9
Ecology and Evoluon 2017; 7: 771–779 | 771 www.ecolevol.org Received: 6 July 2016 | Revised: 13 October 2016 | Accepted: 29 October 2016 DOI: 10.1002/ece3.2640 ORIGINAL RESEARCH Plant invasion and speciaon along elevaonal gradients on the oceanic island La Palma, Canary Islands Manuel J. Steinbauer 1,2† | Severin D. H. Irl 1† | Juana María González-Mancebo 3 | Frank T. Breiner 4,5 | Raquel Hernández-Hernández 3 | Sebasan Hopfenmüller 6 | Yohannes Kidane 1 | Anke Jentsch 7 | Carl Beierkuhnlein 1 This is an open access arcle under the terms of the Creave Commons Aribuon License, which permits use, distribuon and reproducon in any medium, provided the original work is properly cited. © 2016 The Authors. Ecology and Evoluon published by John Wiley & Sons Ltd. Equal contribuon. 1 Department of Biogeography, BayCEER, University of Bayreuth, Bayreuth, Germany 2 Secon Ecoinformacs & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark 3 Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain 4 Swiss Federal Research Instute WSL, Birmensdorf, Switzerland 5 Department of Ecology and Evoluon, University of Lausanne, Lausanne, Switzerland 6 Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany 7 Department of Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany Correspondence Manuel J. Steinbauer, Secon Ecoinformacs & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark. Email: [email protected] Funding informaon European Union’s Horizon 2020, Grant/ Award Number: 641762; Net-Biome transnaonal; German Research Foundaon (DFG); University of Bayreuth; Danish Carlsbergfondet, Grant/Award Number: CF14-0148. Abstract Ecosystems that provide environmental opportunies but are poor in species and funconal richness generally support speciaon as well as invasion processes. These processes are expected not to be equally effecve along elevaonal gradients due to specific ecological, spaal, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we invesgate speciaon and invasion processes along elevaonal gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non-nave species systemacally along three elevaonal gradients covering large parts of the climac range of La Palma, Canary Islands. Species richness was negavely correlated with elevaon, while the percentage of Canary endemic species showed a posive relaonship. However, the percentage of Canary–Madeira endemics did not show a relaonship with elevaon. Non-nave species richness (indicang invasion) peaked at 500 m elevaon and showed a consistent decline unl about 1,200 m elevaon. Above that limit, no non- nave species were present in the studied elevaonal gradients. Ecological, anthropo- genic, and spaal filters control richness, diversificaon, and invasion with elevaon. With increase in elevaon, richness decreases due to species–area relaonships. Ecological limitaons of nave ruderal species related to anthropogenic pressure are in line with the absence of non-nave species from high elevaons indicang direc- onal ecological filtering. Increase in ecological isolaon with elevaon drives diversi- ficaon and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an excepon. The high percentage of Canary–Madeira endemics indicates the cloud forest’s environmental uniqueness— and thus ecological isolaon—beyond the Macaronesian islands. KEYWORDS alien species, altudinal gradient, colonizaon, diversificaon, diversity, endemism, exoc, high-elevaon ecosystems, island biogeography

Plant invasion and speciation along elevational gradients ... · Machado, Otto& del Arco Aguilar, 2014) and dividing the island into a humid windward side and a drought and fire-prone

Embed Size (px)

Citation preview

Ecology and Evolution 2017; 7: 771–779  | 771www.ecolevol.org

Received:6July2016  |  Revised:13October2016  |  Accepted:29October2016DOI:10.1002/ece3.2640

O R I G I N A L R E S E A R C H

Plant invasion and speciation along elevational gradients on the oceanic island La Palma, Canary Islands

Manuel J. Steinbauer1,2† | Severin D. H. Irl1† | Juana María González-Mancebo3 |  Frank T. Breiner4,5 | Raquel Hernández-Hernández3 | Sebastian Hopfenmüller6 |  Yohannes Kidane1 | Anke Jentsch7 | Carl Beierkuhnlein1

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2016TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.

†Equalcontribution.

1DepartmentofBiogeography,BayCEER,UniversityofBayreuth,Bayreuth,Germany2SectionEcoinformatics&Biodiversity,DepartmentofBioscience,AarhusUniversity,Aarhus,Denmark3DepartamentodeBotánica,EcologíayFisiologíaVegetal,UniversidaddeLaLaguna,SanCristóbaldeLaLaguna,Tenerife,Spain4SwissFederalResearchInstituteWSL,Birmensdorf,Switzerland5DepartmentofEcologyandEvolution,UniversityofLausanne,Lausanne,Switzerland6DepartmentofAnimalEcologyandTropicalBiology,UniversityofWürzburg,Würzburg,Germany7DepartmentofDisturbanceEcology,BayCEER,UniversityofBayreuth,Bayreuth,Germany

CorrespondenceManuelJ.Steinbauer,SectionEcoinformatics&Biodiversity,DepartmentofBioscience,AarhusUniversity,Aarhus,Denmark.Email:[email protected]

Funding informationEuropeanUnion’sHorizon2020,Grant/AwardNumber:641762;Net-Biometransnational;GermanResearchFoundation(DFG);UniversityofBayreuth;DanishCarlsbergfondet,Grant/AwardNumber:CF14-0148.

AbstractEcosystems that provide environmental opportunities but are poor in species andfunctionalrichnessgenerallysupportspeciationaswellasinvasionprocesses.Theseprocessesareexpectednottobeequallyeffectivealongelevationalgradientsduetospecificecological,spatial,andanthropogenicfilters,thuscontrollingthedispersalandestablishment of species. Here, we investigate speciation and invasion processesalongelevationalgradients.Weassessthevascularplantspeciesrichnessaswellasthenumberandpercentageofendemicspeciesandnon-nativespeciessystematicallyalongthreeelevationalgradientscoveringlargepartsoftheclimaticrangeofLaPalma,CanaryIslands.Speciesrichnesswasnegativelycorrelatedwithelevation,whilethepercentageofCanaryendemicspeciesshowedapositiverelationship.However,thepercentageofCanary–Madeiraendemicsdidnotshowarelationshipwithelevation.Non-native species richness (indicating invasion) peaked at 500m elevation andshowedaconsistentdeclineuntilabout1,200melevation.Abovethatlimit,nonon-nativespecieswerepresentinthestudiedelevationalgradients.Ecological,anthropo-genic,andspatialfilterscontrolrichness,diversification,andinvasionwithelevation.With increase in elevation, richness decreases due to species–area relationships.Ecologicallimitationsofnativeruderalspeciesrelatedtoanthropogenicpressureareinlinewiththeabsenceofnon-nativespeciesfromhighelevationsindicatingdirec-tionalecologicalfiltering.Increaseinecologicalisolationwithelevationdrivesdiversi-fication and thus increased percentages of Canary endemics. The best preservedeasterntransect,includingmaturelaurelforests,isanexception.ThehighpercentageofCanary–Madeiraendemicsindicatesthecloudforest’senvironmentaluniqueness—andthusecologicalisolation—beyondtheMacaronesianislands.

K E Y W O R D S

alienspecies,altitudinalgradient,colonization,diversification,diversity,endemism,exotic,high-elevationecosystems,islandbiogeography

772  |     STEINBAUER ET Al.

1  | INTRODUCTION

Elevational gradients on isolated mountains (especially on oceanichigh-elevationislands)poseauniqueopportunitytostudyimportantecological processes, including evolutionary dynamics (Steinbaueretal.,2016)andplantinvasion(Alexanderetal.,2011;Daehler,2005).For both processes, oceanic high-elevation islands offer a uniquesetting provided by the high rates of species evolved in situ (neo-endemism;Whittakeretal.,2007).

