86
1 UPS=Ultraviolet Photoemission Spectroscopy XPS=X-Ray Photoemission Spectroscopy AES=Auger Electron Spectroscopy ARUPS= Angular Resolved Ultraviolet Photoemission Spectroscopy APECS=Auger-Photoelectron Coincidence Spectroscopy Electron Spectroscopy for Chemical Analysis (ESCA) BIS= Bremsstrahlung Isocromat Spectroscopy ………………………………….. 1 It is the collective name of a series of techniques of surface analysis

Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

1

UPS=Ultraviolet Photoemission Spectroscopy

XPS=X-Ray Photoemission Spectroscopy

AES=Auger Electron Spectroscopy

ARUPS= Angular Resolved Ultraviolet Photoemission Spectroscopy

APECS=Auger-Photoelectron Coincidence Spectroscopy

Electron Spectroscopy for Chemical Analysis

(ESCA)

BIS= Bremsstrahlung Isocromat Spectroscopy

………………………………….. 1

It is the collective name of a series of techniques of surface analysis

Page 2: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

2

Vacuum level

Fermi level

Free electrons

Ener

gy

kk

,

Filled bands

Core levels h

Photoelectron

J

k

Photoemission spectrum (XPS;UPS):filled states

Empty states

2

Page 3: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

3 3

Page 4: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

4

Fast photoelectrons: no post-collisional interactions

Photoemission cross section: golden rule expression

mn

N3

i ii

Interacting system hailtonian H Perturbation: H'=

' [ ( ). . ( )]2

Equivalent alternative formulation, directly from the relativistic

theory,

H' - d xA(x ) · j(x )

mn m n

N

i i i ii

M a a

eH A x p p A x

mc

The photoemission cross section Dσ(w) can be worked out starting from the Fermi golden rule; the photoelectron is in |f>

wD 22| ' |

i Ff

f H i E E

info on ion left behind from energy conservation 4

Page 5: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

5

2 2 2 2

† †

Hamiltonian after photoionization

H=H , photoelectron KE2 2

H describes final state ionized solid (set of ion states f )

H f f , , f ion,f f

cruci photoelectron andal: io

k k k kk k

f ka

k ka a a a

m m

E

n do not interact

w

D

D

D

22cross section: | ' |

, solid angle accepted by detector

i Ff

f kf

f H i E E

Basic Theoretical framework

5

kn

H'= , k = photoelectron momentumkn k n

M a a

Page 6: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

n

H'= , creates photoelectron

with momentum k

kn k nM a a

w

D

D

D

22cross section: | ' |

, solid angle accepted by detector

i Ff

f kf

f H i E E

†' '

hole state in solid

k km k k m km mm m

f H i f a H i M f a a a i M f a i

m

kn

H'= , k = photoelectron momentumkn k n

M a a

Page 7: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

7

D

D D

If detector accepts a small ,

density of final states for photoelectron;

I am neglecting for simpicity some further dependence on angles

kk

k

w

D

D

2

2 * †

,

2| |

final hole state. Trick:

| |

k km m i kfnf

km mn

km kn n mm n

M f a i E E

m

M f a i M M i a f f a i

7

differential cross section:

Page 8: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

8

w

w

D

D

* †

,

22| |

2k km

k km m i k

kn n

fmf

m i kfm nf

M M i a f f a i E E

M f a i E E

† † 1Imn i k m n m

i k

i a E H a i i a a iE H

w w

differential cross section:

* †

,

* †

,

2

2

k km kn n i k mm nf

k km kn n i k mm n

M M i a E H f f a i

M M i a E H a i

w

w

D

D

sum over final states using closure:

8 A hole Green’s function is involved.

Page 9: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

9

spectroscopic notation KLMNO,...

n=1,2,3,4,5,...

guscio N

4s1/2 N1

4p1/2,3/2 N2,N3

4d3/2,5/2 N4,N5

4f5/2,7/2 N6,N7

XPS from Hg vapour using Al Ka h=1486.6 eV. Lines are labelled by final core hole state of Hg+

9

Page 10: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

10

The same core lines can be observed by X-Ray emission

Dirac-Fock codes do NOT grant good agreement with experiment

Page 11: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Chemical analysis: tiny amounts suffice to recognize elements (binding energies are well known)

11

Page 12: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

12

solid Si 2p XPS core spectrum Si configuration: [Ne]3s23p2

2p is core

12

Page 13: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

13

Milano 4 Luglio 2006

Al valence band Ag valence band

Fermi d band

s band

13

Page 14: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

14

UPS (ultraviolet photoemission) produces slow electrons- excape probability strongly depends on energy and on angles

