16
PHYS 2300 and 2305: General Physics I and II Formulas Chapter 1 Chapter 2 Trig Formulas sin = Opposite Hypotenuse = sin โˆ’1 ( Opposite Hypotenuse ) cos = Adjacent Hypotenuse = cos โˆ’1 ( Adjacent Hypotenuse ) tan = Oppostie Adjacent = tan โˆ’1 ( Oppostie Adjacent ) 2 = 2 + 2 Velocity Average Velocity = = โˆ†ฬ… โˆ† = โˆ† ฬ… โˆ† 2.2 Average Speed = 2.1 Instantaneous Velocity = lim โˆ†โ†’0 โˆ† โˆ† 2.3 Vectors Vector Addition by Components + = Where = + = + Then to find use 2 = 2 + 2 Acceleration Average Acceleration = โˆ† โˆ† 2.4 Instantaneous Acceleration = lim โˆ†โ†’0 โˆ† โˆ† 2.5 Motion of a particle with constant acceleration = 0 + 2.4 = 1 2 ( 0 + ) or = 1 2 ( 0 + ) 2.7 = 0 + 1 2 2 Or = 0 + 1 2 2 2.8 2 = 0 2 + 2 or 2 = 0 2 + 2 2.9

PHYS 2300 and 2305: General Physics I and II Formulas

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

PHYS 2300 and 2305: General Physics I and II Formulas

Chapter 1

Chapter 2

Trig Formulas

sin ๐œƒ =Opposite

Hypotenuse ๐œƒ = sinโˆ’1 (

Opposite

Hypotenuse )

cos ๐œƒ =Adjacent

Hypotenuse ๐œƒ = cosโˆ’1 (

Adjacent

Hypotenuse )

tan ๐œƒ =Oppostie

Adjacent ๐œƒ = tanโˆ’1 (

Oppostie

Adjacent)

๐‘Ž2 = ๐‘2 + ๐‘2

Velocity

Average Velocity ๐‘ฃ =๐‘‘๐‘–๐‘ ๐‘๐‘™๐‘Ž๐‘๐‘’๐‘š๐‘’๐‘›๐‘ก

๐‘ก๐‘–๐‘š๐‘’=

โˆ†๏ฟฝ๏ฟฝ

โˆ†๐‘ก ๐‘œ๐‘Ÿ ๐‘ฃ =

โˆ†๏ฟฝ๏ฟฝ

โˆ†๐‘ก 2.2

Average Speed ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ ๐‘ ๐‘๐‘’๐‘’๐‘‘ =๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’

