16
Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 11 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 24-Jan-2018

PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

  • Upload
    others

  • View
    31

  • Download
    1

Embed Size (px)

Citation preview

Page 1: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Semester II, 2017-18 Department of Physics, IIT Kanpur

PHY103A: Lecture # 11

(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 24-Jan-2018

Page 2: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Notes

β€’ No Class on Friday; No office hour.

2

β€’ HW # 4 has been posted β€’ Solutions to HW # 5 have been posted

Page 3: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Summary of Lecture # 10:

The potential in the region above the infinite grounded conducting plane?

V 𝐫𝐫 =π‘žπ‘ž

4πœ‹πœ‹πœ–πœ–01

x2 + y2 + (z βˆ’ d)2βˆ’

1x2 + y2 + (z + d)2

The potential outside the grounded conducting sphere?

V 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žr +

π‘žπ‘žβ€²rβ€²

𝑏𝑏 =𝑅𝑅2

π‘Žπ‘Ž π‘žπ‘žβ€² = βˆ’π‘…π‘…π‘Žπ‘Žπ‘žπ‘ž

3

Page 4: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Question:

4

The potential in the region above the infinite grounded conducting plane?

V 𝐫𝐫 =π‘žπ‘ž

4πœ‹πœ‹πœ–πœ–01

x2 + y2 + (z βˆ’ d)2βˆ’

1x2 + y2 + (z + d)2

Q: Is kV 𝐫𝐫 also a solution, where k is a constant?

Ans: No

Corollary to First Uniqueness Theorem: The potential in a volume is uniquely determined if (a) the charge desity throughout the region and (b) the value of V at all boundaries, are specified.

𝛁𝛁2V1 = βˆ’πœŒπœŒπœ–πœ–0

In this case one has to satisfy the Poisson’s equation. But kV 𝐫𝐫 does not satisfy it.

Only when 𝜌𝜌 = 0 (everywhere), kV 𝐫𝐫 can be a solution as well Exception: But then since in this case V 𝐫𝐫 = 𝟎𝟎, it is a trivial solution.

Page 5: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

5

Multipole Expansion (Potentials at large distances) β€’ What is the potential due to a point charge (monopole)?

V 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Ÿπ‘Ÿ

β€’ What is the potential due to a dipole at large distance?

V 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘ž

r+ βˆ’

π‘žπ‘žrβˆ’

rΒ±2 = π‘Ÿπ‘Ÿ2 +

𝑑𝑑2

2

βˆ“ π‘Ÿπ‘Ÿπ‘‘π‘‘cosπœƒπœƒ

β‰ˆ π‘Ÿπ‘Ÿ2 1 βˆ“π‘‘π‘‘π‘Ÿπ‘Ÿ

cosπœƒπœƒ

for π‘Ÿπ‘Ÿ ≫ 𝑑𝑑, and using binomial expansion 1rΒ±

=

(for π‘Ÿπ‘Ÿ ≫ 𝑑𝑑)

1r+βˆ’

1rβˆ’

=

V 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘‘π‘‘cosπœƒπœƒ π‘Ÿπ‘Ÿ2

(goes like 𝟏𝟏/𝒓𝒓)

(goes like 𝟏𝟏/π’“π’“πŸπŸ at large 𝒓𝒓)

= π‘Ÿπ‘Ÿ2 1 βˆ“π‘‘π‘‘π‘Ÿπ‘Ÿ

cosπœƒπœƒ +𝑑𝑑2

4π‘Ÿπ‘Ÿ2

β‰ˆ1π‘Ÿπ‘Ÿ

1 ±𝑑𝑑2π‘Ÿπ‘Ÿ

cosπœƒπœƒ

So, π‘‘π‘‘π‘Ÿπ‘Ÿ2

cosπœƒπœƒ 1π‘Ÿπ‘Ÿ

1 βˆ“π‘‘π‘‘π‘Ÿπ‘Ÿ

cosπœƒπœƒβˆ’12

Page 6: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

6

Multipole Expansion (Potentials at large distances)

β€’ What is the potential due to a quadrupole at large distance?

(goes like 𝟏𝟏/π’“π’“πŸ‘πŸ‘ at large 𝒓𝒓)

β€’ What is the potential due to a octopole at large distance?

(goes like 𝟏𝟏/π’“π’“πŸ’πŸ’ at large 𝒓𝒓)

Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in terms of the number of charges.

