52
Prediction Systems With Data Assimilation Prediction Systems With Data Assimilation For Coupled For Coupled Ocean Science And Ocean Acoustics Ocean Science And Ocean Acoustics Allan R. Robinson Pierre F.J. Lermusiaux Division of Engineering and Applied Sciences Department of Earth and Planetary Sciences Harvard University ICTCA – Honolulu, Hawaii - 11 August 2003 http://www.deas.harvard.edu/~robinson http://www.deas.harvard.edu/~pierrel

Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

  • Upload
    aysha

  • View
    42

  • Download
    1

Embed Size (px)

DESCRIPTION

Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics. Allan R. Robinson Pierre F.J. Lermusiaux Division of Engineering and Applied Sciences Department of Earth and Planetary Sciences Harvard University. ICTCA – Honolulu, Hawaii - 11 August 2003 - PowerPoint PPT Presentation

Citation preview

Page 1: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Prediction Systems With Data AssimilationPrediction Systems With Data AssimilationFor CoupledFor Coupled

Ocean Science And Ocean AcousticsOcean Science And Ocean Acoustics

Allan R. RobinsonPierre F.J. Lermusiaux

Division of Engineering and Applied SciencesDepartment of Earth and Planetary Sciences

Harvard University

ICTCA – Honolulu, Hawaii - 11 August 2003http://www.deas.harvard.edu/~robinsonhttp://www.deas.harvard.edu/~pierrel

Page 2: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

• Introduction• An End-to-End System: Physical-Geological-

Acoustical-Signal Processing-Sonar System• Interdisciplinary Data Assimilation• An End-to-End Example – Shelfbreak PRIMER• Concluding Remarks

Prediction Systems With Data AssimilationPrediction Systems With Data AssimilationFor CoupledFor Coupled

Ocean Science And Ocean AcousticsOcean Science And Ocean Acoustics

Collaborators: Phillip Abbot (OASIS, Inc.), Ching-Sang Chiu (NPS, Monterey), Wayne Leslie and Pat Haley (Harvard)

Page 3: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Interdisciplinary Ocean Science Today

• Research underway on coupled physical, biological, chemical, sedimentological, acoustical, optical processes

• Ocean prediction for science and operational applications has now been initiated on basin and regional scales

• Interdisciplinary processes are now known to occur on multiple interactive scales in space and time with bi-directional feedbacks

Page 4: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

System Concept

• The concept of Ocean Observing and Prediction Systems for field and parameter estimations has recently crystallized with three major components An observational network: a suite of platforms and

sensors for specific tasks A suite of interdisciplinary dynamical models Data assimilation schemes

• Systems are modular, based on distributed information providing shareable, scalable, flexible and efficient workflow and management

Page 5: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 6: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Interdisciplinary Data Assimilation

• Data assimilation can contribute powerfully to understanding and modeling physical-acoustical-biological processes and is essential for ocean field prediction and parameter estimation

• Model-model, data-data and data-model compatibilities are essential and dedicated interdisciplinary research is needed

Page 7: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Physics - Density

Biology – Fluorescence (Phytoplankton)

Acoustics – Backscatter (Zooplankton)

Almeira-Oran front in Mediterranean SeaFielding et al, JMS, 2001

Griffiths et al,Vol 12, THE SEA

Page 8: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

PAA PAO PAB

P = POA POO POB

PBA PBO PBB

Coupled Interdisciplinary Error Covariances

Physics: xO = [T, S, U, V, W]

Biology: xB = [Ni, Pi, Zi, Bi, Di, Ci]

Acoustics: xA = [Pressure (p), Phase ()]

x = [xA xO xB]

xOcO

P = (x – x t ) ( x – x

t )Tˆ ˆ

Page 9: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

End-to-End System Concept

• Sonar performance prediction requires end-to-end scientific systems: ocean physics, bottom geophysics, geo-acoustics, underwater acoustics, sonar systems and signal processing

• Uncertainties inherent in measurements, models, transfer of uncertainties among linked components

• Resultant uncertainty in sonar performance prediction itself

• Specific applications require the consideration of a variety of

specific end-to-end systems

Page 10: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

End-to-End System

Page 11: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 12: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