Islandstendtobemorepronetoinvasionthanareaswithhigherdegreesofconnectivityonthecontinent(island susceptibility hypothe-sis,Simberloff,1995)duetolowspeciesrichness(i.e.,ahigherrelativeecological opportunity), functional diversity, and reduced competi-tiveness of species compared to those of themainland (Sol, 2000).However,recentstudiesindicatethattheislandsusceptibilityhypoth-esisisnotgenerallyvalid.Presumably,theisolationofislands(smallerregional speciespool) also impedes theestablishmentofnon-nativespecies(Etherington,2015;Jeschke,2008;Vila,Pino,Montero,&Font,2010),whichnowadaysmainlyoccursviadirectanthropogenicvectors.

Introductionsofnon-nativespeciesarenotequallyprobablealongelevationalgradients.Accordingly,themajorityofnon-nativeplantspe-ciesisexpectedinlowerelevationsandlessextremehabitats,whereclimaticconditionsaremorefavorable,humandisturbancesaremostfrequent,and isolation is lowest (Becker,Dietz,Billeter,Buschmann,&Edwards,2005;Pauchardetal.,2009).Extremeclimaticconditionsof high-elevation ecosystems and low anthropogenic disturbancespreventtheestablishmentofnon-nativespecies(butseeexceptions,e.g.,Irl,Jentsch,&Walther,2013;Alexanderetal.,2016).Hence,itisprobablethatthemajorityofintroducednon-nativesarepre-adaptedtomid-orlowelevations(Pauchardetal.,2009).Accordingly,thelow-elevationalienfloramaybethemainspeciespoolforthealienfloraofhigh-elevationecosystems(McDougalletal.,2011).Incontrasttohigh-elevationspecialists,invasivenon-nativespeciestendtobegen-eraliststoleratingawiderangeofclimaticconditions(Alexanderetal.,2011;Higgins&Richardson,2014),althoughthedistributionpatternin the area of introduction depends on the interaction of traits oftheinvadingspeciesandtheenvironmentalconditions(Haideretal.,2010).

Onmountainousoceanic islands, low-elevationecosystemshavelarger spatial extent than high-elevation ecosystems—a typical fea-tureofmountainsystems(butseeElsen&Tingley,2015).Especiallytropicalandsubtropicalislandspossessabroadclimaticrangeduetowindward/leeward effects and thus a comparatively high absolutenumberofhabitats(Hortal,Triantis,Meiri,Thebault,&Sfenthourakis,2009;Irletal.,2015).Asaconsequence,mostspeciesonoceanicis-lands—non-natives, natives, or endemics—will be found in low- andmid-elevationecosystems(Zobeletal.,2011).Inordertounderstandinvasionprocesses,however,itisofhighinterestwhetherthepercent-ageofnon-nativespeciesincreaseswithelevation.Thepercentageofnon-nativespeciescanbeseenasanindicatorforinvasionprocessesindependent of overall richness (c.f.,Gillespie,Claridge,&Roderick,2008)althoughitisstillsusceptibletodifferencesindisturbances.

Recent studies suggest that diversification, as indicated by twofrequentlyusedindices(i.e.,thepercentageofsingle-islandendemicspeciesandthepercentageofarchipelagoendemicsspecies;Emerson&Kolm,2005;Whittakeretal.,2007),increaseswithelevation—apat-ternwhich has large-scale support for islands aswell as continen-tal mountains (Steinbauer etal., 2016). However, this trend can bemodifiedonan intra-insular levelbyotherenvironmental influencessuchasdifferentaspectsofclimate(esp.precipitation;Irletal.,2015)andshouldbestrongerthemorepronouncedenvironmentalchangesalongtheelevationalgradientare.Additionally,diversificationissup-portedbygeneticisolation(andhenceatendencytowardspeciation)andtheavailabilityofecologicalopportunitiesduetolowspeciesrich-ness(Hughes&Eastwood,2006;Steinbauer&Beierkuhnlein,2010).

Directional ecological filtering along elevational gradients(Alexander etal., 2011) causes isolation of high-elevation ecosys-tems(Gillespie,2004).Particularlyonoceanicislands,high-elevationecosystems tend to bemore isolated from the nearest ecosystemswithcomparableenvironment than their low-elevationcounterparts(Steinbaueretal.,2016).Thelatterarelessdistantfromsimilarhabitatsonotherislandsandonthemainland(Steinbauer,Irl,&Beierkuhnlein,2013).Inconsequence,high-elevationsystemsformislandswithinis-lands(Fernández-Palacios,Otto,Thebaud,&Price,2014).Elevationalgradientsthusprovideanexcellentnaturalsettingtoinvestigatetheeffectofisolationonspeciationandinvasionprocesses.

Here,wetestwithaspecificallydesignedfieldstudythefollowingpredictionsusingvegetationsurveysalongthreeelevationgradientsrangingmorethan2000monLaPalma(CanaryIslands).Basedoncur-rentknowledge,weexpect(1)thatthevascularplantspeciesrichnessaswellasthenumberofendemics(endemictoLaPalma,endemictotheCanaryIslandsorsharedbetweenMadeiraandtheCanaryIslands,respectively)decreases,whilethepercentageofendemicspeciesin-creaseswithelevation.(2)Theabsolutenumberofnon-nativespeciesdecreases,whilethepercentageofnon-nativespeciesincreaseswithelevation, if theavailabilityofunoccupiedhabitatsathigh-elevationecosystems significantly enhances the establishment of non-nativespecies.Thecontrary istobeexpected, iftheextremeenvironmen-talconditionsathighelevationsposeamoreeffectivefilterfornon-nativespeciesthanthealreadybypassedgeographicalisolation.

2  | MATERIALS AND METHODS

2.1 | Study area

LaPalmaisoneofthemostwesternandyoungestislandsoftheCanaryarchipelago(~1.7Ma;Carracedoetal.,2002)expressingcontinuousvol-canicactivity(Prietoetal.,2009).Theislandcovers706km²andreachesamaximumelevationof2426ma.s.l.attheRoquedelosMuchachos(Figure1).ThenorthernpartofLaPalmaiscomprisedbytheCalderadeTaburientecomplexandistheoldestandsteepestpartoftheisland,thusofferingalsosteepenvironmentalgradients(Irletal.,2015).

Owingtoitsnorthwesternposition,LaPalmareceivesfairamountsofprecipitationinwinter,yetextensivedryperiodsarecommononthewesternsideoftheislandandathighelevations(Irl&Beierkuhnlein,

     |  773STEINBAUER ET Al.

2011). Besides elevation, the dominating climatic influence factorsarehumidtradewindsregularlyblowingfromthenortheast(Garzón-Machado,Otto&delArcoAguilar,2014)anddividingtheislandintoahumidwindwardsideandadroughtandfire-proneleewardside.Thus,themainprecipitationgradientoftheislandrunsalonganortheast–southwestaxisreachingfromthewesterncoast(approx.120mm/a)tothehigh-elevationnortheasternslopesoftheCalderadeTaburiente(approx.1,300mm/a;AEMET,2012).Abovethecloudbank,athermalinversion layer exists that impedes an orographic rise of moist airmasses eliminating the tradewind influence.Above the thermal in-version layer,highsolar radiationandhighdaily temperatureampli-tudesarecommon.There,wintersnowappearsregularlyandevenicestormscanoccur(Garzón-Machadoetal.,2014).

