61
Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis Powell–Sabin splines on the sphere with applications in CAGD Jan Maes Department of Computer Science Katholieke Universiteit Leuven Paris, November 17, 2006

Powell--Sabin splines on the sphere with applications in CAGDnalag.cs.kuleuven.be/papers/ade/AFA06/slides.pdf(Paul Dierckx, 1997) Powell–Sabin splines Spherical Powell–Sabin splines

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin splines on the sphere withapplications in CAGD

    Jan Maes

    Department of Computer ScienceKatholieke Universiteit Leuven

    Paris, November 17, 2006

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Outline

    Section I Powell–Sabin splines

    Section II Spherical Powell–Sabin splines

    Section III Multiresolution Analysis

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin splines

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Bernstein–Bézier representation

    =⇒

    Pierre Étienne Bézier (1910-1999)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Stitching together Bézier triangles

    =⇒

    No C1 continuity at the red curve

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    C1 continuity with Powell–Sabin splines

    Conformal triangulation ∆

    PS 6-split ∆PS

    S12(∆PS) = space of PS splines

    M.J.D. Powell M.A. Sabin

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    C1 continuity with Powell–Sabin splines

    Conformal triangulation ∆

    PS 6-split ∆PS

    S12(∆PS) = space of PS splines

    M.J.D. Powell M.A. Sabin

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    C1 continuity with Powell–Sabin splines

    Conformal triangulation ∆

    PS 6-split ∆PS

    S12(∆PS) = space of PS splines

    M.J.D. Powell M.A. Sabin

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The dimension of S12(∆PS)?

    There is exactly one solution s ∈ S12(∆PS) to theHermite interpolation problem

    s(Vi) = αi ,

    Dxs(Vi) = βi , ∀Vi ∈ ∆, i = 1, . . . ,N.Dys(Vi) = γi ,

    The dimension of S12(∆PS) is 3N. Therefore we need 3N basis

    functions.

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The dimension of S12(∆PS)?

    There is exactly one solution s ∈ S12(∆PS) to theHermite interpolation problem

    s(Vi) = αi ,

    Dxs(Vi) = βi , ∀Vi ∈ ∆, i = 1, . . . ,N.Dys(Vi) = γi ,

    The dimension of S12(∆PS) is 3N. Therefore we need 3N basis

    functions.

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin B-splines with control triangles

    s(x , y) =N∑

    i=1

    3∑j=1

    cijBij(x , y)

    Bij is the unique solution to

    [Bij(Vk ),DxBij(Vk ),DyBij(Vk )] = [0,0,0] for all k 6= i[Bij(Vi),DxBij(Vi),DyBij(Vi)] = [αij , βij , γij ] for j = 1,2,3

    Partition of unity:∑Ni=1

    ∑3j=1 Bij(x , y) = 1,

    Bij(x , y) ≥ 0

    (Paul Dierckx, 1997)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin B-splines with control triangles

    s(x , y) =N∑

    i=1

    3∑j=1

    cijBij(x , y)

    Bij is the unique solution to

    [Bij(Vk ),DxBij(Vk ),DyBij(Vk )] = [0,0,0] for all k 6= i[Bij(Vi),DxBij(Vi),DyBij(Vi)] = [αij , βij , γij ] for j = 1,2,3

    Partition of unity:∑Ni=1

    ∑3j=1 Bij(x , y) = 1,

    Bij(x , y) ≥ 0

    (Paul Dierckx, 1997)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin B-splines with control triangles

    s(x , y) =N∑

    i=1

    3∑j=1

    cijBij(x , y)

    Bij is the unique solution to

    [Bij(Vk ),DxBij(Vk ),DyBij(Vk )] = [0,0,0] for all k 6= i[Bij(Vi),DxBij(Vi),DyBij(Vi)] = [αij , βij , γij ] for j = 1,2,3

    Partition of unity:∑Ni=1

    ∑3j=1 Bij(x , y) = 1,

    Bij(x , y) ≥ 0

    (Paul Dierckx, 1997)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin B-splines with control triangles

    Three locally supported basis functions per vertex

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin B-splines with control triangles

    The control triangle is tangent to the PS spline surface.

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Powell–Sabin B-splines with control triangles

    It ‘controls’ the local shape of the spline surface.

