75
Content Relation between symmetry of crystals and crystal properties Preparation of Nanostructures (Pˇ ıprava Nanostruktur) Jaroslav Hamrle [email protected] December 16, 2014 Jaroslav Hamrle Preparation of Nanostructures(Pˇ ıprava Nanostruktur)

Preparation of Nanostructures (Príprava Nanostruktur)alma.karlov.mff.cuni.cz/hamrle/teaching/lectures/hamrle_atr_spr.pdf · symetrie krystal u a jejich vliv na vlastnosti materi

  • Upload
    lamdan

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Preparation of Nanostructures(Prıprava Nanostruktur)

Jaroslav Hamrle

[email protected]

December 16, 2014

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Prekrytı obsahu prednasky s jinymi predmety:

MBE, naparovanı (sputtering) → Hlubina (vakuova fyzika)

absorbce, desorbce molekul na povrsıch→ Hlubina (vakuovafyzika)

tenke vrstvy (naparovanı, sputtering, CVD) → Postava

techniky studia tenkych vrstev (XRD, SEM, AFM, RHEED,LEED) → jine predmety

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Vyucujıcı (2014-2015)

Vyucujıcı (2014-2015)

Jaroslav Hamrle

Rudolf Sykora

Illa Ramakanth

Radek Jesko

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Nabızeny obsah prednasky:

Illa Ramakanth (3 lessons)

1 Chemical deposition methods for the formation of thin films

Chemical approach (preparation)Chemical Vapor Deposition (CVD) process (chemical method)Electrodeposition and solid phase method (chemical method)Co-precipitation approach (chemical method)Sol-gel (chemical method)Hydrothermal synthesis / Solvothermal method (chemicalmethod)Ultrasonic assisted wet chemical routeSpin coating (chemical method)Lithography

2 Fullerenes: Structure, Preparation, Properties & applications

3 Carbon Nanotubes: Structure, Preparation, Properties &applications

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Nabızeny obsah prednasky:

Rudolf Sykora

krystalografie, 2D krystalografie, pocitani vzdalenosti rovin

relaxace povrchu,

elektronova struktura povrchu (kap 2 ze surface science)

kap. 8. + 9.rekonstrukce povrchu; atomova struktura povrchu

kap. 11. elektronova struktura povrchu

Radek Jesko

fyzikalnı depozice: MBE, naprasovanı (sputtering) [bude upresneno]

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Nabızeny obsah prednasky:

Jaroslav Hamrle

symetrie krystalu a jejich vliv na vlastnosti materialu

absorbce, desorpce, teorie rustu krystalu a tenkych vrstev (?)

charakterizacnı techniky podle zajmu (napr. NMR, surfaceplasmons a ATR, MOKE ?)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Praktikum z pokrocilych technologiı

Dve moznosti jak probehne praktikum:

1 exkurze nebo2 prıprava a charakterizace feritu:

napr. CrFe2O4, ZnFe2O4, CuFe2O4, NiFe2O4, BiFeO3

8 vzorku (2 tloustky, 4 zıhacı teploty), pripraveno pomocıdippingcharakterizace: XRD, VSM, AFM (prıpadne SEM), prıpadneelipsometrie a magento-opticka spectroskopie, prıpadne XPSrealna sance opublikovat vysledky (nynı studujeme podobnousadu vzorku)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Type of structures

Types of structures

bulks (including bulk superstructures)

layers

2D structures (lithography, self-organizing growth)

3D structures (special lithography, 3D printing)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Basic material structures

Basic material structures from material point of view:

single crystal (also known as monocrystals or epitaxial)

polycrystals (small single crystals randomly oriented)

amorphous (e.g. glass)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Crystal growth techniques I: using one solvent

slow cooling of the solvent (rozpoustedlo): substances that are muchmore soluble in a solvent at high temperature than at low temperature

slow evaporation of the solvent [solvent evaporates → crystal growth]

solvent can be also liquid metal (e.g. Sn-tin)

http://en.wikipedia.org/wiki/Recrystallization_(chemistry)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Crystal growth techniques I: using two solvents

Two solvents (substances that are very soluble in one solvent and insoluble in asecond solvent. The two solvents must be miscible, i.e. soluble in each other inall proportions):

two solvent evaporation [dissolve substance in good solvent → add badsolvent → good solvent evaporates → crystal growth in bad solvent]

two solvent liquid diffusion [dissolve substance in good solvent → addbad solvent → crystal growth in mixture of bad and good solvent].

two solvent vapour diffusion [dissolve substance in good solvent → addbad solvent to surrounding → bad solvent mixes with good throughdiffusion of vapours → crystal growth in bad solvent]