2.2 | Sampling design

Threetransectsforfloristicinventorywereinstalledacrossthecom-pleteelevationalgradient.Onereachedthecalderarimfromthedrywestcoast,onefromthemorehumidnorthcoast,andonefromthenortheastthroughthelaurelforestbelt,thus,systematicallydesignedtocoverallvegetationzonesandthecompleteprecipitationgradientofferedbyLaPalma(Figure1).Withineachtransect,weinstalledplots(10×10m) atpreselectedelevational levels.Criteria forplot selec-tionwere accessibility and a slope not higher that 35°, but alwaysuninfluenced by roads. Along the western and northern transects,weestablished21plotsdistributedevenlybetweensevenelevationlevels spanning100mand separatedby300-m intervals (note: theintervalbetweenthesecondhighestandthehighestelevationlevelonly measured 200m, because a maximum elevation of 2,400ma.s.l.couldnotbeexceeded).Threereplicatesper levelwereestab-lished,which is in accordancewith guidelines for optimal samplingalong environmental gradients (Schweiger, Irl, Steinbauer, Dengler,&Beierkuhnlein,2016).DatasamplingonthewesternandnortherntransectstookplaceinFebruary2009.Alongtheeasterntransect,24plotsdistributedacross12elevationlevelswith200-mintervalswereinstalled.Thus,tworeplicateswereestablishedper level.Datasam-plingfortheeasterntransecttookplacefromFebruarytoApril2013.AllrawdataareprovidedinonlineAppendix.

Werecordedallfloweringplantspeciesandclassifiedthemassingle-island endemics, archipelago endemics (i.e., endemic to the CanaryIslands), and non-native and nonendemic (including definitely native,possiblynativeandprobablynative)accordingtoAcebesGinovésetal.(2010).Inourstudy,thegroupofnon-nativesconsistsofallsub-classesgivenbyAcebesGinovésetal.(2010),thatis,differentiatedintointro-ducedspecies,probablyintroducedspeciesandintroducedinvasives.

As the Canary Islands share a high number of endemic specieswithMadeira,wealsoclassifiedCanary–Madeira endemics.ThisgroupincludesalltheCanaryendemicsplusthespecieswithagloballyre-stricted distribution range to the Canary Islands andMadeira. TheCanary Islands andMadeira currently are located at a distance lessthan400kmandwereevencloserduringtimeperiodswithlowersealevel(Fernández-Palaciosetal.,2011).Wefurtheridentifiedasubsetof Madeira–Canary endemics by excluding those species that onlyoccurredontheCanaries—thusfocusingonlyonendemicspeciesin-habitingbotharchipelagos(furtheronreferredtoasMadeira–Canary twins).

2.3 | Statistical analysis

Therelationbetween indices (forrichness,endemism,and invasion)with elevationwas assessed using generalized linearmixedmodels(R package lme4 version 1.1-7, Bates,Maechler, Bolker, &Walker,2015). Fullmodels includedelevation,elevation2, transect aswell astheinteractionsbetweentransectandelevationasexplanatoryvari-ables (y~elevation+elevation2+transect+transect:elevation). In afurther step, elevation, elevation2, and/or the interaction betweentransectandelevationwasremoved ifnotsignificantlycontributingto theexplanatorypowerof themodel. The laterwas testedusingaFtest(ANOVA)betweenamodelincludingandoneexcludingthefocalvariable (backwardselection;Table1providesanoverviewonfinalmodelspecifications).Asvegetationplotsarereplicatedperel-evationallevel,weincludedablockfactorintherandomstructureofthemodelstoaccountforthisspatialclustering.

Poisson error distribution (log-link function) was used for allrichness-based indices, while binomial error distribution (logit-link function) was used for percentage values. The binomial error

F IGURE  1 MapofLaPalma.LaPalmaisthenorthwesternmostislandoftheCanaryIslandssituatedoffthecoastofMorocco(Africa)intheAtlanticOcean.Themapillustratesthelocationofthewestern(circles,n = 21),northern(squares,n = 21),andeasterntransects(triangle,n = 24)coveringalargeelevationalgradientofmorethan2400mindetail.Duetothepredominanttradewinddirectionfromthenortheast,precipitationincreasesfromwesterntoeasterntransect,especiallyatmid-elevations

774  |     STEINBAUER ET Al.

distribution forpercentagevalueshas theadvantage toaccount forthefactthataparticularpercentagevalueismorepreciseifitisbasedonalargernumberofobservations(herethenumberofspecies).Notethatpercentageofendemicspeciesiscalculatedexcludingnon-nativespecies to get a cleaner signal for diversification. Patterns remain,however,ifnon-nativeswereincluded.

Goodness-of-fitstatisticsfortheimplementedmodelswereper-formedcalculatingmarginalandconditionpseudo-R2asimplementedinRpackagepiecewiseSEM (version1.1.3;Lefcheck,2015)basedonNakagawa and Schielzeth (2013). All statistical analyses were per-formedinRversion3.2.0(RDevelopmentCoreTeam,2015).

3  | RESULTS

3.1 | Diversification along an elevation gradient

Plantspecies richnessshowedahighlysignificantdecreasewith in-crease in elevation (p<.001). The northern transect showed bothhigherspeciesrichness(p > .01)andasteeperslope(Figure2a),asin-dicatedbyasignificantinteractionwithelevation(p > .05).Plantspe-ciesrichnessdecreasedfromvaluesatthelowestelevation(approx.100ma.s.l.).Richnessvaluesreachedfrommorethan30speciesonthenorthern througharoundhalfof thaton thewesternandeast-erntransectstolessthanthreespeciesinthesummitregion(approx.2,300melevation).Trendsremainedsimilarifnativespeciesrichnesswasanalyzed(non-nativespeciesnotincluded), indicatingtheirhighshareintotalspeciesnumbers(Figure2b).

Canary archipelago endemic richnesswas low atmid- and highelevationswithfewerthanfourspeciesperplot.Canaryarchipelagoendemicrichnessgenerallydecreasedwithelevationforalltransects,with similar declines from about ten species at 100m elevation toabout four speciesat thesummit (p < .001 forelevation,p < .01 for

elevation2,nointeractionbetweenelevationandtransect,Figure2c).ThenumberofCanaryarchipelagoendemicswassignificantlyhigheron the northern and western transects, with the difference beingabouttwotothreespecies.ThisdifferencedisappearsifthedefinitionofendemismincludessharedCanary–Madeiraarchipelagoendemics(Figure2h).

ThepercentageofCanaryarchipelagoendemicsdisplayedamin-imum around 750m for all transects (p < .001)with overall highestpercentage values (100%) in high elevations. Thewestern transectexpressedonaveragehigherpercentagevaluesthanthenorthernandeasternones(Figure2f,p < .001).ThepatternswitchesifthedefinitionofendemismincludedMadeira.TheproportionofCanary–Madeiraar-chipelagoendemicsishighestintheeasterntransectfollowedbythewesterntransect(p < .01).ThepercentageofMadeira–Canaryarchi-pelagoendemicsshowsamid-elevationminimumat1,000–1,400minteractingwithanoverallincreasewithelevationforthewesternandnortherntransectsthatisnotpresentontheeasterntransect(interac-tionp < .05,Figure2k).Theeasterntransectalsodifferedbyshowingamuchhigherproportionofendemicsreachingupto80%–100%.

