation in COMSOL (1)

general PDE form in COMSOL ,Fudue jjtatta ,,,

ijtti bhu

)(

, , ,( , , , ,...)i i t j jk u u u u

ii

ijij

tti

qEh

,

,,

)(

)(

boundary conditions in COMSOL or

iij

jitjij P

hPhP

,,

, )(

G 0 Rboundary conditions in COMSOL orGn ii

ijij

tnh

or iumechanical:

0 R

electrical:

ii

nEh

or

l i ti P0h

Institute for Materials Research II 11 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

polarization: or iP0,

j

ji

nP

Page 12: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Implementation in COMSOL (2)

weak form in COMSOL

principle of irt al ork for phase field theor eq ilibri m states

,Γ Γ n i i i iF dV dA

/ 0P t principle of virtual work for phase-field theory, equilibrium states

,ijij i i i i i ijkl k l j iV S

h hD E P dV t u G P n P dAP x P

/ 0iP t

expressing by means of electric enthalpy

h h h h

,

ijj j jV Si j i jP x P

,,

ij i i i jVij i i i j

h h h hE P P dVE P P

h h h

formulation of complex analytical expression to be entered in COMSOL by

,j i j j iS

ij j i j

h h hn u n n P dAE P

Institute for Materials Research II 12 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

symbolic algebra software

Page 13: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Importance of boundary conditions

short circuited boundary:

monodomain is lo est energ

0

monodomain is lowest energy state

open circuited boundary conditions: 0i iD n

flux closure, vortex

in this activity: bulk material behavior, far from free surface

Institute for Materials Research II 13 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

periodic boundary conditions, “elimination“ of the boundary

Page 14: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Periodic boundary conditions (1)

4

Periodic boundary conditions (part 1):polarization, electric potential

1 3 2 4==Px

Py

Px

Py

1 3

y

Φ + Vx

y

Φ + Vy

y2

x

2

Institute for Materials Research II 14 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

Page 15: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

image boundary

Periodic boundary conditions (2)

Approach:1) define reference nodes2) define Sij

image boundary

initial boundaryinitial boundary

Institute for Materials Research II 15 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

Page 16: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

image boundary

Periodic boundary conditions (2)

Approach:1) define reference nodes2) define Sij

image boundary

3) apply Sij to all other nodes:initial boundaryinitial boundary

- “new” node on image boundary:

- corresponding node on initial boundary:

periodic BC: for all nodes on image boundary:

Institute for Materials Research II 16 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

only one DOF left

Page 17: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

image boundary

Periodic boundary conditions (2)

Approach:1) define reference nodes2) define Sij

image boundary

3) apply Sij to all other nodes:initial boundaryinitial boundary

- “new” node on image boundary:

- corresponding node on initial boundary:

P blperiodic BC: for all nodes on image boundary:

Problem:- only one reference node- may coincide with domain wall

improvement: averaging over boundary p g g y integration of displacement over boundary

Institute for Materials Research II 17 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

only one DOF left integration coupling variables

Page 18: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Periodic boundary conditions (2)

Ill t ti f i di b d iApproach:1) define reference nodes2) define Sij

Illustration of periodic boundaries:deformation plot (ux,uy) of domain structurecolor coding / arrows: polarization Py

3) apply Sij to all other nodes:

- “new” node on image boundary:

- corresponding node on initial boundary:

P blProblem:- only one reference node- may coincide with domain wall

improvement: averaging over boundary p g g y integration of displacement over boundary

Institute for Materials Research II 18 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

integration coupling variables

Page 19: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Mechanically predefined configurations

stable (90°) configuration: pinning mechanical displacement ui on corners of geometry

xx example: equal domain fractions

periodic boundary conditions

2xx yy

xu x

2xx yy

yu y

- periodic boundary conditions- minimum energy: 90°-domains

2

Py=Pspontx x00

x

y

uu

spon

yP P

0yy

Institute for Materials Research II 19 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

0xx

Page 20: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Mechanically predefined configurations

- model size: 16 nm x 24 nm

Institute for Materials Research II 20 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

- stable configuration with 3 domains

Page 21: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Mechanically predefined configurations