14

Page 15: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

15

UPS produces slow electrons- excape probability strongly depends on coverage

No Ag

1 monolayer Ag

2 monolayer Ag

background

Background due to incoherent losses: one can measure it by eels

Page 16: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

The universal electron mean free path curve. Electron spectroscopies are surface sensitive (because of outgoing electrons, much more than for incoming photon mean free path)

16

Page 17: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Laplace equation for moving electron (constant speed v = l/T= w/k)

17

3

3( )

4

Since v exp( . ) exp( .v ) and

exp( .v ) ( .v), one obtains:

v (2 ) ( .v)(2 )

i t

i kr t

r t d k ik r ik t

ik t d e k

d kdr t e k

w

w

w w

w w

Jean Baptiste Joseph Fourier

The produced by the fast electron is given by: 4 ( ) ( vt)

To Fourier transform we need:

D divD e r

D

David Penn, Phys. Rev B35 (1986)

Hence, ikD=4 e2 ( -k.v) w

We can explain qualitatively the universal mean-free-path curve by a simpliefied model

The electron is treated as a classical point charge moving in the solid with a constant velocity

Page 18: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

18

2

2

2

2

scr

8 ( v)( , ) is consistent with the above result.

But ( , ) ( , ) ( , )

8 ( v)( , ) .

( , )

We can obtain the screened potential, si

eened poten

nce ( , ) ( )

t

,

e k kD k

i k

D k k E k

e k kE k

i k k

E k ikV k

ww

w w w

ww

w

w w

2

2

8 ( v)ial ( , )

( , )

e kV k

k k

ww

w

ikD=4 e2 ( -k.v) w

Page 19: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

19

23

2

( v) 1decay rate Im( )

2 ( , )

e kd kd

k k

ww

w

2

2

The potential of the screening charges

acting on the electron*electron charge

8 ( v)screened

=self-energy

potential ( , )(

.

But Im(self-energy)=dec

,

ay

)

rate

e kV k

k k

ww

w

Recall: the Dielectric function

1°-order Perturbation theory in exact many-body system

22

0 02

1 4Im 0 ( ) ( )

,k n n

n

en

k k

w w w w

w

Page 20: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

20

23

2

( v) 1Im( )

2 ( , )

is proportional to the sum of the Fourier components of the disturbance

at the excitation energies o

Thus the decay r

f the sy

ate

stem.

e kd kd

k k

ww

w

At tens or hundreds of eV all solids are well approximated by

Jellium (gaps are much less) and behave similarly; at low

energy the losses are often small (Landau quasiparticles are

narrow in energy, as we shall see) and this explains

qualitatively the universal curve.The minimum corresponds

to the energy region in which multiple plasmon excitations

occur.

Page 21: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

21

Shen (PRB 1990) e Tjernberg (J. Phys. C 1997) note that line shape depends strongly on photon energy, since the O cross section decreases with energy faster.

(compare 777.3 eV and 778.9 eV)

CoO valence band in UPS CoO has an octahedral structure and is an antiferromagnet: strong correlation produces a complex multiplet structure which informs us about the screened interaction.

21

hv=777.3 eV

hv=778.9 eV

Page 22: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

22

CoO UPS ultraviolet photoelectron spectroscopy

Still another line shape at 40.8 eV

22

Page 23: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Ag has a surface state at the Fermi energy, s-p states below the Fermi energy and a filled d band 4 eV below.

Page 24: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Exchange splitting in final state ions

2

In the Hartree-Fok picture, NO has a partially filled 2 shell

with spin-orbitals , ; is also paramagnetic.O

Page 25: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

NO

N2

N1s

O2

545 540

binding energy

415 425

binding energy (eV)

O1s

NO

545 540

1.2 eV

0.9 eV 0.9 eV

0.9 eV

25

Ratio 2:1 Ratio 3:1

Core level XPS

Page 26: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

26

+

z

π s π sNO : 4 determinants all with Λ=|L |=1.

π s π s

We must account for singlet-triplet splitting.

1 1The singlet is :

2s s

1 1readily seen to be a singlet since 0

2S s s

3 1

2

s

s s

s

+The partially filled shells of NO include O1s denoted by s below

26

Page 27: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

27

12

12 ,E J J s s

r D exchange integral

Sz=0 sector: 1 1

2s s

3 1

2s s

( ) | 0s h i s

Since determinants differ by 2 spin-orbitals, only the interaction contributes.