Theoverallnumberofsingle-islandendemicspeciesislow(n = 14),makingtheir interpretationtentative.Single-islandendemicrichnessperplotshowedsignificantdifferencesbetweentransects (no inter-action), slightly declined on thewestern transect and increased onthenortherntransect(p < .01)butdidnotchangealongtheelevationgradientontheeasterntransect.Thenumberofsingle-islandendem-icsperplot increased from theeastern transect through thenorth-erntransecttothewesterntransect(p < .001,Figure2d).Overall,thewesterntransecthadnineandthenortherntransecteightsingle-islandendemicspeciescomparedtofourspeciesontheeasterntransect.

Thepercentageofsingle-islandendemicsdifferedsignificantlybe-tweentransects,withthewesterntransecthavingthehighestvalues.Thepercentageofsingle-islandendemicspeciesshowedanincrease

TABLE  1 Modelstructurefordifferentdependentvariables

Variable Model structure Family R2

MargR2

Cond

Overallrichness y~elevation***+transectn.sig+elevation:transect*+(1|block) Poisson .74 .79

Nativerichness y~elevation***+transectn.sig+elevation:transect*+(1|block) Poisson .72 .77

%Natives y~elevation*+elevation2*+transectn.sig+(1|block) Binomial .81 .81

Archipelagoendemics y~elevation***+elevation2**+transect*+(1|block) Poisson .40 .48

%Archipelagoendemics y~elevation***+elevation2***+transect*+(1|block) Binomial .71a –

Islandendemics y~elevation*+transect***+(1|block) Poisson .44 .56

%Islandendemics y~elevation2*+transect***+(1|block) Binomial .32a –

Canary–Madeiraendemics y~elevation***+elevation2*+transectn.sig+(1|block) Poisson .59 .59

%Canary–Madeiraendemics y ~elevation***+elev.2***+transect**+elev.:transect*+(1|block) Binomial .66a –

Madeira–Canarytwins y~elevation***+elev.2***+transectn.sig+elev.:transect**+(1|block) Poisson .83a –

%Madeira–Canarytwins y~elevation**+elevation2**+transect***+(1|block) Binomial .82 .83

Non-natives y~elevation*+elevation2**+transect**+(1|block) Poisson .77a –

%Non-natives y~elevation***+elevation2*+transectn.sig+(1|block) Binomial .50a –

Formodelsmarkedwithan“a”attheR2Marg,pseudo-R2wascalculatedafterremovingtherandomstructure(blockeffect)fromthemodelasthefunction

piecewiseSEMfailedtoprovidepseudo-R2valuesforthemixedeffectmodel.Significanceofexplanatoryvariables(basedonF-statistics)isindicatedwithstars(p < .05*;p < .01**;p < .001***).Marginal(R2

Marg)andconditional(R2

Cond)

pseudo-R2werecalculatedbasedonRpackagepiecewiseSEM(Lefcheck,2015).

     |  775STEINBAUER ET Al.

withelevationforthewesternandnortherntransectsbutnotfortheeasterntransect(overallp < .05,elevation2,Figure2g).

Canary–Madeiratwins(endemicspeciesoccurringonMadeiraandtheCanaryIslands)showedaunimodaldistributionthatpeakedatdif-ferent locationsalongtheelevationalgradient (p < .01forelevation,p < .001forelevation2,interactionp < .05,Figure2i).Forthewesterntransect,therelationshippeakedatlowelevations,whileonthenorth-ern andeastern transects, the relationshippeaked shortlybeloworabove500melevation,respectively.

TheshareofCanary–MadeiratwinsintheCanaryflorawashigh-estatmid-elevations(p < .001,nointeraction,Figure2l).Asexpected,thepercentagewashighestontheeasterntransect,whichtranscendsthecloudforestzone(p < .001).

3.2 | Invasion along elevational gradients

Non-native species richness reached its maximum around 500m(Figure2j) and afterward decreased for all transects with elevation(p < .001, no interactions), with an above average number of non-native species on the northern slopes. Non-native species richnessranged from zero to five species on the northern transect and zeroto two in thewestern andeastern transects.Aboveanelevationofapproximately1,200m,non-nativespeciesweremissing.Thepercent-ageofnon-nativesdisplayedasimilarmaximumat500mfollowedbyadecreasewithelevation(p < .05),withoutdifferencesbetweenislandaspect(Figure2m).Thepercentageofnon-nativesspannedfrom10%at500mtozeroaround1,200mandabove.

F IGURE  2 Totalspeciesrichness(a),nativespeciesrichness(b),single-islandandarchipelagoendemicrichness(candd),theirrespectivepercentagevalues(e–g).ThenumberofspeciesendemictoMadeiraandtheCanaryarchipelago(includingCanaryonlyendemics,h),aswellasMadeira–Canarytwins,whichareendemictobothislandgroups(excludingCanaryonlyendemics)(i)andnon-nativesspeciesrichness(j)aswellastheirpercentages(k–m).Regressionlinesresultfromgeneralizedlinearmixedeffectmodels

Western transect

Northern transect

Eastern transect

(a) (b) (c) (d)

(e) (f)

(g)

(h) (i) (j)

(k)

(l) (m)

Elevation asl [m]

Nat

ive

spec

ies

richn

ess

Elevation asl [m]

# A

rchi

pela

go e

ndem

ics

Elevation asl [m]

# S

ingl

e-is

land

end

emic

s

Elevation asl [m]

Non

-nat

ive

richn

ess

Elevation asl [m]

# M

adei

ra–C

anar

y en

dem

ics

Elevation asl [m]

# M

adei

ra–C

anar

y tw

ins

Elevation asl [m]

% N

ativ

es

Elevation asl [m]

% A

rchi

pela

go e

ndem

ics

Elevation asl [m]

% S

ingl

e-is

land

end

emic

s

Elevation asl [m]

% N

on-n

ativ

es

Elevation asl [m]

% M

adei

ra–C

anar

y en

dem

ics

Elevation asl [m]

% M

adei

ra–C

anar

y tw

ins

Elevation asl [m]

Ove

rall

spec

ies

richn

ess

010

2030

0 1000 2000

010

2030

0 1000 2000

7080

9010

0

0 1000 2000

040

80

0 1000 2000

020

4060

0 1000 2000

010

2030

0 1000 2000

05

1015

0 1000 2000

2040

6080

0 1000 2000

020

60

0 1000 2000

01

23

45

0 1000 2000

02

46

0 1000 2000

01

23

45

0 1000 2000

510

15

0 1000 2000

776  |     STEINBAUER ET Al.

4  | DISCUSSION

4.1 | Species diversity and diversification along elevational gradients

Inour study,plant species richnessaswell as thenumberofarchi-pelago (Canary and Canary–Madeira) endemic species decreasedwithelevation,acommonpatternwhichwaspreviouslyfoundonLaPalma(Irl,Steinbauer,Epperlein,etal.,2014)andotherislands(Trigas,Panitsa,&Tsiftsis,2013).Adecreaseinsurfaceareaofindividualel-evationalzoneswithincreaseinaltitudeismaderesponsibleforthiseffect(Lomolino,2000;butseeElsen&Tingley,2015).Furthermore,area is often seen as a surrogate for habitat diversity (Hortal etal.,2009). Larger areasmight support larger population sizes,which inturndecreasestheriskofextinction(MacArthur,1972).However,asweusedastandardizedsamplingdesignwithequallysizedplots,thereisnoeffectof(plot)areaonspeciesrichnessinourstudy.Rather,localspecies richnessmay be enhanced due to “sampling” from a largerspeciespoolgenerallyavailableatlowelevations(Kargeretal.,2011).Harshenvironmentalconditionswithclimaticextremeeventsathighelevationsmightadditionallydecreasetotalandnativespeciesrich-nessanddensity(habitatharshnesshypothesissensuDefeo,Gomez,&Lercari,2001).

