60
1 ブラックホール降着円盤の物理 Black-Hole Accretion Disks: Revised 福江 純@大阪教育大学 2010/10/12 Black-Hole Accretion Disks 2 ブラックホール降着円盤の物理 Black-Hole Accretion Disks: Revised Introduction (Introduction and Observations) Physical Processes Classical Models Secular and Thermal Instabilities Dwarf-Nova Type Instability× Observability of Relativistic Effects Basic Equations Transonic Flow Radiatively Inefficient Accretion Flow and ADAF 10 Supercritical Accretion Flow and Slim Disk 11 Basics of Disk Oscillations 12 Quasi-Periodic Oscillations ** Relativistic Radiation Flow: Velocity-Dependent Variable Eddington Factor 2010/10/12 Black-Hole Accretion Disks 3 ブラックホール降着円盤の物理 Black-Hole Accretion Disks: Revised 1. Introduction (Introduction and Observations) 2. Physical Processes 3. Classical Models 4. Secular and Thermal Instabilities 5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects 7. Basic Equations 8. Transonic Flow 9. Radiatively Inefficient Accretion Flow and ADAF 10. Supercritical Accretion Flow and Slim Disk 11. Basics of Disk Oscillations 12. Quasi-Periodic Oscillations ** Relativistic Radiation Flow: Velocity-Dependent Variable Eddington Factor 1 Introduction 1. Accretion Energy-Historical Origin 2. Accretion Disk Paradigm 3. Accretion-Powered Objects: 1. Young Stellar Objects 2. Cataclysmic Variables and Supersoft X-ray Sources 3. X-ray Binaries and Ultra- luminous X-ray Sources 4. Active Galactic Nuclei 4. Present Paradigm 2010/10/12 Black-Hole Accretion Disks 4 2010/10/12 Black-Hole Accretion Disks 5 クェーサーの発見 3 rd Cambridge Catalogue 3C48=16mag ‘star’ (Matthews and Sandage 1960) 3C273=13mag ‘star’ (Hazard et al. 1962) 電波・光・X2010/10/12 Black-Hole Accretion Disks 6 クェーサー3C273 スペクトル 3C273 (1963) Maarten Schmidt (1929-) in 1992 ?!

Physical Processes Classical Models Secular and Thermal

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

2005 Black-Hole Accretion Disks: Revised
Introduction (Introduction and Observations)
Physical Processes
Classical Models
Dwarf-Nova Type Instability× Observability of Relativistic Effects
Basic Equations
Transonic Flow
11 Basics of Disk Oscillations
12 Quasi-Periodic Oscillations
2010/10/12 Black-Hole Accretion Disks 3
Black-Hole Accretion Disks: Revised
1. Introduction (Introduction and Observations)
2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
1 Introduction
luminous X-ray Sources

3C273

3C273

3C273
1966

m=12.8
L1045-46 erg/s
τ106 yr
E1060 erg

Rct

E=GM2/R

Salpeter 1964
2010/10/12 Black-Hole Accretion Disks 15








Intermission
1920- 1956- 2010/10/12 Black-Hole Accretion Disks 22


1977





BH
AGNjetprime mover
• YSO: young stellar object
• AGN: active galactic nuclei






1
2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
1 Introduction 1. Accretion Energy-Historical
Origin
3. X-ray Binaries and Ultra- luminous X-ray Sources
4. Active Galactic Nuclei


SED
Spectral Energy
Distribution (SED)
IR Class
– Class 0
1551
bipolar jets of 15km/s
disk L1551 110GHz

– 100 AU

R CrA
X
WD+red star

92

Dwarf novae
U
DN U Gem

V1223
X
X CAL87
CAL 87

Z Cam

EX Hya

X
Low Mass X-ray Binaries LMXB High Mass X-ray Binaries HMXB
2010/10/12 Black-Hole Accretion Disks 23
XX
X-ray burster
XX X1636
XX
X-ray pulser
XX X-1
XX
XX XGS2000
X
X 1822-371
X
Sco X-1
X
X
X
Microquasars (MQs/μQs)
2010/10/12 Black-Hole Accretion Disks 34
BHB

BHB

chaotic/fractal
BHB

7
BHB

BHB

BHB

BHB&MQ
X-1
O9Iab HD226868+bh
X-1

75km/s
X-1
X
X-1
X
X-1

SS433
(Margon et al. 1984)
SS433


SS433


9
SS433


162
SS433

SS433

SS433
X
SS433

SS433

SS433
GRS1915+105
GRS1915+105
X
– Bright, compact, off-nuclear X-ray sources
– Revealed by ASCA, ROSAT, Chandra, XMM
2010/10/12 Black-Hole Accretion Disks 57
X M82 X-1
X M82 X-1
X
– Beaming
of 20-50Msun
M82 X-1
– 1041 erg/s
2010/10/12 Black-Hole Accretion Disks 60
X

2010/10/12 Black-Hole Accretion Disks 62







(LINER)



Powful RGs vs Weak RGs
– 1032 erg/s/Hz at 1GHz
Baade & Minkowski (1951) M87/Vir A
2010/10/12 Black-Hole Accretion Disks 70
M87A
NGC5128A


BLRG vs NLRG


BAL (broad absorption line QSO)
HPQ (highly polarized QSO)
OVV (optically violent variables)
3C273
3C273
3C273
X