Note 2: The dipole potential need not be produced by a two-charge system only . A general 𝑛𝑛-charge system can have any multipole contribution.

Page 7: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

7

Multipole Expansion (Potentials at large distances) β€’ What is the potential due to a

localized charge distribution?

V(𝐫𝐫) =1

4πœ‹πœ‹πœ–πœ–0οΏ½π‘‘π‘‘π‘žπ‘žr =

14πœ‹πœ‹πœ–πœ–0

�𝜌𝜌(𝐫𝐫′)

r π‘‘π‘‘πœπœβ€²

Using the cosine rule,

r2 = π‘Ÿπ‘Ÿ2 + π‘Ÿπ‘Ÿβ€²2 βˆ’ 2π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿβ€²cos𝛼𝛼

r2 = π‘Ÿπ‘Ÿ2 1 +π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

2

βˆ’ 2π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿcos𝛼𝛼

Define: πœ–πœ– β‰‘π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿβˆ’ 2cos𝛼𝛼 r =

1r

=

1r

=1π‘Ÿπ‘Ÿ

1 βˆ’12πœ–πœ– +

38πœ–πœ–2 βˆ’

516

πœ–πœ–3 + β‹― (using binomial expansion)

So,

Or,

Source coordinates: (π‘Ÿπ‘Ÿβ€²,πœƒπœƒβ€²,πœ™πœ™β€²) Observation point coordinates: (π‘Ÿπ‘Ÿ,πœƒπœƒ,πœ™πœ™) Angle between 𝐫𝐫 and 𝐫𝐫′: 𝛼𝛼 r = π‘Ÿπ‘Ÿ 1 +

π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿβˆ’ 2cos𝛼𝛼

1π‘Ÿπ‘Ÿ

1 + πœ–πœ– βˆ’1/2

π‘Ÿπ‘Ÿ 1 + πœ–πœ–

Page 8: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Multipole Expansion (Potentials at large distances)

1r

=1π‘Ÿπ‘Ÿ

1 βˆ’12πœ–πœ– +

38πœ–πœ–2 βˆ’

516

πœ–πœ–3 + β‹―

=1π‘Ÿπ‘Ÿ 1 βˆ’

12

π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ βˆ’ 2cos𝛼𝛼 +38

π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

2 π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ βˆ’ 2cos𝛼𝛼2

βˆ’5

16π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

3 π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ βˆ’ 2cos𝛼𝛼3

+ β‹―

=1π‘Ÿπ‘Ÿ 1 +

π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ cos𝛼𝛼 +π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

2

3cos2𝛼𝛼 βˆ’ 1 /2 βˆ’π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

3

5cos3𝛼𝛼 βˆ’ 3cos𝛼𝛼 /2 + β‹―

=1π‘Ÿπ‘Ÿ οΏ½

π‘Ÿπ‘Ÿβ€²

π‘Ÿπ‘Ÿ

π‘›π‘›βˆž

𝑛𝑛=0

𝑃𝑃𝑛𝑛(cos𝛼𝛼)

V(𝐫𝐫) 8

=1

4πœ‹πœ‹πœ–πœ–0οΏ½

1π‘Ÿπ‘Ÿ 𝑛𝑛+1

∞

𝑛𝑛=0

οΏ½ π‘Ÿπ‘Ÿβ€² 𝑛𝑛 𝑃𝑃𝑛𝑛(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€² =1

4πœ‹πœ‹πœ–πœ–0�𝜌𝜌(𝐫𝐫′)

r π‘‘π‘‘πœπœβ€²

β€’ What is the potential due to a localized charge distribution?

V(𝐫𝐫) =1

4πœ‹πœ‹πœ–πœ–0οΏ½π‘‘π‘‘π‘žπ‘žr =

14πœ‹πœ‹πœ–πœ–0

�𝜌𝜌(𝐫𝐫′)

r π‘‘π‘‘πœπœβ€²

𝑃𝑃𝑛𝑛(cos𝛼𝛼) are Legendre polynomials

Page 9: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

V(𝐫𝐫) =1

4πœ‹πœ‹πœ–πœ–0οΏ½

1π‘Ÿπ‘Ÿ 𝑛𝑛+1

∞

𝑛𝑛=0

οΏ½ π‘Ÿπ‘Ÿβ€² 𝑛𝑛 𝑃𝑃𝑛𝑛(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

Multipole Expansion of 𝐕𝐕(𝐫𝐫)

Monopole potential ( 1/π‘Ÿπ‘Ÿ dependence)

Dipole potential ( 1/π‘Ÿπ‘Ÿ2 dependence)

Quadrupole potential ( 1/π‘Ÿπ‘Ÿ3 dependence)

9

Multipole Expansion (Potentials at large distances) β€’ What is the potential due to a

localized charge distribution?