Thegeographic isolation that reduces thenumberof individualspre-adaptedtohigh-elevationecosystemsarrivingonanislandmayen-hancediversificationbygeneticisolation(nonadaptiveallopatricspe-ciation).Speciescommunitiesfilteredbyisolationmayfurtherprovideecologicalopportunity for adaptive radiation tofill gaps in resourceusagethatareleftunoccupied(Steinbaueretal.,2016).Opportunity-drivendiversification is supportedbyphylogenetic studies (Bennett&O’Grady,2013).BothmechanismscanhelptoexplaintheincreaseinthepercentageofCanaryarchipelagoendemicsaswellastheper-centageofsingle-islandendemicswithelevation,expressingahigherdegreeofendemisminhigh-elevationecosystems(Steinbauer,Otto,Naranjo-Cigala,Beierkuhnlein,&Fernández-Palacios,2012;Verboom,Bergh,Haiden,Hoffmann,&Britton,2015). In contrast to richness-based indices (like the number of endemics), the percentage of en-demicspeciesindicatestowhichdegreelocalspeciespoolsonoceanicislandsoriginate from insituspeciation (thealternativeoriginbeingcolonizationfromotherareas,Irletal.,2015).

In summary, two explanations for the observed pattern in thethreeelevationalgradientsareinaccordancewiththesuggestedrel-ativeimmaturityofhigh-elevationecosystemscomparedtolowerel-evations (Fernández-Palaciosetal., 2014). First, in lowerelevations,species cannot realize their complete potential distribution due tobioticinteractions.Suchcompetitiveinteractions,however,decreasewithelevation,whichisparticularlytrueforhigh-elevationecosystemsowingtotheirlowspeciesrichness(butseeIrletal.,2012).Second,thespatial isolationofhigh-elevationspeciesorcladesprovidesthepossibilityfordiversification(speciationenhancedbyisolationaswellasbyecologicalopportunity;Steinbaueretal.,2016).Theimmigrationofpopulationsfromotherislandsdecreaseswithelevationduetolon-gerdistancestosourceregionsandsmallerareas(Merckxetal.,2015;

Steinbaueretal.,2013).Inaddition,locallydisturbancesareanaddi-tionalkeyfactorinfluencingthehigherpercentageofCanaryarchipel-agoandsingle-islandendemics.Particularly,plotsinthelowerpartsofthewesternandnortherntransects(0–800ma.s.l.)haveahighfrac-tionofnativespeciesthatareassociatedwithhabitatsmodifiedand/ordisturbedbyhumans (ruderalspecies),whichmight influencethepercentageofendemics.

On theeastern transect,which isbetterpreservedcompared tothenortherntransect(especiallythelaurelforest),theproportionofCanary–Madeiraendemicsdoesnot increasewithelevation. Incon-trast,single-islandendemicspeciesarevirtuallyabsentfromthistran-sect, not showingdifferencesbetween lowerandhigherelevations,andCanaryarchipelagoendemicsrichnessislow.Onereasonforthismaybethefactthatthelaurelforestsharesalargenumberoffloralel-ementswithMadeira(asisreflectedinthenumberofCanary–Madeiraarchipelagoendemics;Figure2i).Thishighlightsthatdispersalvectors(andthusisolation)differbetweenthemorehumidlaurophyllouseast-ernvegetationandthedrierwesternpartsofLaPalmaindicatingthatdispersalcharacteristicsvarybetweendifferentvegetationunitsevenwithinasingle island(Nogalesetal.,2015).However,futurestudieswillneedtoidentifywhetherdispersaltraitsdifferbetweenvegetationzonesonislandsandhowthisinfluencesdiversification.

Finally,ecologicalisolation,notonlygeographicalisolation,mightberesponsibleforthehighdiversificationinthelaurelforests.SincetheonsetoftheMediterraneanclimate, laurelforestsonlypersistedinMacaronesia,wheretheoceanicenvironmentbufferedtheclimaticoscillationsofthePleistocene(Fernández-Palaciosetal.,2011;Patiñoetal.,2016).Insummary,wesuggestthatenvironmentalfiltering,an-thropogenicdisturbance,andspatialandecologicalisolationofcom-munitiestobethemainfactorsresponsiblefortheobservedchangesinspatialtrendswithelevation.

4.2 | Elevational threshold for non- natives along the elevational gradients

Non-nativespeciesrichnessonLaPalmashowsaclearpeakat500m,probablyassociatedwiththemaincentersofpopulationandagricul-ture in this elevational zone (del Arco Aguilar, González-González,Garzón-Machado,& Pizarro-Hernández, 2010). Beyond that, eleva-tionexhibitsastrongnegativeinfluenceonnon-nativespeciesrich-nessandthepercentageofnon-nativespecies.Aboveabout1,200ma.s.l., non-native species weremissing in this study. Environmentalconditions above this threshold seem to be unfavorable for non-nativeplantspeciesonLaPalma,atleastatthisstateofthe(dynamic)invasionprocess.Inthefollowing,wemakeseveralassumptionsfortheexistenceofthisthreshold:

1. The1,200-m threshold corresponds verywellwith the transitionfrom cultivated lowland vegetation (i.e., plots located mainly inextensivelymanagedrangelandorrecentlyabandonedcultivation)to the pine forests (although cultivation can reach higher ele-vations in other areas of La Palma). Above 1,200m elevation,only extensive forestry is practiced in the sampled area due to

     |  777STEINBAUER ET Al.

increasing steepness and deteriorating climatic conditions. As aconsequence,humandisturbancesassociatedwithagricultureandthe probability of an anthropogenic introduction of non-nativespeciesaregreatlyreducedabovethe1,200-mthreshold.However,historiclanduseinformofherding,fire,andhuntinghasaffectedandstillaffectsthewholeenvironmentalgradient(Garzón-Machadoetal., 2010; Irl, Steinbauer, Messinger, etal., 2014).

2. Pinus canariensisforestsarehighlydominantabovethisthreshold(1,200–1,500m). This vegetation type has the highest fire fre-quencyontheCanaryIslands.Onlynon-nativespecieswitharela-tivelyhighfiretolerancecanpotentiallyestablishinthevegetationzoneof thepine forest; thus,firemightactasa strongfilter forpotential invaders particularly asmany fire-prone ecosystems inotherpartsof theworldarenonforested.However,firecanalsocauseashort-termincreaseinnativeandnon-nativeannualplants(mostlyruderals;GonzálezGómezetal.,2011).Athighelevations,firetogetherwithharshconditions(Kueffer,Pyšek,&Richardson,2013),suchashighsolarradiation,strongdiurnaltemperatuream-plitude,extensivesummeraridity,andwintersnowandicestorms(Garzón-Machadoetal.,2014),probablyfilterpotentialinvadersinthesummitscrub.

3. The sampling design of this study avoided plant communities ofpurehumanoriginsuchasroadsidecommunities,whichareoftenappliedforquestionsregardingplantinvasioninmountainsystems(see,e.g.,Alexanderetal.,2011;Arévaloetal.,2010;Ottoetal.,2014).RoadshavebeenshowntobeveryeffectivevectorsofplantinvasionandhomogenizationontheneighboringislandsofTenerife(Arévaloetal.,2010;Haideretal.,2010)andinothermountainousareasoftheworld(Alexanderetal.,2011).RoadsidecommunitiesathigherelevationsexistonLaPalmaaswell,wherenon-nativespeciessuchasReseda luteolaL.reachup intothehighesteleva-tions (unpublisheddata). In general, roadside communitiesmighthelp to identifymaximumelevations reachedbynon-nativespe-cies,indicatingphysiologicallimitsofnon-natives(e.g.,temperaturethresholds;Poll,Naylor,Alexander,Edwards,&Dietz, 2009), yetfocusingonmorenaturalcommunitiesisabettertooltodeterminethestateof invasibilityandmighthelp to identifyhowbiologicalconstraintssuchasinterspecificcompetitionlimitplantinvasion.