AD: Acoustical DataMD: Meteorological DataPD: Physical DataGD: Geological DataND: Noise DataSD: Sonar DataPMD: Physical Model DataBMD: Bottom Model DataNMD: Noise Model DataAPMD: Acous. Prop. Model DataSMD: Sonar Model DataTMD: Target Model Data

Page 13: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 14: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Coupled (Dynamical) Models and OutputsBOTTOM MODELS•Hamilton model, Sediment flux models (G&G), etc•Statistical/stochastic models fit-to-data

OUTPUTS•Wave-speed, density and attenuation coefficients

NOISE MODELS•Wenz diagram, empirical models/rule of thumbs

OUTPUTS•f-dependent ambient noise (f,x,y,z,t): due to sea-surface, shipping, biologics

SONAR SYS. MODELS AND SIGNAL PROCES.•Sonar equations (f,t)•Detection, localization, classification and tracking models and their inversions

OUTPUTS•SNR, SIR, SE, FOM•Beamforming, spectral analyses outputs (time/frequency domains)

TARGET MODELS•Measured/Empirical

OUTPUTS: SL, TS for active

PHYSICAL MODELS•Non-hydrostatic models (PDE, x,y,z,t)•Primitive-Eqn. models (PDE, x,y,z,t)•Quasi-geostrophic models, shallow-water•Objective maps, balance eqn. (thermal-wind)•Feature models

OUTPUTS•T, S , velocity fields and parameters, C field •Dynamical balances

ACOUS. PROP. MODELS•Parabolic-Eqn. models (x,y,z,t/f) •(Coupled)-Normal-Mode parabolic-eqn. (x,z,f)•Wave number eqn. models (x,z,f: OASIS) •Ray-tracing models (CASS)

OUTPUTS•Full-field TL (pressure p, phase ) •Modal decomposition of p field •Processed series: arrival strut., travel times, etc.•CW / Broadband TL

REVERBERATION MODELS (active)•Surface, volume and bottom scattering models

OUTPUTS: scattering strengths

Page 15: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

DEFINITION AND REPRESENTATION OF UNCERTAINTY

• x= estimate of some quantity (measured, predicted, calculated)

• x t = actual value (unknown true nature)

• e = x - x t (unknown error)

Uncertainty in x is a representation of the error estimate ee.g. probability distribution function of e

• Variability in x vs. Uncertainty in x

• Uncertainties in general have structures, in time and in space

Page 16: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

MAIN SOURCES OF UNCERTAINTIES INEND-TO-END COMPONENTS

• Physical model uncertainties

– Bathymetry

– Initial conditions

– BCs: surface atmospheric, coastal-estuary and open-boundary fluxes

– Parameterized processes: sub-grid-scales, turbulence closures, un-resolved processes

• e.g. tides and internal tides, internal waves and solitons, microstructure and turbulence

– Numerical errors: steep topographies/pressure gradient, non-convergence

• Bottom/geoacoustic model uncertainties

– Model structures themselves: parameterizations, variability vs. uncertainty

– Measured or empirically-fit model parameters

– BCs (bathymetry, bottom roughness) and initial conditions (for flux models)

– 3-D effects, non-linearities

– Numerical errors: e.g. geological layer discretizations, interpolations

Page 17: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

MAIN SOURCES OF UNCERTAINTIES INEND-TO-END COMPONENTS (Continued)

• Acoustical model uncertainties

– Sound-speed field (c)

– Bathymetry, bottom geoacoustic attributes

– BCs: Bottom roughness, sea-surface state

– Scattering (volume, bottom, surface)

– 3-D effects, non-linear wave effects (non-Helmholz)

– Numerical errors: e.g. c-interpolation, normal-mode at short range

– Computation of broadband TL

Page 18: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

MAIN SOURCES OF UNCERTAINTIES INEND-TO-END COMPONENTS (Continued)

• Sonar system model and signal processing uncertainties

– Terms in equation: SL, TL, N, AG, DT

– Sonar equations themselves: 3D effects, non-independences, multiplicative noise