V(𝐫𝐫) =1

4πœ‹πœ‹πœ–πœ–0οΏ½π‘‘π‘‘π‘žπ‘žr =

14πœ‹πœ‹πœ–πœ–0

�𝜌𝜌(𝐫𝐫′)

r π‘‘π‘‘πœπœβ€²

=1

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘ŸοΏ½πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€² +

14πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ2

οΏ½ π‘Ÿπ‘Ÿβ€²(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€² +1

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ3οΏ½ π‘Ÿπ‘Ÿβ€² 2 3

2 cos2𝛼𝛼 βˆ’12 𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

+β‹―

Page 10: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Multipole Expansion (Few comments)

β€’ More terms can be added if greater accuracy is required

β€’ It is an exact expression, not an approximation.

β€’ At large 𝒓𝒓, the potential can be approximated by the first non-zero term.

β€’ A particular term in the expansion is defined by its 𝒓𝒓 dependence

10

+1

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ2οΏ½ π‘Ÿπ‘Ÿβ€²(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€² +

14πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ3

οΏ½ π‘Ÿπ‘Ÿβ€² 2 32

cos2𝛼𝛼 βˆ’12

𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

+β‹―

V 𝐫𝐫

=1

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘ŸοΏ½πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

Monopole potential ( 1/π‘Ÿπ‘Ÿ dependence)

Dipole potential ( 1/π‘Ÿπ‘Ÿ2 dependence)

Quadrupole potential ( 1/π‘Ÿπ‘Ÿ3 dependence)

Page 11: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Questions 1:

Q: In this following configuration, is the β€œlarge 𝐫𝐫” limit valid, since the source dimensions are much smaller than 𝐫𝐫?

Ans: No. The β€œlarge 𝐫𝐫” limit essentially mean 𝐫𝐫 ≫ |𝐫𝐫′|. In majority of the situations, the charge distribution is centered at the origin and therefore the β€œlarge 𝐫𝐫” limit is the same as source dimension being smaller than 𝐫𝐫.

11

Page 12: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Vmono 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘ŸοΏ½πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

Monopole term:

=1

4πœ‹πœ‹πœ–πœ–0π‘„π‘„π‘Ÿπ‘Ÿ

β€’ 𝑄𝑄 = ∫𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€² is the total charge β€’ If 𝑄𝑄 = 0, monopole term is zero. β€’ For a collection of point charges

Dipole term:

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘Ÿ2οΏ½ π‘Ÿπ‘Ÿβ€²(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

𝛼𝛼 is the angle between 𝐫𝐫 and 𝐫𝐫′.

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘Ÿ2𝐫𝐫� β‹… οΏ½ π«π«β€²πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

β€’ 𝐩𝐩 ≑ ∫ π«π«β€²πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€² is called the dipole moment of a charge distribution

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0𝐩𝐩 β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

β€’ If 𝐩𝐩 = 0, dipole term is zero.

β€’ For a collection of point charges.

Multipole Expansion (Monopole and Dipole terms)

𝑄𝑄 = οΏ½π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

𝐩𝐩 = οΏ½π«π«π’π’β€²π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

So, π‘Ÿπ‘Ÿβ€² cos𝛼𝛼 = 𝐫𝐫� β‹… 𝐫𝐫′

12

Page 13: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Monopole term:

Example: A three-charge system

𝑄𝑄 = οΏ½π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

= βˆ’π‘žπ‘ž

𝐩𝐩 = οΏ½π«π«π’π’β€²π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

= π‘žπ‘žπ‘Žπ‘Ž 𝒛𝒛� + βˆ’π‘žπ‘žπ‘Žπ‘Ž βˆ’ π‘žπ‘ž βˆ’π‘Žπ‘Ž π’šπ’šοΏ½ = π‘žπ‘žπ‘Žπ‘Ž 𝒛𝒛�

Therefore the system will have both monopole and dipole contributions 13

Multipole Expansion (Monopole and Dipole terms)

Dipole term:

β†’1

4πœ‹πœ‹πœ–πœ–0𝐩𝐩 β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

𝑄𝑄 = οΏ½π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

𝐩𝐩 = οΏ½π«π«π’π’β€²π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

Vmono 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘ŸοΏ½πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€² β†’