Introducedplantstendtobepre-adaptedtolow-elevationsitesbe-causeintroductionusuallytakesplaceatlowelevations.Thelowamountof non-native high-elevation specialists and the filtering effect of theP. canariensisforest(Alexanderetal.,2011)leadtotheabsenceofnon-nativespeciesinhigh-elevationecosystems.However,thismaybeonlyatransitionalsituation,asglobalclimatechangehasthepotentialtoalterthehigh-elevationharshnessfilteron islands, creatingpossibilities forinvasionatincreasingelevationsinthenearfuture(Harteretal.,2015).

Besides increasing temperatures, increasing moisture availabilityhas been shown to facilitate the invasion process (Maron&Marler,2007; Stohlgren etal., 1999).We observed highest values for non-nativespeciesrichnessonthenortherntransect.Thissupportsenvi-ronmentalfiltering resulting in lowernon-nativespecies richnessonthewesternsideoftheisland.Ontheotherhand,thedenseevergreen

canopyofthelaurelforestontheeasterntransectpreventsmostlightfrompenetratingtotheground(Delgado,Arroyo,Arévalo,&Fernández-Palacios,2007),whichpotentiallymightpreventtheestablishmentofheliophyllousnon-nativespecies.Generally,thetotalnumberofnon-nativeplants and their contribution to thevegetation structure andcompositionarelowonLaPalmacomparedwithmanyoceanicislands(Daehler,2005;Macdonald,Thébaud,Strahm,&Strasberg,1991).Thisfact, togetherwith the identifiedspatialpatterns,maycontribute tocopingandmanagementstrategiesinordertomitigatepossiblefuturenegativeimpactsofinvasivespeciesatanearlystage.

4.3 | Theoretical concept of invasion and speciation on oceanic islands

Invasionofnon-nativeplantspeciesanddiversificationofnativeanden-demicplantsaregenerallyseenastwoindependentprocesses.However,theunderlyingenvironmentaldriversonoceanicislands’elevationalgra-dients,thatis,environmentalfiltering,degreeofhumaninfluence,andgeographicfilteringintheformofspatialandecologicalisolation,seemto influence both processes, but in contrasting directions. Aiming todissectthepresumedinterrelationofunderlyingenvironmentaldriverswiththeseprocesses,Levin(2003)suggestedusingislandsasresearchobjectsbecauseoftheirexcellentsettingforthispurpose.

Consistent with phylogenetic findings (Merckx etal., 2015),Steinbaueretal.(2016)foundelevation-drivenisolationtopositivelyinfluence speciation. This seems to be a general phenomenon onhigh-elevationislandsbutalsoappliestomountainsonthecontinent,highlighting its importanceforglobalbiodiversitypatterns.Althoughanthropogenicinfluencesaffectcurrentspeciesdistributionpatterns,forexample,via theoccurrenceof ruderal species, theevolutionarysignalisstillstronginthespatialgradientsdetectedinourstudy.Thelower immigration ratesathigherelevations results in small speciespools,whereas the degree of endemism, as a proxy for diversifica-tion,ishigh(Merckxetal.,2015).Acombinationofdriverseffectivelyimpedes colonization of high elevations by natural immigration andcolonization.Amongthesedriversareharshclimaticconditions,de-creasingareaandisolationcausedbytheeffectivegeographicalisola-tionfromcomparableecosystems(Steinbaueretal.,2013,2016).

Atthecurrentstageofinvasion,high-elevationecosystemsseemtobebetterprotectedfrominvasionprocessesthanlowelevationsonLaPalma.Recentsynthesesshowthatthisisageneralphenomenonbecauseharshnesstendstodecreasetheinvasibilityofasystem(inva-sion syndrome;Kuefferetal.,2013).However,changesinlanduseandclimateinthenearfuturemightalterinvasionfiltersathighelevations,posingathreattotheseenvironments(Alexanderetal.,2016).Whilemany lowlandsystemsarepresumablynonrestorable,high-elevationsystemsstilloffertheopportunitytopreventlarge-scalealterationsbynon-nativespecies,ifimmediateprotectionmeasuresaretaken.

ACKNOWLEDGMENTS

WewouldliketothankDr.FélixMedinaandFranciscoPrietooftheConsejería deMedioAmbiente delCabildo Insular de LaPalma for

778  |     STEINBAUER ET Al.

theirsupportandJulioLealPérezforhishelp inthefield.TheEliteNetworkofBavariawithintheframeoftheGlobalChangeEcologystudyprogramsupportedthefieldsurvey.ThisworkcontributestotheprojectECOPOTENTIALfundedfromtheEuropeanUnion’sHorizon2020 research and innovation program under grant agreement no.641762. This work further contributes to the project MOVECLIMunder the frameworkof theNet-Biome transnational first callwithsupportoftheAgenceNationaledelaRecherche,theConseilrégionaldelaRéunion,theConseilrégionaldelaGuadeloupe,theGovernmentofAzores,andtheGovernmentofCanarias.Additionally,thispubli-cationwas fundedby theGermanResearchFoundation (DFG) andthe University of Bayreuth in the funding program Open AccessPublishing.MJSwaspartlysupportedbytheDanishCarlsbergfondet(CF14-0148).

CONFLICT OF INTEREST

Nonedeclared.

REFERENCES

AcebesGinovés,J.R.,LeónArencibia,M.C.,RodríguezNavarro,M.L.,delArcoAguilar,M.,GarcíaGallo,A.,PérezdePaz,P.L.,...WildpretdelaTorre,W. (2010). Spermatophyta. InArechavaleta,M., S. Rodríguez,N. Zurita & A. García (Eds.), Lista de especies silvestres de Canarias Hongos, plantas y animales terrestres 2009(pp.122–172).SantaCruzdeTenerife:GobiernodeCanarias.

AEMET (2012). Atlas climático de los archipiélagos de Canarias, Madeira y Azores—Temperatura del aire y precipitación (1971–2000). Madrid,España:MinisteriodeAgricultura,AlimentaciónyMedioAmbiente.

Alexander,J.M.,Kueffer,C.,Daehler,C.C.,Edwards,P.J.,Pauchard,A.,etal.(2011).Assemblyofnonnativeflorasalongelevationalgradientsexplainedbydirectionalecologicalfiltering.Proceedings of the National Academy of Sciences of the United States of America,108,656–661.

Alexander,J.M.,Lembrechts,J.J.,Cavieres,L.A.,Daehler,C.,Haider,S.,et al. (2016). Plant invasions intomountains and alpine ecosystems:Currentstatusandfuturechallenges.Alpine Botany,126,89–103.

Arévalo,J.R.,Otto,R.,Escudero,C.,Fernández-Lugo,S.,Arteaga,M.,etal.(2010).Doanthropogeniccorridorshomogenizeplantcommunitiesatalocalscale?AcasestudiedinTenerife(CanaryIslands).Plant Ecology,209,23–35.

Bates,D.,Maechler,M.,Bolker,B.,&Walker,S.(2015).Fittinglinearmixed-effectsmodelsusinglme4.Journal of Statistical Software,67,1–48.