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Spherical Powell–Sabin splines

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Spherical spline spaces

    P. Alfeld, M. Neamtu, and L. L. Schumaker (1996)

    Homogeneous of degree d : f (αv) = αd f (v)Hd := space of trivariate polynomials of degree d that arehomogeneous of degree dRestriction of Hd to a plane in R3 \ {0}⇒ we recover the space of bivariate polynomials∆ := conforming spherical triangulation of the unit sphere S

    Srd(∆) := {s ∈ Cr (S) | s|τ ∈ Hd(τ), τ ∈ ∆}

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Spherical Powell–Sabin splines

    s(vi) = fi , Dgi s(vi) = fgi , Dhi s(vi) = fhi , ∀vi ∈ ∆

    has a unique solution in S12(∆PS)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    1− 1 connection with bivariate PS splines

    ⇒ |v |2Bij(v|v |

    )⇒

    ←−

    Spherical PS B-spline Bij(v)

    piecewise trivari-ate polynomial ofdegree 2 that ishomogeneous ofdegree 2

    Restriction to theplane tangent toS at vi ∈ ∆

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    1− 1 connection with bivariate PS splines

    Let Ti be the plane tangent to S at vertex viRadial projection:

    Riv := v :=v|v |∈ S, v ∈ Ti

    Define ∆i as the star of vi in ∆, and let ∆PSi ⊂ ∆PS be its

    PS 6-split.

    Theorem

    Let s ∈ S12(∆PSi ). Let s be the restriction of |v |2s(v/|v |) to Ti .

    Then s is in S12(R−1i ∆

    PSi ) and

    s(vi) = s(vi), Dgi s(vi) = Dgi s(vi), Dhi s(vi) = Dhi s(vi).

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    1− 1 connection with bivariate PS splines

    Let Ti be the plane tangent to S at vertex viRadial projection:

    Riv := v :=v|v |∈ S, v ∈ Ti

    Define ∆i as the star of vi in ∆, and let ∆PSi ⊂ ∆PS be its

    PS 6-split.

    Theorem

    Let s ∈ S12(∆PSi ). Let s be the restriction of |v |2s(v/|v |) to Ti .

    Then s is in S12(R−1i ∆

    PSi ) and

    s(vi) = s(vi), Dgi s(vi) = Dgi s(vi), Dhi s(vi) = Dhi s(vi).

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Spherical B-splines with control triangles

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications on a spherical domain

    Approximation of a mesh: consider the triangles of the originaltriangular mesh as control triangles of a PS spline.

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications on a spherical domain

    Compression by smoothing: Decimate a given triangular meshand approximate the decimated mesh.

    triangular mesh reduced mesh

    (40000 triangles) (5000 triangles)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications on a spherical domain

    Compression by smoothing: Decimate a given triangular meshand approximate the decimated mesh.

    triangular mesh Powell–Sabin spline

    (40000 triangles) (5000 control triangles)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications on a spherical domain

    triangular mesh decimated mesh spherical(40000 triangles) (5000 triangles) parameterization

    (5000 control triangles) PS spline surface

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis (1989)

    Stéphane Mallat Yves Meyer

    A nested sequence of subspaces

    S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ S` ⊂ · · ·

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis (1989)

    Stéphane Mallat Yves Meyer

    Complement spaces W`

    S`+1 = S` ⊕W`

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis (1989)

    Stéphane Mallat Yves Meyer

    A stable basis for the complement space W`

    W` = span{ψ`,i}

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis

    Refine the triangulation ∆ and its PS 6-split ∆PS.

    Vi

    Rki

    Vk

    Rjk

    Vj

    Rij

    Zijk

    Vi

    Rki

    Vk

    Rjk

    Vj

    Rij

    Zijk

    dyadic refinement triadic refinement

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis

    Refine the triangulation ∆ and its PS 6-split ∆PS.

    Vi

    Vki

    Vk

    Vjk

    Vj

    Vij

    Zijk

    Vi

    Rki

    Vk

    Rjk

    Vj

    Rij

    Vik

    Vki

    Vkj

    Vjk

    Vji

    Vij

    Vijk

    dyadic refinement triadic refinement

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis

    Refine the triangulation ∆ and its PS 6-split ∆PS.

    Vi

    Vki

    Vk

    Vjk

    Vj

    Vij

    Zijk

    Vi

    Rki

    Vk

    Rjk

    Vj

    Rij

    Vik

    Vki

    Vkj

    Vjk

    Vji

    Vij

    Vijk

    dyadic refinement triadic refinement

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    ∆PS0 ⊂ ∆PS1 ⊂ · · · ⊂ ∆

    PS` ⊂ · · ·

    S12(∆PS0 ) ⊂ S

    12(∆

    PS1 ) ⊂ · · · ⊂ S

    12(∆

    PS` ) ⊂ · · ·

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    ∆PS0 ⊂ ∆PS1 ⊂ · · · ⊂ ∆

    PS` ⊂ · · ·

    S12(∆PS0 ) ⊂ S

    12(∆

    PS1 ) ⊂ · · · ⊂ S

    12(∆

    PS` ) ⊂ · · ·

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    ∆PS0 ⊂ ∆PS1 ⊂ · · · ⊂ ∆

    PS` ⊂ · · ·

    S12(∆PS0 ) ⊂ S

    12(∆

    PS1 ) ⊂ · · · ⊂ S

    12(∆

    PS` ) ⊂ · · ·

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    ∆PS0 ⊂ ∆PS1 ⊂ · · · ⊂ ∆

    PS` ⊂ · · ·

    S12(∆PS0 ) ⊂ S

    12(∆

    PS1 ) ⊂ · · · ⊂ S

    12(∆

    PS` ) ⊂ · · ·

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    S`+1 = S` ⊕W`

    Large triangles control S0Small triangles control W0Local edit

    Resolution level 0

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    S`+1 = S` ⊕W`

    Large triangles control S0Small triangles control W0Local edit

    Resolution level 1

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Multiresolution analysis with√

