17
PHY 102: Waves & Quanta Topic 1 Oscillations ohn Cockburn (j.cockburn@... Room E15)

PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

  • Upload
    ashley

  • View
    42

  • Download
    0

Embed Size (px)

DESCRIPTION

PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15). Simple Harmonic Motion revision Displacement, velocity and acceleration in SHM Energy in SHM Damped harmonic motion Forced Oscillations Resonance. Simple Harmonic Motion. - PowerPoint PPT Presentation

Citation preview

Page 1: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

PHY 102: Waves & Quanta

Topic 1

Oscillations

John Cockburn (j.cockburn@... Room E15)

Page 2: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

•Simple Harmonic Motion revision

•Displacement, velocity and acceleration in SHM

•Energy in SHM

•Damped harmonic motion

•Forced Oscillations

•Resonance

Page 3: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Simple Harmonic Motion

Object (eg mass on a spring, pendulum bob) experiences restoring force F, directed towards the equilibrium position, proportional in magnitude to the displacement from equilibrium:

m

k

xdt

xd

kxdt

xdm

kxF

22

2

2

2

Solution:

x(t) =

Page 4: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Example: Simple Pendulum (small amplitude)

(NOT SHM for large amplitude)

Page 5: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

SHM and Circular motion

Light

Displacement of oscillating object = projection on x-axis of object undergoing circular motion

y(t) = Acos

For rotational motion with angular frequency , displacement at time t:

y(t) = Acos(t + )

= angular displacement at t=0 (phase constant)A = amplitude of oscillation (= radius of circle)

Page 6: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Velocity and acceleration in SHM

)( :onAccelerati

)( :Velocity

)cos()( :ntDisplaceme

2

2

dt

xdta

dt

dxtv

tAtx

Page 7: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Velocity and acceleration in SHM

)cos()( :onAccelerati

)sin( )( :Velocity

)cos()( :ntDisplaceme

22

2

tAdt

xdta

tAdt

dxtv

tAtx

Page 8: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Energy in Simple Harmonic Motion

Potential energy:

Work done to stretch spring by an amount dx = Fdx = -kxdx

Total work done to stretch spring to displacement x:

energy potential storedW

So, at any time t, the potential energy of the oscillator is given by:

PE

Page 9: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Energy in Simple Harmonic Motion

Kinetic Energy:

At any time t, kinetic energy given by:

22

2

1

2

1

dt

dxmmvKE

E

Total Energy at time t = KE + PE:

Page 10: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Energy in Simple Harmonic Motion

Conclusions

Total energy in SHM is constant

222

2

1

2

1kAAmE

Throughout oscillation, KE continually being transformed into PE and vice versa, but TOTAL ENERGY remains constant

Page 11: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Energy in Simple Harmonic Motion

Page 12: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Damped Oscillations

In most “real life” situations, oscillations are always damped (air, fluid resistance etc)

In this case, amplitude of oscillation is not constant, but decays with time..(www.scar.utoronto.ca/~pat/fun/JAVA/dho/dho.html)

Page 13: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Damped Oscillations

For damped oscillations, simplest case is when the damping force is proportional to the velocity of the oscillating object

In this case, amplitude decays exponentially:

)'cos()( )2( tAetx tmb

Equation of motion: dt

dxbkx

dt

xdm

2

2

Page 14: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Damped Oscillations

NB: in addition to time dependent amplitude, the damped oscillator also has modified frequency:

2

22

02

2

44'

m

b

m

b

m

k

Light Damping(small b/m)

Heavy Damping(large b/m)

Critical Damping

2

2

4m

b

m

k

Page 15: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Forced Oscillations & Resonance

If we apply a periodically varying driving force to an oscillator (rather than just leaving it to vibrate on its own) we have a FORCED OSCILLATION

Free Oscillation with damping:

02

2

kxdt

dxb

dt

xdm

tmbeA )2(0 Amplitude

Forced Oscillation with damping:

tFkxdt

dxb

dt

xdm Dcos02

2

2

22

02

2

44'

m

b

m

b

m

k Frequency

2D

222D

0

m-k

F Amplitude

b

MAXIMUM AMPLITUDE WHEN DENOMINATOR MINIMISED:k = mD

2 ie when driving frequency = natural frequency of the UNDAMPED oscillator

m

kD 0

Page 16: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

Forced Oscillations & Resonance

When driving frequency = natural frequency of oscillator, amplitude is maximum.

We say the system is in RESONANCE

“Sharpness” of resonance peak described by quality factor (Q)

High Q = sharp resonance

Damping reduces Q

Page 17: PHY 102: Waves & Quanta Topic 1 Oscillations John Cockburn (j.cockburn@... Room E15)

The Millennium Bridge