๐‘ก๐‘–๐‘š๐‘’ 2.1

Instantaneous Velocity ๐‘ฃ = limโˆ†๐‘กโ†’0

โˆ†๏ฟฝ๏ฟฝ

โˆ†๐‘ก 2.3

Vectors

Vector Addition by Components

๐ด + ๏ฟฝ๏ฟฝ = ๐ถ Where

๐ถ๐‘ฅ = ๐ด๐‘ฅ

+ ๐ต๐‘ฅ

๐ถ๐‘ฆ = ๐ด๐‘ฆ

+ ๐ต๐‘ฆ

Then to find ๐ถ use ๐‘2 = ๐‘Ž2 + ๐‘2

Acceleration

Average Acceleration ๏ฟฝ๏ฟฝ =โˆ†๐‘ฃ

โˆ†๐‘ก 2.4

Instantaneous Acceleration ๐‘Ž = lim

โˆ†๐‘กโ†’0

โˆ†๏ฟฝ๏ฟฝ

โˆ†๐‘ก 2.5

Motion of a particle with constant acceleration

๐‘ฃ = ๐‘ฃ0 + ๐‘Ž๐‘ก 2.4

๐‘ฅ =1

2(๐‘ฃ0 + ๐‘ฃ)๐‘ก or ๐‘‘ =

1

2(๐‘ฃ0 + ๐‘ฃ)๐‘ก 2.7

๐‘ฅ = ๐‘ฃ0๐‘ก +1

2๐‘Ž๐‘ก2 Or ๐‘‘ = ๐‘ฃ0๐‘ก +

1

2๐‘Ž๐‘ก2 2.8

๐‘ฃ2 = ๐‘ฃ02 + 2๐‘Ž๐‘ฅ or ๐‘ฃ2 = ๐‘ฃ0

2 + 2๐‘Ž๐‘‘ 2.9

Chapter 3

Chapter 4

Average Velocity/Acceleration

Average Velocity ๐‘ฃ =โˆ†๏ฟฝ๏ฟฝ

โˆ†๐‘ก ๐‘œ๐‘Ÿ ๐‘ฃ =

โˆ†๏ฟฝ๏ฟฝ

โˆ†๐‘ก 2.2

Average Acceleration ๏ฟฝ๏ฟฝ =โˆ†๐‘ฃ

โˆ†๐‘ก 2.4

Projectile Motion

X direction Y direction

๐‘ฃ๐‘ฅ = ๐‘ฃ0๐‘ฅ + ๐‘Ž๐‘ฅ๐‘ก ๐‘ฃ๐‘ฆ = ๐‘ฃ0๐‘ฆ + ๐‘Ž๐‘ฆ๐‘ก

๐‘œ๐‘Ÿ ๐‘ฃ๐‘ฆ = ๐‘ฃ0๐‘ฆ + ๐‘”๐‘ก

3.3

๐‘ฅ =1

2(๐‘ฃ0๐‘ฅ + ๐‘ฃ๐‘ฅ)๐‘ก

or ๐‘‘ =1

2(๐‘ฃ0๐‘ฅ + ๐‘ฃ๐‘ฅ)๐‘ก

๐‘ฆ =1

2(๐‘ฃ0๐‘ฆ + ๐‘ฃ๐‘ฆ)๐‘ก

or โ„Ž =1

2(๐‘ฃ0๐‘ฆ + ๐‘ฃ๐‘ฆ)๐‘ก

3.4

๐‘ฅ = ๐‘ฃ0๐‘ฅ๐‘ก +1

2๐‘Ž๐‘ฅ๐‘ก2

or ๐‘‘ = ๐‘ฃ0๐‘ฅ๐‘ก +1

2๐‘Ž๐‘ฅ๐‘ก2

๐‘ฆ = ๐‘ฃ0๐‘ฆ๐‘ก +1

2๐‘Ž๐‘ฆ๐‘ก2

or โ„Ž = ๐‘ฃ0๐‘ฆ๐‘ก +1

2๐‘”๐‘ก2

3.5

๐‘ฃ๐‘ฅ2 = ๐‘ฃ๐‘œ๐‘ฅ

2 + 2๐‘Ž๐‘ฅ๐‘ฅ or ๐‘ฃ๐‘ฅ

2 = ๐‘ฃ๐‘œ๐‘ฅ2 + 2๐‘Ž๐‘ฅ๐‘‘

๐‘ฃ๐‘ฆ2 = ๐‘ฃ๐‘œ๐‘ฆ

2 + 2๐‘Ž๐‘ฆ๐‘ฆ

or ๐‘ฃ๐‘ฆ2 = ๐‘ฃ๐‘œ๐‘ฆ

2 + 2๐‘”โ„Ž

3.6

Relative Motion

๐‘ฃ๐ด๐ถ = ๐‘ฃ๐ด๐ต + ๐‘ฃ๐ต๐ถ ๐‘ฃ๐ด๐ต = โˆ’๐‘ฃ๐ต๐ด

Newtonโ€™s Second Law

General ฮฃ๏ฟฝ๏ฟฝ = ๐‘š๏ฟฝ๏ฟฝ

4.1

Component form ฮฃ๐น๐‘ฅ = ๐‘š๐‘Ž๐‘ฅ ฮฃ๐น๐‘ฆ = ๐‘š๐‘Ž๐‘ฆ

4.2

Gravitational Force

Gravitational Force

๐น = ๐บ๐‘š1๐‘š2

๐‘Ÿ2

4.3

Weight

W=mg

Where ๐‘” = ๐บ๐‘š1

๐‘Ÿ2

G=Universal Gravitational Constant =6.67๐‘ฅ10โˆ’11 ๐‘๐‘š2/๐‘˜๐‘”2

Friction Static Friction (maximum)

๐‘“๐‘ ๐‘š๐‘Ž๐‘ฅ = ๐œ‡๐‘ ๐น๐‘ 4.7

Kinetic Frictional ๐‘“๐‘˜ = ๐œ‡๐‘˜๐น๐‘ 4.8

Chapter 5

Chapter 6

Speed ๐‘ฃ =2๐œ‹๐‘Ÿ

๐‘‡ 5.1

Centripetal Acceleration ๐‘Ž๐‘ =

๐‘ฃ2

๐‘Ÿ 5.2

Centripetal Force ๐น๐‘ =๐‘š๐‘ฃ2

๐‘Ÿ 5.3

Banked Curve ๐‘ก๐‘Ž๐‘›๐œƒ =๐‘ฃ2

๐‘Ÿ๐‘” 5.4

Satellites in circular orbits

๐‘ฃ = โˆš๐บ๐‘€๐ธ

๐‘Ÿ

๐‘‡ =2๐œ‹๐‘Ÿ3/2

โˆš๐บ๐‘€๐ธ

5.5 5.6

NOTE:

ME mass of earth = 5.98x1024kg rE radius of earth 6.38x106m G=6.67x10-11 Nยทm2/kg2

Vertical Circular Motion

1) ๐น๐‘ = ๐น๐‘ โˆ’ ๐‘š๐‘” =๐‘š๐‘ฃ2

๐‘Ÿ

2) ๐น๐‘ = ๐น๐‘ =๐‘š๐‘ฃ2

๐‘Ÿ

3) ๐น๐‘ = ๐น๐‘ + ๐‘š๐‘” =๐‘š๐‘ฃ2

๐‘Ÿ

4) ๐น๐‘ = ๐น๐‘ =๐‘š๐‘ฃ2

๐‘Ÿ

Fig. 5.20

Work done by constant Force

๐‘Š = (๐น๐‘๐‘œ๐‘ ๐œƒ)๐‘  ๐‘œ๐‘Ÿ

๐‘Š = (๐น๐‘๐‘œ๐‘ ๐œƒ)๐‘‘ 6.1

Kinetic Energy ๐พ๐ธ =1

2๐‘š๐‘ฃ2 6.2

Work-Energy Theorem

๐‘Š = ๐พ๐ธ๐‘“ โˆ’ ๐พ๐ธ0

=1

2๐‘š๐‘ฃ๐‘“

2 โˆ’1

2๐‘š๐‘ฃ0

2

=1

2๐‘š(๐‘ฃ๐‘“

2 โˆ’ ๐‘ฃ02)

6.3

Work done by gravity ๐‘Š๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ = ๐‘š๐‘”(โ„Ž0 โˆ’ โ„Ž๐‘“) 6.4

Gravitational Potential Energy

๐‘ƒ๐ธ = ๐‘š๐‘”โ„Ž 6.5

Alternative Work-Energy Theorem

๐‘Š๐‘›๐‘ = ๐ธ๐‘“ โˆ’ ๐ธ0

= (๐พ๐ธ๐‘“ + ๐‘ƒ๐ธ๐‘“) โˆ’ (๐พ๐ธ0 + ๐‘ƒ๐ธ0) 6.8

When ๐‘Š๐‘›๐‘ = 0 ๐ธ๐‘“ = ๐ธ0 or

(๐พ๐ธ๐‘“ + ๐‘ƒ๐ธ๐‘“) = (๐พ๐ธ0 + ๐‘ƒ๐ธ0)

Power ๐‘ƒ =๐‘Š

๐‘ก=

โˆ†๐ธ

๐‘ก= ๐น๐‘ฃ

6.10 6.11

Work done by a variable Force

Area under the curve of a ๐น๐‘๐‘œ๐‘ ๐œƒ vs. s graph

Conservative Forces: force of gravity, spring force

Non-conservative forces: friction, air resistance

Chapter 7

Chapter 8

Impulse and Momentum

Impulse ๐ฝ = ๏ฟฝ๏ฟฝโˆ†๐‘ก 7.1

Linear Momentum, p p=mv 7.2

Impulse-Momentum Theorem

(โˆ‘ ๏ฟฝ๏ฟฝ) โˆ†๐‘ก = ๐‘š๐‘ฃ๐‘“ โˆ’ ๐‘š๐‘ฃ0 = ๐‘šโˆ†๐‘ฃ

Or J=ฮ”p 7.4

Collision

Final Velocity of 2 objects in a head-on collision where one object is initially at rest 1: moving object 2: object at rest