– Beamformer posterior uncertainties, Beamformer equations themselves

• Noise model uncertainties

– Ambiant noise: frequencies, directions, amplitudes, types (manmade, natural)

– Measured or empirically-fit model parameters (Wenz, 1962)

• Target model uncertainties

– Source level, target strength (measured or empirically-fit model parameters)

• Reverberation model uncertainties (active)

– Scattering models themselves: parameterizations (bottom scattering, bubbles, etc)

– Measured or empirically-fit model parameters

Page 19: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Data Assimilation

Page 20: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 21: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 22: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

CLASSES OF DATA ASSIMILATION SCHEMES

• Estimation Theory (Filtering and Smoothing)1. Direct Insertion, Blending, Nudging2. Optimal interpolation3. Kalman filter/smoother4. Bayesian estimation (Fokker-Plank equations)5. Ensemble/Monte-Carlo methods6. Error-subspace/Reduced-order methods: Square-root

filters, e.g. SEEK7. Error Subspace Statistical Estimation (ESSE): 5 and 6

• Control Theory/Calculus of Variations (Smoothing)1. “Adjoint methods” (+ descent)2. Generalized inverse (e.g. Representer method + descent)

• Optimization Theory (Direct local/global smoothing)1. Descent methods (Conjugate gradient, Quasi-Newton, etc)2. Simulated annealing, Genetic algorithms

• Hybrid Schemes• Combinations of the above

- Lin- Lin., LS- Linear, LS- Non-linear, Non-LS- Non-linear, LS/Non-LS- (Non)-Linear, LS

-Non-linear, LS/Non-LS

- Lin, LS- Lin, LS

- Lin, LS/Non-LS- Non-linear, LS/Non-LS

Page 23: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Harvard Ocean Prediction System - HOPS

Page 24: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 25: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

PAA PAO

POA POO

Physics: xO = [T, S, U, V, W]

Acoustics: xA = [Pressure (p), Phase ()]

x = [xA xO]cO

P = (x – x t ) ( x – x

t )Tˆ ˆ

Coupled discrete state vector x (from continuous i)

Coupled error covariance

Coupled assimilation

x+ = x- + PHT [HPHT+R]-1 (y-Hx-);

P =

x- = A priori estimate (for forecast) x+ = A posteriori estimate (after assimilation)

Page 26: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Real-Time Initialization of the Dominant Error Covariance Decomposition

• Real-time Assumptions• Dominant uncertainties are missing or uncertain variability in initial state, e.g., smaller mesoscale variability

• Issues• Some state variables are not observed• Uncertain variability is multiscale

• Approach: Multi-variate, 3D, Multi-scale• “Observed” portions

• Directly specified and eigendecomposed from differences between the intial state and data, and/or from a statistical model fit to these differences

• “Non-observed” portions• Keep “observed” portions fixed and compute “non-observed”portions from ensemble of numerical (stochastic) dynamical simulations

Page 27: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

PRIMER

Page 28: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

PRIMER End-to-End ProblemInitial Focus on Passive Sonar Problem

Location: Shelfbreak PRIMER

Region

Season: July-August 1996

Sonar System (Receiver): Passive

Towed Array

Target: Simulated UUV (with

variable source level)

Frequency Range: 100 to 500 Hz

Geometries: Receiver operating on

the shelf shallow water;

target operating on the shelf slope

(deeper water than receiver)

Page 29: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

PHYSICAL-ACOUSTICAL FILTERING IN A SHELFBREAK ENVIRONMENT

Page 30: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 31: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Acoustic paths considered (as in Shelfbreak-PRIMER),overlaid on bathymetry.