Becker, T., Dietz, H., Billeter, R., Buschmann, H., & Edwards, P. (2005).Altitudinal distribution of alien plant species in the Swiss Alps.Perspectives in Plant Ecology Evolution and Systematics,7,173–183.

Bennett, G. M., & O’Grady, P. M. (2013). Historical biogeography andecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae:Nesophrosyne).Journal of Biogeography,40,1512–1523.

Carracedo, J. C., PérezTorrado, F. J.,Ancochea, E.,Meco, J.,Hernán, F.,etal.(2002).CenozoicvolcanismII:TheCanaryIslands.InW.Gibbons,&T.Moreno (Eds.),The geology of Spain (pp.439–472).Bath,UnitedKingdom:GeologicalSocietyofLondon.

Daehler, C. C. (2005). Upper-montane plant invasions in the HawaiianIslands: Patterns and opportunities. Perspectives in Plant Ecology, Evolution and Systematics,7,203–216.

Defeo,O.,Gomez,J.,&Lercari,D.(2001).Testingtheswashexclusionhy-pothesisinsandybeachpopulations:ThemolecrabEmerita brasiliensis inUruguay.Marine Ecology Progress Series,212,159–170.

del Arco Aguilar, M.-J., González-González, R., Garzón-Machado, V., &Pizarro-Hernández, B. (2010). Actual and potential natural vegeta-tionontheCanaryIslandsanditsconservationstatus.Biodiversity and Conservation,19,3089–3140.

Delgado, J. D.,Arroyo, N. L.,Arévalo, J. R., & Fernández-Palacios, J.M.(2007). Edge effects of roads on temperature, light, canopy cover,andcanopyheightinlaurelandpineforests(Tenerife,CanaryIslands).Landscape and Urban Planning,81,328–340.

Elsen,P.R.,&Tingley,M.W.(2015).Globalmountaintopographyandthefateofmontanespeciesunderclimatechange.Nature Climate Change,5,772–776.

Emerson,B.C.,&Kolm,N.(2005).Speciesdiversitycandrivespeciation.Nature,434,1015–1017.

Etherington, T. R. (2015). Geographical isolation and invasion ecology.Progress in Physical Geography,39,697–710.

Fernández-Palacios,J.M.,deNascimento,L.,Otto,R.,Delgado,J.D.,García-del-Rey,E.,etal.(2011).AreconstructionofPalaeo-Macaronesia,withparticularreferencetothelong-termbiogeographyoftheAtlanticis-landlaurelforests.Journal of Biogeography,38,226–246.

Fernández-Palacios,J.M.,Otto,R.,Thebaud,C.,&Price,J.(2014).Overviewof habitat history in subtropical oceanic island summit ecosystems.Arctic, Antarctic, and Alpine Research,46,801–809.

Garzón-Machado,V.,Otto,R.,&delArcoAguilar,M.J.(2014).Bioclimaticandvegetationmappingofa topographically complexoceanic islandapplying different interpolation techniques. International Journal of Biometeorology,58,887–899.

Garzón-Machado, V., González-Mancebo, J. M., Palomares-Martínez, A.,Acevedo-Rodríguez,A.,Fernández-Palacios,J.M.,etal.(2010).StrongnegativeeffectofalienherbivoresonendemiclegumesoftheCanarypineforest.Biological Conservation,143,2685–2694.

Gillespie, R. (2004). Community assembly through adaptive radiation inHawaiianspiders.Science,303,356–359.

Gillespie,R.G.,Claridge,E.M.,&Roderick,G.K.(2008).Biodiversitydy-namicsinisolatedislandcommunities:Interactionbetweennaturalandhuman-mediatedprocesses.Molecular Ecology,17,45–57.

González Gómez, S., Torres-Díaz, C., Valencia, G., Torres-Morales, P.,Cavieres,L.A.,&Pausas,J.G.(2011).AnthropogenicfireincreasealienandnativeannualspeciesintheChileancoastalmatorral.Diversity and Distributions,17,58–67.

Haider,S.,Alexander,J.,Dietz,H.,Trepl,L.,Edwards,P.J.,etal.(2010).Theroleofbioclimaticorigin,residencetimeandhabitatcontextinshapingnon-nativeplantdistributionsalonganaltitudinalgradient.Biological Invasions,12,4003–4018.

Harter,D.E.V.,Irl,S.D.H.,Seo,B.,Steinbauer,M.J.,Gillespie,R.,Triantis,K.A.,…Beierkuhnlein,C.(2015).Impactsofglobalclimatechangeonthe floras of oceanic islands—Projections, implications and currentknowledge.Perspectives in Plant Ecology, Evolution and Systematics,17,160–183.

Higgins, S. I., & Richardson, D.M. (2014). Invasive plants have broaderphysiologicalniches.Proceedings of the National Academy of Sciences of Sciences of the United States of America,111,10610–10614.

Hortal,J.,Triantis,K.A.,Meiri,S.,Thebault,E.,&Sfenthourakis,S.(2009).IslandSpeciesrichness increaseswithhabitatdiversity.The American Naturalist,174,E205–E217.

Hughes,C.,&Eastwood,R.(2006).Islandradiationonacontinentalscale:Exceptional rates of plant diversification after uplift of the Andes.Proceedings of the National Academy of Sciences of the United States of America,103,10334–10339.

Irl,S.D.H.,&Beierkuhnlein,C.(2011).Distributionofendemicplantspe-ciesonanoceanic island—Ageospatial analysisofLaPalma (CanaryIslands).Procedia Environmental Sciences,7,170–175.

Irl,S.D.H.,Harter,D.E.V.,Steinbauer,M.J.,GallegoPuyol,D.,Fernández-Palacios,J.M.,Jentsch,A.,&Beierkuhnlein,C.(2015).Climatevs.to-pography—Spatialpatternsofplantspeciesdiversityandendemismonahighelevationisland.Journal of Ecology,103,1621–1633.

     |  779STEINBAUER ET Al.

Irl,S.D.H.,Jentsch,A.,&Walther,G.-R.(2013).PapavercroceumLEDEB:ArareexampleofanalienspeciesinalpineenvironmentsoftheUpperEngadine,Switzerland.Alpine Botany,123,21–30.

Irl, S.D.H., Steinbauer,M. J., Epperlein, L.,Harter,D. E.V., Jentsch,A.,Pätz, S.,…Beierkuhnlein, C. (2014).The hitchhiker’s guide to islandendemism—Biodiversityandendemicperennialplantspeciesinroad-side and surrounding vegetation. Biodiversity and Conservation, 23,2273–2287.

Irl,S.D.H.,Steinbauer,M.J.,Messinger,J.,Blume-Werry,G.,Palomares-Martínez, Á., Beierkuhnlein, C., & Jentsch, A. (2014). Burned anddevoured—Introduced herbivores, fire, and the endemic flora of thehigh-elevationecosystemonLaPalma,CanaryIslands.Arctic, Antarctic and Alpine Research,46,859–869.

Irl,S.D.H.,Steinbauer,M.J.,Strohmeier,S.,Babel,W.,Palomares-Martínez,A.,etal. (2012).Mono-dominanceofanendemic legumeshrubsug-gestsherbivoryasthemajorthreattohigh-elevationislandbiodiver-sity.Journal of Vegetation Science,23,1114–1125.

Jeschke,J.M. (2008).Across islandsandcontinents,mammals aremoresuccessfulinvadersthanbirds.Diversity and Distributions,14,913–916.