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Crystal growth techniques II: Czochralski process

hight quality crystal growth of single crystals, to very large size(length 1-2 m, industrial diameter for wafers upto 450 mm)

semiconductors (e.g. Si, Ge, GaAs), metals (e.g. Pd, Pt, Ag,Au), salts, etc.

defects later removed by subsequent zone recrystallization.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Crystal growth techniques III: Laser Heated PedestalGrowth (LHPG)

similar to Czochralski process, butno crucible needed

heating by power laser

high purity and low stress crystals

allows to growth materials withvery high melting points

when heating starts with singlecrystal on top, can produce singlecrystal

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Polycrystal growth: arc melting/remelting

melting or remelting in weekvacuum (usually Ar residualatmosphere)

creation of metalpolycrystals, with definedcomposition

allows to melt smallamounts of materials

vacuum remelting and slowcooling: removal of residualgas and high vapour pressureelements (C,S,O,Mg), largercrystal size, stable structureobtained.

Huag et al, Materials Science and Engineering: A 422, 309, (2006)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Crystal growth: nucleation

1. Crystal nucleation:

small particle of crystal is created (nucleated), with randomcrystallographic orientation.

homogenous/heterogenous (without/with influence of theexternal particle).

nucleus appears slowly (then crystal may growth quickly).

external crystal can be used as a seed.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Crystal growth: growth

2. Crystal growth:

In ideal case, crystal grows layer by layer added to thenucleated seed. The interface between crystal andvapour/solvent is atomically sharp.

Non-uniform lateral growth: The surface advances by thelateral motion of steps which are one interplanar spacing inheight.

Uniform lateral growth: The surface advances normal to itselfwithout the necessity of a stepwise growth mechanism.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Thin film preparation

Techniques of thin film preparation

physical techniques (usually physical vapour deposition,differing by source of vapour (MBE, sputtering, ion plating))

chemical techniques (spin coating, chemical solutiondeposition (sol-gel), chemical vapour deposition)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Physical depostion techniques: physical vapour deposition(PVD)

PVD involes: Vapour formation → vapourtransformation → film formation

Vapour phase creation:evaporation

sputtering

ion plating

Vapour transportation:

collisions (can be related with clusterformation)

ionizations

Condensation on substrate:nucleation, growth, ion bombardment,redeposition etc.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Example of molecular beam epitaxy, (M.Jourdan, Mainz)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sources of vapours I: electron beam evaporators

Local heating by electronbombardment → evaporation of thetarget material → clean depositionof the target

www.mbe-components.com

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Source of vapours II: Effusion cells (Knudsen Cell)

Thermal evaporation out of a heatedcrucible (Tmax ≈ 1800◦C)

www.mbe-components.com

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Source of vapour III: Pulse laser deposition (PLD)

Problem of PLD: droplets (µm-sized balles deposited together with

vapour). http://www.egr.msu.edu/

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Control of the deposition

Deposited thickness gauge

Oscillating Crystal Monitor[change of mass → change ofresonance frequency]

Mass Spectrometer

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering

Sputtering:

ejection of atoms from target due to bombardment ofenergetic particles (E � 1 eV ).

commonly use for thin-film deposition, etching or analyticalmaterial study.

1 create plasma (dc, rf, mw)2 plasma looses energy to surroundings (bombardment)3 for plasma, atoms of noble gas of similar weight as target is

used (e.g. Ar for 3d metals)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

dc-sputtering

http://www.ajaint.com/whatis.htm

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

dc-sputtering: Glow Discharge

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering: example

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering: industrial sputtering of glass

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering: magnetron

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering: magnetron

Added magnetic field drives free electrons:

electrons do not touch the target, and hence do not heat it

electrons are localized above the target, and hence enhancingprobability of ionization of nobel gas ⇒ increases depositionrates

reccombination of free electrons and ions ⇒ glowing plasma

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering: magnetron

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Sputtering: rf sputtering

• Plasma is generated by radio-frequency (rf) field (MHz).

• Rf-sputtering avoids charge build-up on insulating targets (e.g. allows

to sputter oxides).

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Ion plating

Atoms of target are ionized, to increase their speed prior thedeposition → atom can penetrate deeper into the substrateGoal (1): placement of atoms into substrate:

gold plating

steel hardening (e.g. layer of TiN)

Goal (2): crystal defects caused by atom irradiation:

interface roughness control (magnetization anisotropy control)

defects in AFM/FM interface ⇒ exchange bias control

. . .