๐‘ฃ๐‘“1 = (๐‘š1 โˆ’ ๐‘š2

๐‘š1 + ๐‘š2) ๐‘ฃ01

๐‘ฃ๐‘“2 = (2๐‘š1

๐‘š1 + ๐‘š2) ๐‘ฃ01

7.8

Conservation of Linear Momentum (in 1D)

๏ฟฝ๏ฟฝ0 = ๏ฟฝ๏ฟฝ๐‘“

๏ฟฝ๏ฟฝ0 = ๏ฟฝ๏ฟฝ๐‘“ โˆ’ ๏ฟฝ๏ฟฝ0 = 0 7.7

Elastic Collision ๐‘š1๐‘ฃ01 + ๐‘š2๐‘ฃ02 = ๐‘š1๐‘ฃ๐‘“1 + ๐‘š2๐‘ฃ๐‘“2 7.7b

Inelastic Collision ๐‘š1๐‘ฃ01 + ๐‘š2๐‘ฃ02 = (๐‘š1 + ๐‘š2)๐‘ฃ๐‘“

Conservation of Linear Momentum (in 2D)

๐‘š1๐‘ฃ01๐‘ฅ + ๐‘š2๐‘ฃ02๐‘ฅ = ๐‘š1๐‘ฃ๐‘“1๐‘ฅ + ๐‘š2๐‘ฃ๐‘“2๐‘ฅ

๐‘š1๐‘ฃ01๐‘ฆ + ๐‘š2๐‘ฃ02๐‘ฆ = ๐‘š1๐‘ฃ๐‘“1๐‘ฆ + ๐‘š2๐‘ฃ๐‘“2๐‘ฆ 7.9

Center of Mass

Center of mass location

๐‘ฅ๐‘๐‘š =๐‘š1๐‘ฅ1 + ๐‘š2๐‘ฅ2

๐‘š1 + ๐‘š2 7.10

Center of mass velocity

๐‘ฃ๐‘๐‘š =๐‘š1๐‘ฃ1 + ๐‘š2๐‘ฃ2

๐‘š1 + ๐‘š2 7.11

Angular displacement

ฮ”๐œƒ = ๐œƒ โˆ’ ๐œƒ0

๐œƒ =๐‘ 

๐‘Ÿ

8.1

Average angular velocity ๏ฟฝ๏ฟฝ =

โˆ†๐œƒ

โˆ†๐‘ก 8.2

Average angular acceleration ๏ฟฝ๏ฟฝ =

โˆ†๐œ”

โˆ†๐‘ก 8.4

Motion of a particle with constant acceleration

๐œ” = ๐œ”0 + ๐›ผ๐‘ก 8.4

๐œƒ =1

2(๐œ” + ๐œ”0)๐‘ก 8.6

๐œƒ = ๐œ”0๐‘ก +1

2๐›ผ๐‘ก2 8.7

๐œ”2 = ๐œ”02 + 2๐›ผ๐œƒ 8.8

Relationship between angular variables and tangential variables (t subscript)

๐‘ฃ๐‘‡ = ๐‘Ÿ๐œ” ๐‘Ž๐‘‡ = ๐‘Ÿ๐›ผ

8.9 8.10

When no slipping ๐‘ฃ = ๐‘ฃ๐‘‡ = ๐‘Ÿ๐œ” ๐‘Ž = ๐‘Ž๐‘‡ = ๐‘Ÿ๐›ผ

8.12 8.13

Centripetal acceleration ๐‘Ž๐‘ = ๐‘Ÿ๐œ”2 8.11

Chapter 9

Moments of Inertia I for various rigid objects of Mass M

Torque and Inertia

Torque ๐‰

๐œ = ๐นโ„“ 9.1

When at Equilibrium โˆ‘ ๐œ = 0 9.2

Moment of Inertia

๐ผ = โˆ‘ ๐‘š๐‘Ÿ2 9.6

Newtonโ€™s Second Law for a rigid body rotating about a Fixed axis

โˆ‘ ๐œ = ๐ผ๐›ผ

9.7

Work, Energy

Rotational work ๐‘Š๐‘… = ๐œ๐œƒ 9.8

Rotational Kinetic Energy ๐พ๐ธ๐‘… =

1

2๐ผ๐œ”2 9.9

Angular Momentum ๐ฟ = ๐ผ๐œ” 9.1

Center of Gravity ๐‘ฅ๐‘๐‘” =๐‘Š1๐‘ฅ1 + ๐‘Š1๐‘ฅ1 + โ‹ฏ

๐‘Š1 + ๐‘Š2 + โ‹ฏ 9.2

See reverse side for moments of Inertia I for various rigid objects of Mass M

Thin walled hollow cylinder or hoop

๐ผ = ๐‘€๐‘…2

Solid cylinder or disk

๐ผ =1

2๐‘€๐‘…2

Thin rod, axis perpendicular to rod and passing though center

๐ผ =1

12๐‘€๐ฟ2

Thin rod, axis perpendicular to rod and passing though end

๐ผ =1

3๐‘€๐ฟ2

Solid Sphere, axis through center

๐ผ =2

5๐‘€๐‘…2

Solid Sphere, axis tangent to surface

๐ผ =7

5๐‘€๐‘…2

Thin Walled spherical shell, axis through center

๐ผ =2

3๐‘€๐‘…2

Thin Rectangular sheet, axis along one edge

๐ผ =1

3๐‘€๐ฟ2

Thin Rectangular sheet, axis parallel to sheet and passing though center of the other edge

๐ผ =1

12๐‘€๐ฟ2

Chapter 10

Force Applied ๐น๐‘ฅ๐‘Ž๐‘๐‘๐‘™๐‘–๐‘’๐‘‘

= ๐‘˜๐‘ฅ 10.1

Hookeโ€™s Law ๐น๐‘ฅ = โˆ’๐‘˜๐‘ฅ 10.2

Frequency cycles per time ๐‘“ =

1

๐‘‡ 10.5

Angular frequency

๐œ” = 2๐œ‹๐‘“ = 2๐œ‹๐‘‡โ„ 10.6

Maximum Velocity Simple Harmonic Motion

๐‘ฃ๐‘š๐‘Ž๐‘ฅ = ๐ด๐œ” 10.8

Maximum Acceleration Simple Harmonic Motion

๐‘Ž๐‘š๐‘Ž๐‘ฅ = ๐ด๐œ”2 10.11

Angular frequency of simple harmonic motion

๐œ” = โˆš๐‘˜๐‘šโ„ 10.11

Elastic potential energy

๐‘ƒ๐ธ๐‘’๐‘™๐‘Ž๐‘ ๐‘ก๐‘–๐‘ =1

2๐‘˜๐‘ฅ2 10.13

Simple Pendulum (10.16)