Karger,D.N.,Kluge,J.,Krömer,T.,Hemp,A., Lehnert,M.,&Kessler,M.(2011).Theeffectofareaonlocalandregionalelevationalpatternsofspeciesrichness.Journal of Biogeography,38,1177–1185.

Kueffer,C.,Pyšek,P.,&Richardson,D.M.(2013).Integrativeinvasionsci-ence: Model systems, multi-site studies, focused meta-analysis andinvasionsyndromes.New Phytologist,200,615–633.

Lefcheck,J.S.(2015).piecewiseSEM:Piecewisestructuralequationmodel-inginRforecology,evolution,andsystematics.Methods in Ecology and Evolution,7,573–579.

Levin,D.A. (2003).Ecological speciation:Lessons from invasive species.Systematic Botany,28,643–650.

Lomolino, M. (2000). Ecology’s most general, yet protean pattern: Thespecies-arearelationship.Journal of Biogeography,27,17–26.

MacArthur,R.H.(1972).Geographical ecology: Patterns in the distribution of species.NewYork,NY:Harper&Row.

Macdonald,I.A.,Thébaud,C.,Strahm,W.A.,&Strasberg,D.(1991).Effectsof alien plant invasions on native vegetation remnants on La Réunion(MascareneIslands,IndianOcean).Environmental Conservation,18,51–61.

Maron, J.,&Marler,M. (2007).Nativeplant diversity resists invasion atbothlowandhighresourcelevels.Ecology,88,2651–2661.

McDougall,K.L.,Alexander,J.M.,Haider,S.,Pauchard,A.,Walsh,N.G.,et al. (2011). Alien flora of mountains: Global comparisons for thedevelopment of local preventive measures against plant invasions.Diversity and Distributions,17,103–111.

Merckx,V.S.F.T.,Hendriks,K.P.,Beentjes,K.K.,Mennes,C.B.,Becking,L.E.,etal.(2015).Evolutionofendemismonayoungtropicalmountain.Nature,524,347–350.

Nakagawa,S.,&Schielzeth,H. (2013).Ageneral and simplemethod forobtainingR2fromgeneralizedlinearmixed-effectsmodels.Methods in Ecology and Evolution,4,133–142.

Nogales, M., Heleno, R., Rumeu, B., González-Castro, A., Traveset, A.,Vargas, P., & Olesen, J. M. (2015). Seed-dispersal networks on theCanariesandtheGalápagosarchipelagos:Interactionmodulesasbio-geographicalentities.Global Ecology and Biogeography,25,912–922.

Otto, R., Arteaga, M. A., Delgado, J. D., Arévalo, J. R., Blandino, C., &Fernández-Palacios,J.M.(2014).Roadedgeeffectandelevationpat-ternsofnativeandalienplantsonanoceanicisland(Tenerife,CanaryIslands).Folia Geobotanica,49,65–82.

Patiño,J.,Mateo,R.G.,Zanatta,F.,Marquet,A.,Aranda,S.C.,Borges,P.A.V.,…Vanderpoorten,A. (2016).Climate threaton theMacaronesianendemic bryophyte flora. Scientific Reports, 6, 29156. doi:10.1038/srep29156

Pauchard, A., Kueffer, C., Dietz, H., Daehler, C. C., Alexander, J., et al.(2009).Ain’tnomountainhighenough:Plantinvasionsreachingnewelevations.Frontiers in Ecology and the Environment,7,479–486.

Poll,M.,Naylor,B.J.,Alexander,J.M.,Edwards,P.J.,&Dietz,H. (2009).SeedlingestablishmentofAsteraceaeforbsalongaltitudinalgradients:Acomparisonoftransplantexperimentsinthenativeandintroducedranges.Diversity and Distributions,15,254–265.

Prieto,J.F.,Gonzalez,P.J.,Seco,A.,Rodriguez-Velasco,G.,Tunini,L.,etal.(2009). Geodetic and structural research in La Palma, Canary Islands,Spain:1992–2007results.Pure and Applied Geophysics,166,1461–1484.

RDevelopmentCoreTeam(2015).R: A language and environment for statisti-cal computing.Vienna,Austria:RFoundationforStatisticalComputing.

Schweiger,A.H.,Irl,S.D.H.,Steinbauer,M.J.,Dengler,J.,&Beierkuhnlein,C.(2016).Optimizingsamplingapproachesalongecologicalgradients.Methods in Ecology and Evolution,7,463–471.

Simberloff,D.(1995).Whydointroducedspeciesappeartodevastateis-landsmorethanmainlandareas?Pacific Science,49,87–97.

Sol,D.(2000).Areislandsmoresusceptibletobeinvadedthancontinents?Birdssayno.Ecography,23,687–692.

Steinbauer,M.J.,&Beierkuhnlein,C.(2010).Characteristicpatternofspe-ciesdiversityontheCanaryIslands.Erdkunde,64,57–71.

Steinbauer,M.J.,Field,R.,Grytnes,J.A.,Trigas,P.,Ah-Peng,C.,etal.(2016).Topography-drivenisolation,speciationandagloballyconsistentpat-ternofendemism.Global Ecology and Biogeography,25,1097–1107.

Steinbauer,M.J.,Irl,S.D.H.,&Beierkuhnlein,C.(2013).Elevation-drivenecologicalisolationpromotesdiversificationonMediterraneanislands.Acta Oecologica,47,52–56.

Steinbauer, M. J., Otto, R., Naranjo-Cigala, A., Beierkuhnlein, C., &Fernández-Palacios,J.M.(2012).Increaseofislandendemismwithal-titude—Speciationprocessesonoceanicislands.Ecography,35,23–32.

Stohlgren,T.,Binkley,D.,Chong,G.,Kalkhan,M.,Schell,L.,etal. (1999).Exoticplantspeciesinvadehotspotsofnativeplantdiversity.Ecological Monographs,69,25–46.

Trigas,P.,Panitsa,M.,&Tsiftsis,S.(2013).Elevationalgradientofvascularplantspecies richness and endemism in Crete—The effect of post-isolationmountainupliftonacontinentalislandsystem.PLoS One,8,e59425.

Verboom,G.A.,Bergh,N.G.,Haiden,S.A.,Hoffmann,V.,&Britton,M.N.(2015).TopographyasadriverofdiversificationintheCapeFloristicRegionofSouthAfrica.New Phytologist,207,368–376.

Vila,M., Pino, J.,Montero,A., & Font, X. (2010).Are island plant com-munitiesmore invaded than theirmainland counterparts? Journal of Vegetation Science,21,438–446.

Whittaker, R. J., Ladle, R. J., Araújo, M. B., Fernández-Palacios, J. M.,Delgado,D.J., et al. (2007).The island immaturity—Speciationpulsemodelofislandevolution:Analternativetothe“diversitybegetsdiver-sity”model.Ecography,30,321–327.

Zobel, M., Otto, R., Laanisto, L., Naranjo-Cigala, A., Paertel, M., et al.(2011).Theformationofspeciespools:Historicalhabitatabundanceaffects current local diversity. Global Ecology and Biogeography, 20,251–259.

SUPPORTING INFORMATION

AdditionalSupportingInformationmaybefoundonlineinthesupport-inginformationtabforthisarticle.

How to cite this article:Steinbauer,M.J.,Irl,S.D.H.,González-Mancebo,J.M.,Breiner,F.T.,Hernández-Hernández,R.,Hopfenmüller,S.,Kidane,Y.,Jentsch,A.andBeierkuhnlein,C.(2017),PlantinvasionandspeciationalongelevationalgradientsontheoceanicislandLaPalma,CanaryIslands.EcologyandEvolution,7:771–779.doi:10.1002/ece3.2640