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

PVD techniques - comparison

http://www.eclatcoating.com/learn/pvdcoating.php

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Chemical deposition

• Involves chemical change at a solid surface• Unidirectional deposition

electroplating (Although very cheap, very high quality Au/Colayers with atomically sharp interface has been demonstrated.)

chemical solution deposition (CSD), or sol-gel (transformationof colloidal solution (sol) into solid layer (gel))

spin-coating: liquid precursor is spread on a thin plate byspinning.

chemical vapour deposition (CVD): gas precursor.

dip coating

electrospray deposition

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Chemical vapour deposition (CVD)

Film components boundin gas molecules

Gas molecules directedon heated substrate

Chemical reactioncreates film material

Gaseous by-products

GaN deposition(NH3+TriMetylGalium)

http://thermodynamik.uni-duisburg.de/mitarbeiter/atakan/cvd_intro.htm

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

CVD - reactors

http://www.timedomaincvd.com

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Ele

ctro

spra

yd

epo

siti

on

http://rsl.eng.usf.edu/Pages/ResearchElectrosprayAmbient.html

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Photolithography: top-down approach

• First, entire layeredstructure is grown. Thenpart of it is etched.• Lateral limit given byoptical resolution (can beovercome UV light,extreme UV, X-ray etc,sub-wavelengthdiffraction masks,immersionphotolithography)• Instead of mask andsubsequent opticalillumination, exposurecan be done by e-beam.• current lateralresolution cca 16 nm.

http://withfriendship.com/user/levis/photolithography.php

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Lithography: standard and lift-off process

Lift-off: mainly to have goodmetal/metal interface.Advantages:•do not need etching.Disadvantages•Retention: not all (usuallymetallic) layer is washed outand stays on the wafer.•Ears: When the metal isdeposited, and it covers thesidewalls of the resist, ”ears”can be formed.•Redeposition: it is possiblethat particles of metal willbecome reattached to thesurface, at a randomlocation.

http://www.microresist.de

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Focused ion beam (FIB) nanofabrication

Focused ion beam (FIB):

1 source of ions (usually Ga+ orHe+)

2 beam optics (similar to scanningelectron microscopy)

3 ions ar focused to sample surface(focus diameter down to 1 nm)

4 local remove of atoms by ions(FIB-milling) http://web2.ges.gla.ac.uk/~mlee/FIBtec.htm

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

FIB nanostructures examples

http://nano.aalto.fi/en/research/groups/mqs/

research/micro_and_nanofabrication/

www.raith.com

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Bottom-up approach

The opposite of thetop-down approach.

Instead of taking materialaway to make structures, thebottom-up approachselectively adds atoms tocreate structures.

http://idol.union.edu/~malekis/ESC24/KoskywebModules/sa_topd.htm

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

The Ideas Behind the Bottom-up Approach

Nature uses the bottom upapproach.

Cells

Crystals

Humans

Chemistry and biology can helpto assemble and control growth. http://www.csacs.mcgill.ca/selfassembly.htm

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Why is Bottom-Up Processing Needed?

Allows smaller geometries than photolithography.

Certain structures such as Carbon Nanotubes and Sinanowires are grown through a bottom-up process.

New technologies such as organic semiconductors employbottom-up processes to pattern them.

Can make formation of films and structures much easier.

Is more economical than top-down in that it does not wastematerial to etching.

http://courses.ee.psu.edu/ruzyllo/ee518/EE518_Top-down%20and%20Bottom-up1.ppt

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Self Assembly

The principle behind bottom-up processing.

Self assembly is the coordinated action of independent entitiesto produce larger, ordered structures or achieve a desiredshape.

Found in nature.

Start on the atomic scale.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Example 1: self-assembled nanodots

1) Self-assembled monolayer of 340 nm-diameter polystyrene spheres2) Ni film deposited and balls removed

AppliedSurfaceScience257,8712,(2011)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Example 2: Self-assembled Monolayers (SAMS)

Molecules are depositedmolecule-by-molecule to form aself-assembled monolayer.

Creates a high quality layers.

Layers are deposited one layer at atime.

Organic molecules can’t be depositedusing extreme conditions because itwould damage the organic molecules.

SAMS technique does not damageorganic molecules.

SAMS films are nearly defect free.

Used to deposit organicsemiconductors.

http://www.mtl.kyoto-u.ac.jp/english/

laboratory/nanoscopic/nanoscopic.htm

http://www.seas.upenn.edu/

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Other examples of self assembly

carbon nanotubes

. . .