Angular Frequency

๐œ” = โˆš๐‘”

๐ฟ

Time Period

๐‘‡ = 2๐œ‹โˆš๐ฟ

๐‘”

Length

๐ฟ =๐‘‡2๐‘”

4๐œ‹2

Physical pendulum (10.15)

Angular Frequency

๐œ” = โˆš๐‘š๐‘”๐ฟ

๐ผ

Time Period

๐‘‡ = 2๐œ‹โˆš๐ผ

๐‘š๐‘”๐ฟ

Elastic deformation -stretch and compression (10.17) Perpendicular to Area (A)

Y = constant called Youngโ€™s modulus

Force

๐น = ๐‘Œ (ฮ”๐ฟ

๐ฟ0) ๐ด

Change in Length

ฮ”๐ฟ =๐น๐ฟ0

๐‘Œ๐ด

Shear Deformation (change in shape)

Parallel to Area (A) S = constant called the shear modulus

Force

๐น = ๐‘† (ฮ”๐‘‹

๐ฟ0) ๐ด

Change in Length

ฮ”X =๐น๐ฟ0

๐‘†๐ด

Pressure (related to Volume deformation)

๐‘ƒ =๐น

๐ด 10.19

change in pressure needed to change the volume

B = constant known as the bulk modulus When the volume decreases, โˆ†๐‘‰ is negative

โˆ†๐‘ƒ = โˆ’๐ต (โˆ†๐‘‰

๐‘‰๐‘œ) 10.20

Chapter 11

Chapter 12

Density ๐œŒ =๐‘š

๐‘‰ 11.1

Pressure

๐‘ƒ =๐น

๐ด 11.3

Specific Gravity =๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’

1.000 ร— 103 ๐‘˜๐‘”/๐‘š3 11.2

Pressure and depth

in a static Fluid

P1 is higher than P2 ๐‘ƒ2 = ๐‘ƒ1 + ๐œŒ๐‘”โ„Ž 10.4

Gauge Pressure ๐œŒ๐‘”โ„Ž

Archimedesโ€™

principle ๐น๐ต = ๐‘Š๐‘“๐‘™๐‘ข๐‘–๐‘‘ 11.6

Mass Flow Rate ๐‘€๐‘Ž๐‘ ๐‘  ๐‘“๐‘™๐‘œ๐‘ค ๐‘Ÿ๐‘Ž๐‘ก๐‘’ = ๐œŒ๐ด๐‘ฃ 11.7

Volume flow rate ๐‘„ = ๐ด๐‘ฃ =๐‘‰

๐‘ก

Bernoulliโ€™s Equation ๐‘ƒ1 +1

2๐œŒ๐‘ฃ1

2 + ๐œŒ๐‘”๐‘ฆ1 = ๐‘ƒ2 +1

2๐œŒ๐‘ฃ2

2 + ๐œŒ๐‘”๐‘ฆ2 11.11

Equation of

continuity ๐œŒ1๐ด1๐‘ฃ1 = ๐œŒ2๐ด2๐‘ฃ2 11.8

equation of

continuity ( ) ๐ด1๐‘ฃ1 = ๐ด2๐‘ฃ2

Force to move

Viscous Layer with

constant velocity

๐น =๐œ‚๐ด๐‘ฃ

๐‘ฆ 11.13

Poiseuilleโ€™s law ๐‘„ =๐œ‹๐‘…4(๐‘ƒ2 โˆ’ ๐‘ƒ1)

8๐œ‚๐ฟ 11.14

Force and Area if

Pressure same ๐น1/๐ด1 = ๐น2/๐ด2 ๐‘œ๐‘Ÿ ๐น2 = ๐น1 (

๐ด2

๐ด1)

Temperature Scales

Fahrenheit to Celsius

๐ถ =

5

9(๐น โˆ’ 32)

Celsius to Fahrenheit

๐น =

9

5๐ถ + 32

Celsius to Kelvin K=C+273.15 or ๐‘‡ =

๐‘‡๐‘ + 273.15 12.1

Thermal Expansion

Linear Thermal Expansion

โˆ†๐ฟ = ๐›ผ๐ฟ๐‘œโˆ†๐‘‡ 12.2

Volume Thermal Expansion

โˆ†๐‘‰ = ๐›ฝ๐‘‰0โˆ†๐‘‡ 12.3

Heat and Power

Heat and temperature change

โˆ†๐‘„ = ๐‘๐‘šโˆ†๐‘‡ 12.4

Heat and phase change ๐‘„ = ๐‘š๐ฟ 12.5

% Relative Humidity ๐‘ƒ๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘Ž๐‘™ ๐‘ƒ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ ๐‘ฃ๐‘Ž๐‘๐‘œ๐‘ก

๐ธ๐‘ž๐‘ข๐‘–๐‘™๐‘–๐‘๐‘Ÿ๐‘ข๐‘š ๐‘ƒ๐‘ค๐‘Ž๐‘ก๐‘’๐‘Ÿ ๐‘ฃ๐‘Ž๐‘๐‘œ๐‘ก @ ๐‘ก๐‘’๐‘š๐‘ 12.6

Chapter 13

Heat and Power

Power P=Q/t

Heat Conducted ๐‘„ =(๐‘˜๐ดโˆ†๐‘‡)๐‘ก

๐ฟ 13.1

Radiant energy

e emissivity ๐œŽ = 5.67x10-8 J/(s*m2*K4) T temp in Kelvins A surface area

๐‘„ = ๐‘’๐œŽ๐‘‡4๐ด๐‘ก

Net radiant Power

T object Temp in kelvins To environment temp in Kelvins

๐‘ƒ๐‘›๐‘’๐‘ก = ๐‘’๐œŽ๐ด(๐‘‡4 โˆ’ ๐‘‡04) 13.3

Chapter 14

Molecular Mass, Moles, and Avogadroโ€™s Number

Atomic Mass Unit 1 ๐‘ข = 1.6605 ร— 10โˆ’27 ๐‘˜๐‘”