2010/10/12 Black-Hole Accretion Disks 80



6.7keV
6.4keV
Sy

BH M31
BH M87
BH M106
BH M106
BH A*
Sgr A*
BH A*
Sgr A*
BH


UV Bump

UV Bump
Arp102B
MCG-6-30-15
Present New Paradigm
2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
2 Physical Processes Related to Accretion 1. Eddington Luminosity
2. Bondi Accretion
3. Viscous Process
4. Magnetic Instabilities
5. Relativistic Effects

• M
• mH
• r

• σT
LE

2010/10/12 Black-Hole Accretion Disks 5 2010/10/12 Black-Hole Accretion Disks 6



RHL
HL
2
2010/10/12 Black-Hole Accretion Disks 9 2010/10/12 Black-Hole Accretion Disks 10



• cs
2=dp/dρ

– a



– 2
2010/10/12 Black-Hole Accretion Disks 16

• saddle


– Parker 1964

– Bondi 1957
4

x1y
• νkinetic viscosity

Φr



• lmfpρ10-8g/cm3







• vr











2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
2. Standard Disks

• vr<< vφ





νΩ
2

r2/3ν
r2/3ν
ν=

ν∝r
2010/10/12 Black-Hole Accretion Disks 9 2010/10/12 Black-Hole Accretion Disks 10







• ρ
r
• ψ
φ
• N
φ
z • Trφ∫trφdz
• ηρν
• l=r2Ω=lin
• l√GMr
z





qvis=qrad

vs

>104K)
• κes
• κff
α
α

Qvis=Qrad



(a)
(b)
(c)

• m=108
• dot m=0.1

• m=108
• dot m=0.1

• m=108
• dot m=0.1

• m=108
• dot m=0.1






2010/10/12 Black-Hole Accretion Disks 42


• p=3/4

• x=hν/kBT

X
Sco X-1
BHB

Malkan (1983)

3C273 SED



∝r-bb

EX Hya

Z ChaHα
BHB



3C273 SED





• Ti • Te • νE • lnΛCoulomb logarithm 15
• Qvis= Λie
• ΛieQrad


2010/10/12 Black-Hole Accretion Disks 63 2010/10/12 Black-Hole Accretion Disks 64


(a)
(b)
(c)

given
(1/ρ)∇p+∇φl2/r3=0 • φ
• l





2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
4 Secular and Thermal Instabilities 1. Secular Instability
2. Thermal Instability
4. Mathematical Derivation of Stability Criterion
2010/10/12 Black-Hole Accretion Disks 2

Σ→ →Σ → → →
2010/10/12 Black-Hole Accretion Disks 3 2010/10/12 Black-Hole Accretion Disks 4






ν∝r




““
Physics !
Σ p∝T4 Trφ=2αpHH p=Ω2ΣH/2H1/Σ Trφ1/Σ ΣH Trφ
““
A and B and C Rings
2010/10/12 Black-Hole Accretion Disks 10

• β






2010/10/12 Black-Hole Accretion Disks 16





• β





2. Physical Processes
3. Classical Models
5. Dwarf-Nova Type Instability× 6. Observability of Relativistic Effects
7. Basic Equations
8. Transonic Flow
11. Basics of Disk Oscillations
12. Quasi-Periodic Oscillations
6 Observability of Relativistic Effects 1. Ray Tracing
2. Imaging – Black Hole Silhouette
3. Photometry – Light Curve Diagnosis
4. Spectroscopy – Continuum and Line
5. Other Effects – Lensing and Jets
2010/10/12 Black-Hole Accretion Disks 2

2010/10/12 Black-Hole Accretion Disks 3 2010/10/12 Black-Hole Accretion Disks 4






“”
3 Iemν Iem ν/1+z3
I∫Iνdν • Iobs νobs/νem
4 Iem Iem /1+z4
F • FobsFem/1+z4
T • TobsTem/1+z
Iνν3


b2=27/4

Standard disks around a Schwarzschild hole – Luminet 1979; Fukue and
Yokoyama 1988
Standard disks around a Kerr hole – Fanton et al. 1997; Takahashi
2004
Spherically-distributed optically thin gas – Falcke et al. 2000
Supercritical disks around a Schwarzschild hole – Fukue 2003; Watarai et al.
2005



– Takahashi 2004?


– Fanton et al. 1997;

– Fanton et al. 1997;

– Fanton et al. 1997;





• →rg9×1011 cm





2010/10/12 Black-Hole Accretion Disks 32


– Asaoka 1989


7

– Chen et al. 1989
– Chen and Halpern 1989
– Fabian et al. 1989
– Matt et al. 1989

– Yamada et al. 1994




8

– Jaroszynski et al. 1992
– Takahashi et al. 2001









– 1E1740 ee? 0.26c
– GROJ1655 ee? bloby 0.92c

LLE
highly relativistic β=0.92γ=2.55
ultra relativistic β=0.99γ=10
2010/10/12 Black-Hole Accretion Disks 53



flat disk Fco



β0.45



0=rad.flux-rad.drag

– Bisnovatyi-Kogan and Blinnikov 1977
– Watarai and Fukue 1999 for supercritical disk
– Hirai and Fukue 2001 for Kerr case
– Fukue et al. 2001 for radiative collimation
– Orihara and Fukue 2003 for radiative collimation
2010/10/12 Black-Hole Accretion Disks 60



Kerr case

– Marcowith et al. 1995
– Sikora et al. 1996


ε dm=100, rcr=200, H/r=0.45 dm=1000, rcr=2000, H/r=0.98
2010/10/12 Black-Hole Accretion Disks 66
dm

dm
dm




“”