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Outline

1 Content2 Relation between symmetry

of crystals and crystalproperties

3 Introduction

4 Bulk crystal growth5 Thin film preparation6 Lateral structures7 ATR / Surface plasma

resonance

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Reflection and total reflection

Snell law:

√ε1 sinϕ1 =

√ε2 sinϕ2

Critical angle:

sinϕc =

√ε2

ε1

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Light reflection on the interface

1 Maxwell equations

2 solution as plane waveE = E0 exp(i(~k ·~r − ωt))

3 boundary conditions at theinterface:~E , ~H fields: continuoustransverse (x , y) components~D, ~B fields: continuous normal(z) components

4 for total reflection, solution oftransverse wave is in form socalled evanescent wave,non-propagating in z-directionE = E exp(−kzz)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Light reflection on the interface

http://www.ece.rice.edu/~daniel/262/pdf/lecture14.pdf

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Light reflection on the interface

Reflection on glass/air

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Total reflection

Critical angle:

sinϕc =

√ε2

ε1=

n2

n1

Evanescent wave:

E = Et exp(−z/δ − iωt)

Penetration depth:

δ =1

k0

√(n1 sinϕ1)2 − (n2

2)

Example: glass(n1)/water(n2)inteerface; n1 > n2

http://www.tirftechnologies.com/principles.php

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Attenuated total reflectance (ATR)

(Zeslabeny uplny odraz)

probes sample by evanescentwave

⇒ sensitive to surface of thesample

sample modifies evanescentwave → partial absorption ortransmission of light in sample→ total reflection is decreased(attenuated).

reflected beam does not followexactly geometrical optics →The Goos-Hanchen shift

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Attenuated total reflectance (ATR): gap effect

Gap thickness (refractivity ofgap=1):

Absorption in gap (gap thickness960 nm):

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Surface plasmon I: derivation

Electric field in the vicinity of the interface:

E = EO exp[i(kxx + kzz − ωt)]

where

k2 = k2x + k2

z = ε (ω/c)2 = εk20 (1)

At the interface of two materials ε1 and ε2:(a) kx continuous over the interface;

kx1 = kx2 (2)

(b) Dz and Ex continuous over the interface

kz1/ε1 = kz2/ε2 (3) http://www.physics.uwo.ca/~smittler/

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Surface plasmon II: dispersion relation

• From Eqs.(1–3) followsdispersion relation for surfaceplasmon:

kx = k0

√(ε1ε2

ε1 + ε2

), (4)

where k0 = ω/c .• Surface plasmon appears onlyfor p-polarized (TM) wave, asthis mode has normal (z)component of D = εε0E field.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Surface plasmon III: example

Example: assuming ε1 = 1 (air)

and ε2 = 1− ω2p

ω2 (metal as freeelectron model of an electrongas). Then

kx =ω

c

√(ω2 − ω2

p

2ω2 − ω2p

)(5)

Hybridization between photon(ω = ck0) and plasmonωSP = ωp/

√2.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Surface plasma resonance (SPR) I

• Resonance between incident wave photon and surface plasmon.Resonance means that both (pseudo)-particles have equal ω andkx = kx,inc = <(kx,sp).•Description of incident wave from material ε1 under angle ϕ:

kx,inc =ω

c

√ε1 sinϕ (6)

• Description of surface plasmon:

kx,sp =(ω

c

)√( ε1ε2

ε1 + ε2

), (7)

Condition for existence of the resonance: <(ε2) < −ε1 (i.e. <(ε2) must

be negative; fulfilled by coinage metals, Au, Ag, Cu). Here, ε1 is assumed

to be non-absorbing material (i.e. =(ε1) = 0).

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

Surface plasma resonance (SPR) II

Surface plasmons are verysensitive to slight perturbationswithin the skin depth ⇒ surfaceplasmons are often used to probetiny changes of refraction indexnear the interface (extremesensitive detector of smallchanges of the refraction index).⇒ Readout of many bio-sensorsbased on this detectiontechnique.

http://www.bionavis.com/technology/spr/

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

SPR: detection I

• presence of resonanceincreases absorptionand reduces reflectivity.• position of reflectionminima very sensitiveto refractivity index inposition of theevanescent wave.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

SPR: detection II

• presence of resonanceincreases absorptionand reduces reflectivity.• position of reflectionminima very sensitiveto refractivity index inposition of theevanescent wave.

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

SPR: how to couple surface plasmon and photon?

couple light byhigh-refraction index prism

lateral modulation of theinterface (roughness orstructuring)

ω/c sinϕ+2π/b = ω/c

√ε2

ε2 + 1(8)

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)

Content Relation between symmetry of crystals and crystal properties Introduction Bulk crystal growth Thin film preparation Lateral structures ATR / Surface plasma resonance

SPR: bio sensors

http://www.bionavis.com/technology/spr/

Jaroslav Hamrle Preparation of Nanostructures(Prıprava Nanostruktur)