Avogadroโ€™s Number ๐‘๐ด = 6.022 ร— 1023 ๐‘š๐‘œ๐‘™โˆ’1

Number of Moles, n N number of particles (atoms or molecules)

๐‘› =๐‘

๐‘๐ด

Number of Moles, n m sample mass (g) mass per mole: g/mol

๐‘› =๐‘š

๐‘š๐‘Ž๐‘ ๐‘  ๐‘๐‘’๐‘Ÿ ๐‘š๐‘œ๐‘™๐‘’

Mass of a particle ๐‘š๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’ =๐‘š๐‘Ž๐‘ ๐‘  ๐‘๐‘’๐‘Ÿ ๐‘š๐‘œ๐‘™๐‘’

๐‘๐ด

Density ๐œŒ =๐‘› โˆ™ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘๐‘’๐‘Ÿ ๐‘š๐‘œ๐‘™๐‘’

๐‘‰

Ideal Gas Law

Ideal Gas law n number of moles R Universal gas constant =8.31 J/(mol *K) T temp kelvins

๐‘ƒ๐‘‰ = ๐‘›๐‘…๐‘‡ 14.1

Ideal Gas Law (alternative form) N number of particles k Boltzmannโ€™s constant (1.38x10-23 J K-1)

๐‘ƒ๐‘‰ = ๐‘๐‘˜๐‘‡ 14.2

Boyleโ€™s and Charlesโ€™ Laws

Boyleโ€™s law (when n and T are constant)

๐‘ƒ๐‘–๐‘‰๐‘– = ๐‘ƒ๐‘“๐‘‰๐‘“ 14.3

Charlesโ€™ law

(n and P are constant)

๐‘‰๐‘–

๐‘‡๐‘–=

๐‘‰๐‘“

๐‘‡๐‘“ 14.4

Energy

Average Kinetic Energy for a molecule ๐พ๐ธ =

1

2๐‘š๐‘ฃ๐‘Ÿ๐‘š๐‘ 

2 =3

2๐‘˜๐‘‡ 14.6

Internal Energy ๐‘ˆ =3

2๐‘›๐‘…๐‘‡ 14.7

Diffusion

Fickโ€™s law of diffusion D Diffusion constant ฮ”C is the solute concentration difference between the ends of the channel (same as density)

๐‘š =๐ท๐ดโˆ†๐ถ๐‘ก

๐ฟ 14.8

Chapter 15

First Law of Thermodynamics

First Law ฮ”๐‘ˆ = ๐‘ˆ๐‘“ โˆ’ ๐‘ˆ0 = ๐‘„ โˆ’ ๐‘Š 15.1

Note: โˆ†๐‘ˆ Change in Internal Energy Q (heat) is positive when the system gains heat and negative when it loses heat. W (work) is positive when work is done by the system and negative when work is done on the system.

Monatomic Ideal Gas Internal Energy *R=8.31 J/(mol K)

๐‘ˆ =3

2๐‘›๐‘…๐‘‡ 12.5

Applications of First Law

Process Work Done First Law

Isobaric

(constant pressure)

๐‘Š = ๐‘ƒ(๐‘‰๐‘“ โˆ’ ๐‘‰๐‘–)

(Eq 15.2) โˆ†๐‘ˆ = ๐‘„ โˆ’ ๐‘ƒ(๐‘‰๐‘“ โˆ’ ๐‘‰๐‘–)

(๐‘„ =5

2๐‘›๐‘…โˆ†๐‘‡)

Isochoric

(constant volume) W=0 J โˆ†๐‘ˆ = ๐‘„ โˆ’ 0๐ฝ

(๐‘„ =3

2๐‘›๐‘…โˆ†๐‘‡)

Isothermal (constant temp)

๐‘Š = ๐‘›๐‘…๐‘‡๐‘™๐‘›(๐‘‰๐‘“

๐‘‰๐‘–)

(Eq. 15.3)

๐‘‚๐ฝ = ๐‘„ โˆ’ ๐‘›๐‘…๐‘‡๐‘™๐‘›(๐‘‰๐‘“

๐‘‰๐‘–)

Adiabatic (no heat flow)

๐‘Š =3

2๐‘›๐‘…(๐‘‡๐‘– โˆ’ ๐‘‡๐‘“)

(15.4)

โˆ†๐‘ˆ = 0๐ฝ โˆ’3

2๐‘›๐‘…(๐‘‡๐‘– โˆ’ ๐‘‡๐‘“)

Adiabatic expansion/compression of an ideal gas

๐‘ƒ0๐‘‰0๐›พ

= ๐‘ƒ๐‘“๐‘‰๐‘“๐›พ 15.5

Heat with known number of moles

๐‘„ = ๐ถ๐‘›ฮ”๐‘‡ 15.6

molar specific heat ๐ถ๐‘ =

5

2๐‘…

๐ถ๐‘ฃ =3

2๐‘…

15.7 15.8

Heat Engines

The efficiency e of a heat engine

๐‘’ =๐‘Š๐‘œ๐‘Ÿ๐‘˜ ๐‘‘๐‘œ๐‘›๐‘’

๐ผ๐‘›๐‘๐‘ข๐‘ก โ„Ž๐‘’๐‘Ž๐‘ก=

|๐‘Š|

|๐‘„๐ป|= 1 โˆ’

|๐‘„๐‘|

|๐‘„๐ป|

15.11 15.13

Conservation of energy requires

|๐‘„๐ป| = |๐‘Š| + |๐‘„๐‘| 15.12

Carnot Engine

For a Carnot engine

|๐‘„๐ถ|

|๐‘„๐ป|=

|๐‘‡๐ถ|

|๐‘‡๐ป| 14.14

Efficiency e for a Carnot engine

๐‘’๐‘๐‘Ž๐‘Ÿ๐‘›๐‘œ๐‘ก = 1 โˆ’๐‘‡๐ถ

๐‘‡๐ป 15.15

Coefficient of Performance (COP)