    3-refinement

    S`+1 = S` ⊕W`

    Large triangles control S0Small triangles control W0Local edit

    Resolution level 1

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The hierarchical basis

    {Vi ∈ ∆`} ⊂ {Vi ∈ ∆`+1}

    ∆PS` ⊂ ∆PS`+1

    S` := S12(∆PS` ), S` ⊂ S`+1

    S2 = S0 ⊕W0 ⊕W1

    Largest triangles control S0Medium triangles control W0Smallest triangles control W1

    PSspline.mpgMedia File (video/mpeg)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The hierarchical basis

    Basis functions: S` = span{φ`,k : k = 1, . . . ,3N`}

    s`(x , y) = φ`c` =N∑̀i=1

    3∑j=1

    Bij`(x , y)cij`

    φ`+1 = [φo`+1 φ

    n`+1],

    φo`+1 correspond to old reused vertices of level `φn`+1 correspond to the new vertices of level `+ 1

    The set of splines

    φ0 ∪m⋃

    `=1

    φn`

    forms a hierarchical basis for Sm.

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Wavelets via the lifting scheme

    φ` = φ`+1P`φ`+1 =

    [φo`+1 φ

    n`+1

    ][φ` ψ`

    ]= φ`+1

    [P` Q`

    ] (Wim Sweldens, 1994)Lifting

    ψ` = φn`+1 − φ`U`

    with U` the update matrix. We find a relation of the form[φ` ψ`

    ]= φ`+1

    [P`

    [0`I`

    ]− P`U`

    ]

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Semi-orthogonality⇒ U` not sparseFix U` sparse⇒ ψ` local supportWant stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Semi-orthogonality⇒ U` not sparseFix U` sparse⇒ ψ` local supportWant stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    U` not sparse⇒ ψ` no local supportFix U` sparse⇒ ψ` local supportWant stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseFix U` sparse⇒ ψ` local supportWant stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseFix U` sparse⇒ ψ` local supportWant stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseOrthogonalize w.r.t. scaling functions in the update stencil

    Want stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseOrthogonalize w.r.t. scaling functions in the update stencil

    Want stability⇒ need 1 vanishing moment for ψ`Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseOrthogonalize w.r.t. scaling functions in the update stencil

    i.e. φ̃` has to reproduce constants

    Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseOrthogonalize w.r.t. scaling functions in the update stencil

    An extra linear constraint

    Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    The update step

    Problems

    Want local support⇒ U` sparseOrthogonalize w.r.t. scaling functions in the update stencil

    An extra linear constraint

    Remaining orthogonality conditions approximated by leastsquares

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Spherical Powell–Sabin spline wavelets

    3 wavelets per vertex

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications

    −→

    Spherical scattereddata

    Spherical PS spline surfacewith multiresolution structure

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications

    Compression

    Original 26%

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications

    Denoising

    With noise Denoised

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications

    Multiresolution editing

    Coarse level edit Fine level edit

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Applications

    (a) Coarse part of (c) (b) Coarse part of (d)

    (c) Original surface (d) Coarse level edit of (c)

  • Powell–Sabin splines Spherical Powell–Sabin splines Multiresolution analysis

    Some references

    P. Alfeld, M. Neamtu, and L. L. Schumaker. Bernstein–Bézierpolynomials on spheres and sphere-like surfaces. Comput. AidedGeom. Design, 13:333–349, 1996.

    P. Dierckx. On calculating normalized Powell–Sabin B-splines. Comput.Aided Geom. Design, 15(1), 61–78, 1997.

    J. Maes and A. Bultheel. Modeling sphere-like manifolds with sphericalPowell–Sabin B-splines. Comput. Aided Geom. Design, to appear.

    M. Neamtu and L. L. Schumaker. On the approximation order of splineson spherical triangulations. Adv. in Comp. Math., 21:3–20, 2004.

    W. Sweldens. The lifting scheme: A construction of second generationwavelets. SIAM J. Math. Anal., 29(2):511–546, 1997.

    Powell--Sabin splinesBernstein--BézierThe space of Powell--Sabin splinesB-splines with control triangles

    Spherical Powell--Sabin splinesSpherical spline spacesThe space of spherical Powell--Sabin splines

    Multiresolution analysisMultiresolution analysisWavelets via the lifting schemeThe update stepThe waveletsApplicationsReferences