14πœ‹πœ‹πœ–πœ–0

π‘„π‘„π‘Ÿπ‘Ÿ

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘Ÿ2οΏ½ π‘Ÿπ‘Ÿβ€²(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

(for point charges)

(for point charges)

Page 14: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Monopole term:

Dipole term:

β†’1

4πœ‹πœ‹πœ–πœ–0𝐩𝐩 β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

𝑄𝑄 = οΏ½π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

𝐩𝐩 = οΏ½π«π«π’π’β€²π‘žπ‘žπ‘–π‘–

𝑛𝑛

𝑖𝑖=1

14

Multipole Expansion (Monopole and Dipole terms)

Vmono 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘ŸοΏ½πœŒπœŒ 𝐫𝐫′ π‘‘π‘‘πœπœβ€² β†’

14πœ‹πœ‹πœ–πœ–0

π‘„π‘„π‘Ÿπ‘Ÿ

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–01π‘Ÿπ‘Ÿ2οΏ½ π‘Ÿπ‘Ÿβ€²(cos𝛼𝛼)𝜌𝜌 𝐫𝐫′ π‘‘π‘‘πœπœβ€²

Example: Origin of Coordinates

𝑄𝑄 = π‘žπ‘ž

𝐩𝐩 = 0

Vmono 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Ÿπ‘Ÿ

Vdip 𝐫𝐫 = 0

𝑄𝑄 = π‘žπ‘ž

𝐩𝐩 = π‘žπ‘žπ‘‘π‘‘π’šπ’šοΏ½

Vmono 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Ÿπ‘Ÿβ‰ 

14πœ‹πœ‹πœ–πœ–0

π‘žπ‘žr

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0𝐩𝐩 β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

(for point charges)

(for point charges)

Page 15: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

Questions 2:

𝑄𝑄 = π‘žπ‘ž

𝐩𝐩 = π‘žπ‘žπ‘‘π‘‘π’šπ’šοΏ½

Vmono 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0π‘žπ‘žπ‘Ÿπ‘Ÿβ‰ 

14πœ‹πœ‹πœ–πœ–0

π‘žπ‘žr

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0𝐩𝐩 β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

Q: Why not calculate the potential directly ??

Ans: Yes, that is what should be done. For a point charge, we don’t need a multipole expansion to find the potential. This is only for illustrating the connection.

15

Page 16: PHY103A: Lecture # 11home.iitk.ac.in/~akjha/PHY103_Notes_HW_Solutions/PHY103...Β Β· 2018-12-18Β Β· Note1: Multipole terms are defined in terms of their 𝒓𝒓 dependence, not in

The electric field of pure dipole ( 𝑸𝑸 = 𝟎𝟎 )

Vdip 𝐫𝐫 =1

4πœ‹πœ‹πœ–πœ–0𝐩𝐩 β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

=1

4πœ‹πœ‹πœ–πœ–0𝑝𝑝𝐳𝐳� β‹… π«π«οΏ½π‘Ÿπ‘Ÿ2

=1

4πœ‹πœ‹πœ–πœ–0𝑝𝑝cosπœƒπœƒπ‘Ÿπ‘Ÿ2

𝐄𝐄 𝐫𝐫 = βˆ’π›π›V

πΈπΈπ‘Ÿπ‘Ÿ = βˆ’πœ•πœ•πœ•πœ•πœ•πœ•π‘Ÿπ‘Ÿ

=2𝑝𝑝cosπœƒπœƒ4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ3

πΈπΈπœƒπœƒ = βˆ’1π‘Ÿπ‘Ÿπœ•πœ•πœ•πœ•πœ•πœ•πœƒπœƒ

=𝑝𝑝sinπœƒπœƒ4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ3

πΈπΈπœ™πœ™ = βˆ’1

π‘Ÿπ‘Ÿsinπœƒπœƒπœ•πœ•πœ•πœ•πœ•πœ•πœ™πœ™

= 0

𝐄𝐄dip 𝐫𝐫 =𝑝𝑝

4πœ‹πœ‹πœ–πœ–0π‘Ÿπ‘Ÿ3(2cosπœƒπœƒ 𝐫𝐫� + sinπœƒπœƒ οΏ½Μ‚οΏ½πœƒ)

16

𝑄𝑄 = 0 Assume 𝐩𝐩 = 𝑝𝑝𝐳𝐳� 𝐩𝐩 β‰  0 And