COP of a refrigerator or an air conditioner

๐ถ๐‘‚๐‘ƒ =|๐‘„๐‘|

|๐‘Š|=

1

๐‘‡๐ป๐‘‡๐ถ

โˆ’ 1

COP of a heat pump ๐ถ๐‘‚๐‘ƒ =|๐‘„๐ป|

|๐‘Š| 15.17

Entropy

change in entropy ฮ”๐‘† = (๐‘„

๐‘‡)

๐‘… 15.18

change in entropy โˆ†๐‘บ๐’–๐’๐’Š๐’—๐’†๐’“๐’”๐’‚๐’

โˆ†๐‘†๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘Ž๐‘™ = โˆ†๐‘†๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š + โˆ†๐‘†๐‘ ๐‘ข๐‘Ÿ๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘๐‘–๐‘›๐‘”๐‘ 

=โˆ†๐‘†๐‘๐‘œ๐‘™๐‘‘ + โˆ†๐‘†๐ป๐‘œ๐‘ก

Energy unavailable for doing work

๐‘Š๐‘ข๐‘›๐‘Ž๐‘ฃ๐‘Ž๐‘–๐‘™๐‘Ž๐‘๐‘™๐‘’ = ๐‘‡0ฮ”๐‘†๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ 15.19

Chapter 16

Waves

Speed of a Wavelength ๐‘ฃ = ๐‘“๐œ† =๐œ†

๐‘‡ 16.1

Speed of a wave on a

string ๐‘ฃ = โˆš

๐น

๐‘š/๐ฟ 16.2

description +x direction

๐‘ฆ = ๐ด๐‘ ๐‘–๐‘›(2๐œ‹๐‘“๐‘ก โˆ’2๐œ‹๐‘ฅ

๐œ†) 16.3

description -x direction

๐‘ฆ = ๐ด๐‘ ๐‘–๐‘›(2๐œ‹๐‘“๐‘ก +2๐œ‹๐‘ฅ

๐œ†) 16.4

Speed of Sound

Speed of Sound in a Gas k= 1.38x10-23

๐‘ฃ = โˆš๐›พ๐‘˜๐‘‡

๐‘š 16.5

Speed of sound in a liquid

๐‘ฃ = โˆš๐ต๐‘Ž๐‘‘

๐œŒ 16.6

Speed of sound in solid bar

๐‘ฃ = โˆš๐‘Œ

๐œŒ 16.7

Sound Intensity

Intensity ๐ผ =๐‘ƒ

๐ด 16.8

Intensity -uniform in all directions

๐ผ =๐‘ƒ

4๐œ‹๐‘Ÿ2 16.9

Intensity level in decibels I0 =1x10-12W/m2

๐›ฝ = (10๐‘‘๐ต) log (๐ผ

๐ผ๐‘œ) 16.10

Doppler Effect

Source Moving toward stationary observer

๐‘“๐‘œ = ๐‘“๐‘  (1

1 โˆ’๐‘ฃ๐‘ ๐‘ฃ

) 16.15

Source Moving away from stationary observer

๐‘“๐‘œ = ๐‘“๐‘  (1

1 +๐‘ฃ๐‘ ๐‘ฃ

) 16.15

Observer moving toward stationary source

๐‘“๐‘œ = ๐‘“๐‘  (1 +๐‘ฃ๐‘œ

๐‘ฃ) 16.15

Observer moving away from stationary source

๐‘“๐‘œ = ๐‘“๐‘  (1 โˆ’๐‘ฃ๐‘œ

๐‘ฃ) 16.15

Chapter 17

Chapter 18

Constructive and Destructive Interference

Constructive 2 waves in Phase

Difference in path lengths is zero or an integer (0,1,2,3โ€ฆ)

Destructive 2 waves in Phase

Difference in path lengths is a half- integer (0.5,1.5,2.5,โ€ฆ)

Constructive 2 waves out of Phase

Difference in path lengths is a half- integer (0.5,1.5,2.5,โ€ฆ)

Destructive 2 waves out of Phase

Difference in path lengths is zero or an integer (0,1,2,3โ€ฆ)

Diffraction

Single Slit โ€“first minimum ๐‘ ๐‘–๐‘›๐œƒ =๐œ†

๐ท 17.1

Circular Opening โ€“first minimum ๐‘ ๐‘–๐‘›๐œƒ = 1.22๐œ†

๐ท 17.2

beats ๐‘“๐‘๐‘’๐‘Ž๐‘ก = ๐‘“1 โˆ’ ๐‘“2 17.46

Standing Waves

Transverse Natural frequency Fixed at both ends

๐‘“๐‘› = ๐‘› (๐‘ฃ

2๐ฟ) for n=1,2,โ€ฆ 17.3

Longitudinal Natural frequency open at both ends

๐‘“๐‘› = ๐‘› (๐‘ฃ

2๐ฟ) for n=1,2,โ€ฆ 17.4

Longitudinal Natural frequency open at one end

๐‘“๐‘› = ๐‘› (๐‘ฃ

4๐ฟ) for n=1,3,5,โ€ฆ 17.5

Formulas Number of

electrons/protons # =

๐‘ž

๐‘’

Coulombs law: F=force

Where one exerts on

two

๐น =๐‘˜|๐‘ž1||๐‘ž2|

๐‘Ÿ2 18.1

Electric Field ๏ฟฝ๏ฟฝ =๏ฟฝ๏ฟฝ

๐‘ž0 18.2

Magnitude of Electric Field ๐ธ =

๐‘˜|๐‘ž|

๐‘Ÿ2 18.3

Magnitude of Electric Field for a parallel plate capacitor

๐ธ =๐‘ž

๐œ–0๐ด=

๐œŽ

๐œ–0 18.4

Electric Flux ฮฆ๐ธ = โˆ‘(๐ธ cos ๐œ™)ฮ”๐ด =๐‘„

๐œ–0 18.6,7

Important Numbers

๐‘˜ = 8.99 ร— 109 ๐‘ โˆ™ ๐‘š2/๐ถ2

Permittivity of free space

๐œ–0 = 8.85 ร— 10โˆ’12 ๐ถ2

๐‘ โˆ™ ๐‘š2

Magnitude of charge on electron (-e) or proton (+e) ๐‘’ = 1.6 ร— 10โˆ’19 C (a lot of time ๐‘ž0)

Mass of Electron 9.11 ร— 10โˆ’31 ๐‘˜๐‘”