- model size: 16 nm x 24 nm- stable configuration with 3 domains

Institute for Materials Research II 21 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

stab e co gu at o t 3 do a s- different initial condition

Page 22: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Mechanically predefined configurations

- model size: 20 nm x 20 nm

Institute for Materials Research II 22 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

- different domain ratio

Page 23: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

3D layer model (plain stress conditions)

x/y – directionas 2D-model:- periodic for Pi, ui, Φ

x

z z – direction- strain uzz free! (can move..)- Pz=0

x

y

model size: 16 nm x 24 nm(max model size: ~20 nm x 30 nm)

Institute for Materials Research II 23 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

(max. model size: ~20 nm x 30 nm)

Page 24: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Applied external loads

applied electric field

user defined angle α

applied stress

user defined angle α

tyy

ttyx

yPy α

Py α

x

Institute for Materials Research II 24 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

xR(α) * t * R(α)T

Page 25: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Contribution of reversible domain wall motion

0.85

0.90

13,5 0

0.75

0.80

Dx [C

/m²]

158 0

0.7108

0.890

0.00E+000 1.00E+008 2.00E+008 3.00E+008 4.00E+008

0.70

Ex [V/m]

0.7100

0.7102

0.7104

0.7106 C/m

²] x = 158 0 0.875

0.880

0.885

C/m

²]

x = 13,48 0

0.7092

0.7094

0.7096

0.7098

Dx [C

0.860

0.865

0.870Dx [C

Institute for Materials Research II 25 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

0 1x106 2x106 3x106 4x106

Ex [V/m]3.0x108 3.2x108 3.4x108 3.6x108 3.8x108 4.0x108

Ex [V/m]

Page 26: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Modeling defects in the phase-field model 1 Charged defect

bd i ( l ) t

1. Charged defect

subdomain (volume) terms boundary terms

2. “Fixed” polarization

+e.g.:Py = -Pdefect

approach for defects:- create geometric “point”

Throughout simulation:defect properties: constant

- create geometric point- define defect via boundary conditions- mesh geometry- solve

defects cannot switchdefects cannot move

Institute for Materials Research II 26 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

Page 27: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Investigation of 90° domain stacks

From PFM experiments: typical domain width ~100 200 nm [Fernandéz/Schneider TUHH]

PZT Zr/Ti 50/50 Nb 1 mol%

Example: 90°- stack, electrical loading (Y-direction)Domain wall (DW): 1) artificially completely fixed2) f

From PFM-experiments: typical domain width ~100-200 nm [Fernandéz/Schneider,TUHH]

2) free3) pinned by charged (line) defect

0.05

0.06

1) free DW 2) charge pinned DW 3) fixed DW

1 5 µm

Phase field model: 90° domain stack

0.02

0.03

0.04

Dy [C

/m²]

1) domain wall motion intrinsic + extrinsic

10 µm1.5 µm

200 nm

50 nm

0 0 2 0 106 4 0 106 6 0 106 8 0 106 1 0 107

0.00

0.01

D

3) intrinsic, domain wall fixed

2) domain wall bending

y

Py0-Pyspont Py

spont

- 2D, ~450k degrees of freedom- periodic boundary conditions

/

intrinsic/ extrinsic piezoelectric effect(reversible) DW moving / bending

0.0 2.0x106 4.0x106 6.0x106 8.0x106 1.0x107

applied electric field Ey [V/m]

Institute for Materials Research II 27 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

x- electrical / mechanical loading

Page 28: Phase-field Modeling of Ferroelectric MaterialsPhase-field Modeling of Ferroelectric Materials Benjamin Völker, Marc Kamlah, Jie Wang COMSOL Conference 2009, October 14 – 16, Milano

Conclusionstheory of phase-field modeling of ferroelectric materials

parameter identification in free energy density

finite element implementationfinite element implementation

periodic boundary conditions

domain configurationsdomain configurations

intrinsic and extrinsic contributions to small signal properties

COMSOL: a powerful tool for nowadays mathematical physics

Acknowledgementsproject COMFEM: Federal Ministry of Education and Research, programme WING

Institute for Materials Research II 28 25.09.2009 B. Völker, M. Kamlah, J. Wang:

Phase-field Modeling of Ferroelectric Materials

invitation to this conference: COMSOL