Page 32: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Histogram of Difference Between Model and Measured SIR, SIRE-PDF

Difference Between Model and Measurement, dB

• Represents uncertainty in our ability to model actual performance of system

•Accounts for inherent variability of environment not known by current model

Page 33: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Determination of PPD (Predictive ProbabilityOf Detection) using SIRE-PDF

Systems-based PDF (incorporates environmental and system uncertainty)

Used by UNITES to characterize and transfer uncertainty from environment through end-to-end problems

Page 34: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

• Novel approach: coupled physical-acoustical data assimilation method is used in TL estimation

• Methodology: coupled physical-acoustical identical-twin experiment– ESSE based– Model generates “true” ocean– 79 member ensemble for a priori estimate– Coarsely sampled CTD and TL measurements are

assimilated for a posteriori estimate

Starting with physical environmental data, compute the PPD from first principals via broadband TL

Page 35: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 36: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 37: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Monte Carlo simulation example: transfer of ocean physical forecastUncertainty to acoustic prediction uncertainty in a shelfbreak environment.

Page 38: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 39: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Coupled ESSE data assimilation of sound-speed and TL data

for a joint estimate of

sound-speed and TL fields

(a)

(d)

(b)

(c)

Page 40: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

(a)

(d)

(b)

(c)

Page 41: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

(a)

(d)

(b)

(c)

Page 42: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 43: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics
Page 44: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Predicted PDF of

broadband TL

Page 45: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

PDF of broadband

TL after assimilation

Page 46: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

• Oceans physics/acoustics data assimilation: carried-out as a single multi-scale joint estimation for the first time, using higher-moments to characterize uncertainties

• ESSE nonlinear coupled assimilation recovers fine-scale TL structures (10-100m) and mesoscale ocean physics (10km) from coarse TL data (towed-receiver at 70m depth, one data every 500m) and/or coarse C data (2-3 profiles over 40km)

• Two notable coupled processes:

– Shoreward meander of upper-front leads to less loss in acoustic waveguide (cold pool) on shelf

– Corresponding thickening of thermocline at the front induces phase shifts in ray patterns on the shelf

• Broadband TL uncertainties predicted to be range and depth dependent

• Coupled DA sharpens and homogenizes broadband PDFs

CONCLUSIONS: Coupled ESSE Identical-Twin Experiments

Page 47: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Summary

Page 48: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

End-to-End System Concept

• Sonar performance prediction requires end-to-end scientific systems: ocean physics, bottom geophysics, geo-acoustics, underwater acoustics, sonar systems and signal processing

• Uncertainties inherent in measurements, models, transfer of uncertainties among linked components

• Resultant uncertainty in sonar performance prediction itself

• Specific applications require the consideration of a variety of

specific end-to-end systems

Page 49: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Representation of Uncertainties• Research on the representation of uncertainties and transfers is

important

• Efficient representations vary with scales, processes and applications

• Attribution of uncertainties to unmeasured or unmeasurable variabilities, data errors, model errors, and methodological errors

• Sensitivity studies to determine the hierarchy of uncertainties

• Representation of uncertainties via PDFs is yielding useful resultso research on nonlinear and non-Gaussian effectso construction of multivariate interdisciplinary PDFs

• Confidence level of the uncertainty should be estimated for scientific purposes

• Monte-Carlo (ensemble) is a general method for transferring uncertainties across interfaces

o results used to develop useful representations in terms of scalars, vectors, covariances, etc.

Page 50: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

Data Assimilation

• Data assimilation in physical oceanography is now being extended to interdisciplinary ocean science

• Data and models are melded to estimate state variables (fields) and parameters

o estimation theory or control theory techniqueso melded estimate better than either the model or the data.o weighting scheme based on data errors and model errors o data assimilation based on errors is naturally applicable to uncertainty studies

Page 51: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

• Assimilation of physical data extends the usefulness of that data for acoustic propagation

• Data assimilation coupling oceanography and acoustics is being initiated

o assimilation of transmission loss, noise and reverberationo research will involve PDFs which are range, depth and azimuth dependent

• Multivariate approach, using interdisciplinary acoustical-physical-geological covariance matrices, is a key element of the method.

Data Assimilation

Page 52: Prediction Systems With Data Assimilation For Coupled Ocean Science And Ocean Acoustics

• Entering a new era of fully interdisciplinary ocean science and ocean acoustics

• Ocean prediction systems for science, operations and management

• Interdisciplinary estimation of state variables and error fields via multivariate physical-biological-acoustical data assimilation

• Novel and challenging opportunities for theoretical and computational acoustics

CONCLUSIONS