Mass of Proton 1.673 ร— 10โˆ’27 ๐‘˜๐‘”

Mass of Neutron 1.675 ร— 10โˆ’27 ๐‘˜๐‘”

Chapter 19

Chapter 20

Work and Electric

Potential Energy ๐‘Š๐ด๐ต = ๐ธ๐‘ƒ๐ธ๐ด โˆ’ ๐ธ๐‘ƒ๐ธ๐ต 19.1

Electric Potential ๐‘‰ =๐ธ๐‘ƒ๐ธ

๐‘ž0=

๐‘˜๐‘ž

๐‘Ÿ 19.3,6

Electric Potential Difference Charge moves from A to B

๐‘‰๐ด โˆ’ ๐‘‰๐ต =๐ธ๐‘ƒ๐ธ๐ต

๐‘ž0โˆ’

๐ธ๐‘ƒ๐ธ๐ด

๐‘ž0=

โˆ’๐‘Š๐ด๐ต

๐‘ž0 19.4

Electric Potential Difference Charge moves from B to A

๐‘‰๐ต โˆ’ ๐‘‰๐ด =๐‘Š๐ด๐ต

๐‘ž0

Total Energy ๐ธ =1

2๐‘š๐‘ฃ2 +

1

2๐ผ๐œ”2 + ๐‘š๐‘”โ„Ž +

1

2๐‘˜๐‘ฅ2

+ ๐ธ๐‘ƒ๐ธ

Electric field ๐ธ = โˆ’โˆ†๐‘‰

โˆ†๐‘  19.7a

Charge on each plate of a capacitor

๐‘ž = ๐ถ๐‘‰

Dielectric constant (Eโ€™s are electric fields without and with a dielectric)

๐œ… =๐ธ๐‘œ

๐ธ

Capacitance of a parallel plate capacitor ๐ถ =

๐œ…๐œ–0๐ด

๐‘‘

Electric Potential Energy Stored in a capacitor

๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ =1

2๐‘ž๐‘‰ =

1

2๐ถ๐‘‰2 =

๐‘ž2

2๐ถ 19.11

Energy Density Energy Density =๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ

๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’=

1

2๐œ…๐œ–0๐ธ2 19.12

Current (if electric

current is constant) ๐ผ =โˆ†๐‘ž

โˆ†๐‘ก 20.1

Ohms Law ๐‘‰ = ๐ผ๐‘… ๐‘œ๐‘Ÿ ๐‘… =๐‘‰

๐ผ ๐‘œ๐‘Ÿ ๐ผ =

๐‘‰

๐‘… 20.2

Resistance with length L, cross-sectional area A

๐‘… = ๐œŒ๐ฟ

๐ด 20.3

Resistance and Resistivity (T temp)

๐œŒ = ๐œŒ0[1 + ๐›ผ(๐‘‡ โˆ’ ๐‘‡0)] ๐‘… = ๐‘…0[1 + ๐›ผ(๐‘‡ โˆ’ ๐‘‡0)]

20.4,5

Electric Power ๐‘ƒ = ๐ผ๐‘‰, ๐‘ƒ = ๐ผ2๐‘…, ๐‘ƒ =๐‘‰2

๐‘… 20.6

AC Circuits ๐‘‰ = ๐‘‰0sin (2๐œ‹๐‘“๐‘ก) ๐ผ = ๐ผ0sin (2๐œ‹๐‘“๐‘ก)

20.7,8

RMS Formulas with Current and Voltage

๐ผ๐‘Ÿ๐‘š๐‘  =๐ผ0

โˆš2

๐‘‰๐‘Ÿ๐‘š๐‘  =๐‘‰0

โˆš2

20.12 20.13

Average Power

๏ฟฝ๏ฟฝ = ๐ผ๐‘Ÿ๐‘š๐‘ ๐‘‰๐‘Ÿ๐‘š๐‘  ๏ฟฝ๏ฟฝ = ๐ผ๐‘Ÿ๐‘š๐‘ 

2 ๐‘…

๏ฟฝ๏ฟฝ =๐‘‰๐‘Ÿ๐‘š๐‘ 

2

๐‘…

20.15

Series (I is the same)

๐‘…๐‘  = ๐‘…1 + ๐‘…2 + ๐‘…3 + โ‹ฏ 1

๐ถ๐‘ =

1

๐ถ1+

1

๐ถ2+

1

๐ถ3+ โ‹ฏ

20.16 20.19

Parallel (V is the same)

1

๐‘…๐‘ =

1

๐‘…1+

1

๐‘…2+

1

๐‘…3+ โ‹ฏ

๐ถ๐‘ = ๐ถ1 + ๐ถ2 + ๐ถ3 + โ‹ฏ

20.17 20.18

RC circuits ๐‘ž = ๐‘ž0[1 โˆ’ ๐‘’

โˆ’๐‘ก

๐‘…๐ถ] (charging) ๐œ = ๐‘…๐ถ

๐‘ž = ๐‘ž0๐‘’โˆ’๐‘ก

๐‘…๐ถ (discharging)

20.20 20.21 20.22

Chapter 21

Chapter 22

Magnitude of magnetic

Field ๐œ‡0 = 4๐œ‹ ร— 10โˆ’7 ๐‘‡ โˆ™ ๐‘š/๐ด

๐ต =๐น

|๐‘ž0|๐‘ฃ sin ๐œƒ

๐ต =๐œ‡0๐ผ

2๐œ‹๐‘Ÿ

๐ต = ๐‘๐œ‡0๐ผ

2๐‘…

๐ต = ๐œ‡0๐‘›๐ผ

21.1 21.5 21.6 21.7

Radius of circular path of particle caused by F

๐‘Ÿ =๐‘š๐‘ฃ

|๐‘ž|๐ต 21.2

Relationship between Mass and B ๐‘š = (

๐‘’๐‘Ÿ2

2๐‘‰)

2

๐ต2

Force on a current in a magnetic field

๐น = ๐ผ๐ฟ๐ต๐‘ ๐‘–๐‘›๐œƒ 21.3

Torque on a current-carrying coil

๐œ = ๐‘๐ผ๐ด๐ต๐‘ ๐‘–๐‘›๐œ™ ๐œ™ is the angle between direction of B and the normal plane

21.4

Ampereโ€™s Law โˆ‘ ๐ต||โˆ†๐‘™ = ๐œ‡0๐ผ 21.8

RHR 1: Fingers point along the direction of ๏ฟฝ๏ฟฝ and the thumb points along the

velocity ๏ฟฝ๏ฟฝ The palm of the hand then faces in the direction of ๏ฟฝ๏ฟฝ that acts on a positive charge. RHR 2: Curl the fingers of the right hand into a half-circle. Point the thumb in the direction of the conventional current I, and the tips of the fingers will

point in the direction of ๏ฟฝ๏ฟฝ

Motional emf โ„ฐ = ๐‘ฃ๐ต๐ฟ 22.1

Magnetic Flux ฮฆ = ๐ต๐ด๐‘๐‘œ๐‘ ๐œ™ 22.2

Faradayโ€™s Law โ„ฐ = โˆ’๐‘โˆ†ฮฆ

โˆ†๐‘ก 22.3

Emf induced ion a

rotating planar coil

๐œ” = 2๐œ‹๐‘“ โ„ฐ = ๐‘๐ด๐ต๐œ” sin(๐œ”๐‘ก) = โ„ฐ0 sin(๐œ”๐‘ก) 22.4

Current ๐ผ =๐‘‰ โˆ’ โ„ฐ

๐‘… 22.5

Mutual Inductance ๐‘€ =๐‘๐‘ ฮฆ๐‘ 

๐ผ๐‘ 22.6

Emf due to mutual

inductance โ„ฐ๐‘  = โˆ’๐‘€ฮ”๐ผ๐‘

ฮ”๐‘ก 22.7

Self-Inductance ๐ฟ =๐‘ฮฆ

๐ผ 22.8

Emf due to self-

inductance โ„ฐ๐‘  = โˆ’๐ฟ

ฮ”๐ผ

ฮ”๐‘ก 22.9

Energy stored in an

inductor ๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ =

1

2๐ฟ๐ผ2 22.10

Energy Density ๐ธ๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ ๐ท๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ =1

2๐œ‡0๐ต2 22.11

Voltage and turns of

primary and secondary

coil

๐‘‰๐‘ 

๐‘‰๐‘=

๐‘๐‘ 

๐‘๐‘ 22.12

Current and turns of

primary and secondary

coil

๐ผ๐‘ 

๐ผ๐‘=

๐‘๐‘

๐‘๐‘  22.13

Power Power=Energy*time

Chapter 23

Chapter 24

Rms Voltage across a

capacitor ๐‘‰๐‘Ÿ๐‘š๐‘  = ๐ผ๐‘Ÿ๐‘š๐‘ ๐‘‹๐‘ 23.1

Capacitive Reactance ๐‘‹๐ถ =1

2๐œ‹๐‘“๐ถ 23.2

Rms Voltage across an

inductor ๐‘‰๐‘Ÿ๐‘š๐‘  = ๐ผ๐‘Ÿ๐‘š๐‘ ๐‘‹๐ฟ 23.3

Inductive Reactance ๐‘‹๐ฟ = 2๐œ‹๐‘“๐ฟ 23.4

Rms Voltage for

circuit containing

resistance, capacitance,

and inductance

๐‘‰๐‘Ÿ๐‘š๐‘  = ๐ผ๐‘Ÿ๐‘š๐‘ ๐‘ 23.6

Impedance of a

resistor, capacitor and

inductor connected in a

series

๐‘ = โˆš๐‘…2 + (๐‘‹๐ฟ โˆ’ ๐‘‹๐ถ)2 23.7

Tangent of the phase

angle ๐‘ก๐‘Ž๐‘›๐œ™ =

๐‘‹๐ฟ โˆ’ ๐‘‹๐ถ

๐‘… 23.8

Average Power ๏ฟฝ๏ฟฝ = ๐ผ๐‘Ÿ๐‘š๐‘ ๐‘‰๐‘Ÿ๐‘š๐‘ ๐‘๐‘œ๐‘ ๐œ™ 23.9

Resonant frequency ๐‘“0 =1

2๐œ‹โˆš๐ฟ๐ถ 23.10

Power Factor ๐‘๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ =R

๐‘

Speed of Light ๐‘ = 3.00 ร— 108 ๐‘š/๐‘ 

Speed of Light in a

vacuum ๐‘ =

1

โˆš๐œ€0๐œ‡0

24.1

Total energy density

๐‘ข =1

2๐œ€0๐ธ2 +

1

2๐œ‡0๐ต2

๐‘ข = ๐œ€0๐ธ2

๐‘ข =1

๐œ‡0๐ต2

24.2

Relationship between

magnitudes Electric

and magnetic field

waves

๐ธ = ๐‘๐ต 2.43

Rms for Electric Field ๐ธ๐‘Ÿ๐‘š๐‘  =1

โˆš2๐ธ0

Rms for Magnetic

Field ๐ต๐‘Ÿ๐‘š๐‘  =

1

โˆš2๐ต0

Intensity ๐‘† = ๐‘๐‘ˆ 24.4

Doppler Effect in

vacuum

+ come together

- move apart

๐‘“๐‘œ = ๐‘“๐‘ (1 ยฑ๐‘ฃ๐‘Ÿ๐‘’๐‘™

๐‘) 24.6

Marlusโ€™ Law ๐‘† = ๐‘†0๐‘๐‘œ๐‘ 2๐œƒ 24.7

Chapter 25

Concave Mirror

Focal length Concave

mirror ๐‘“ =

1

2๐‘… 25.1

Focal length Convex Mirror

๐‘“ = โˆ’1

2๐‘… 25.2

Mirror Equation 1

๐‘‘๐‘œ+

1

๐‘‘๐‘–=

1

๐‘“ 25.3

Magnification

Equation

๐‘š = โˆ’๐‘‘๐‘–

๐‘‘๐‘œ

๐‘š =โ„Ž๐‘–

โ„Ž๐‘œ

25.4

Plain Mirror

Forms an upright virtual image

Image located same distance behind the mirror as the object in front

Heights of object and virtual image the same

Information for Spherical mirrors

Focal Length + Concave mirror

- Convex mirror

Object distance + Object in front (real)

- Object behind (virtual)

Image Distance + Image in front (real)

- Image behind (virtual)

Magnification (sign) + Image is upright

- Image is inverted

Magnification (magnitude)

>1 larger

<1 smaller

Revised 5/30/18