Configuration Interaction

1

does not depend on . Compute splitting ini

i i j ij

H h Sr

1 1 1

3 3 3

E H s H s s H s

E H s H s s H s

12

1 1[ ( (1) (1) (2) (2) (1) (1) (2) (2)) ( (1) (1) (2) (2) (1) (1) (2) (2))

2 a a a a J s s s s

r

27

Page 28: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

28

0.88 eV for N

0.68 eV for O

triplet is lower (lower binding energy) by:

12

1( (1) (2) | | (1) (2)) J s s

r

12 12

1 1 1[( (1) (2) | | (1) (2)) ( (1) (2) | | (1) (2))], that is,

2J s s s s

r r

Taking the spin scalar products, two terms vanish, and writing the two—electron integrals

28

Ratio 3:1 (triplet versus singlet)

In a similar way, the 1s spectrum of O2 (binding energy ∼ 547 eV ) has two components separated by 1.1 eV with an intensity ratio 2:1 (quartet to doublet ratio).

Page 29: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

29

Intial state effects

final state effects

electrostatic potential surrounding the atom

before ionization (several eV of either sign )

Polarization around hole (several eV, to lower BE)

One can tell valence and ionicity from shifts

Chemical shifts

Page 30: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

BE eV 535 540

O1s

295 29o

C1s

Binding Energy eV

Acetone

30 The C bound to O is more electropositive and has larger Binding Energy

Page 31: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Pauling electronegativity scale

Page 32: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Binding energy

eV

Intial state effects, mainly

300

295

Pauling charge

0 10 20

CH4

CF4

CHF3

CO2

CO

CH3OH

CS2

Page 33: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

33

the missing line 1

2

4 p Extreme initial state effects:

According to Dirac-Fock, a 4p1/2 line should exist between 4s and 4p3/2, but none is seen

4s 3

2

4 p

1

2

4 ?p

Page 34: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

34

11.1 eV away from DSCF

virtual processes:

4p1/2 hole 2(4d) holes + electron

and Back

Xe+ Xe++ +e resonance

9.4 eV away from DSCF

A large self-energy merges 4p ½ with Auger continuum. Many body theory beyond HF is not a matter of refining the position of peaks!

Page 35: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Core level XPS spectra: large

relativistic effects for large Z

Page 36: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Core level XPS spectra- chemical shift

Page 37: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

37

Hole Screening satellites Energy shifts to lower binding

The ion is left excited because of correlation, coupling to phonons, plasmons, etc.

Low –energy satellites arise from excited final states

Screening wins at threshold (final-state shift)

Useful approximate scheme: final-state Hamiltonian is different because of the potential of the hole.

Final-state effects in photoemission spectroscopy

By energy conservation: h = final ion energy + photoelectron energy

Postcollisional interactions seldom involved for fast photoelectrons

excited ion slower photoelectron, but hole screening faster photoelectron.

Page 38: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

38

Shake-up satellites DHF approximation)

We can treat Hfin in Hartree-Fock approximation if we allow for a different final-state Hamiltonian while initial state |i> is the ground state without the hole. Then we can treat the initial state Hiniz in Hartree-Fock as well.

Page 39: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

f

iniz i

in

niz without core hole,

with core hole potential.

Core Photoemission line shape: core GF

1Im core

, has core hole and frozen orbitals :

no eigenstate

O

of H

D S

c

c c c

fin

c

fin

G

G i a H a

H i E i

H

a i f

i

i

w

w w w

DHF approximation

Method to obtain the answer from the difference of eigenvalues of two HF calculations

Page 40: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

40

2| |if

w w

ion eigenstates

ifFrozen determinant (N-1 spin-orbitals, obtained by removing core state spin-orbital from neutral HF determinant)

eigenstates of Hfin; in HF, they are determinants of N-1 relaxed spin-orbitals computed with core-hole.

Overlap of determinants=determinant of overlaps: all N-1 body states contribute

Ground-stateground state = threshold, other peaks = satellites

fin

1Im c c cG i a H a i w w w

Page 41: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

41 Satellites perfectly balance the relaxation shift

Shake-up

satellites

Discrete excited states

Shake-off

satellites

Continuum excited states

Sum rules

w w w w

2 2

, , 1d d i f i f

ww w w w w

2 2

, ,

, , ,fin fin

d d i f i f

i f H if i f H i f

Page 42: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

From Siegbahn’s lectures. In solids, vibrations but also plasmons

electron optics allow resolution 0.001:

sees rotovibrational structure

E

E

UPS

D

Page 43: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

http://www.casaxps.com/help_manual/manual_updates/xps_spectra.pdf

Page 44: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

http://www.fisica.unige.it/~rocca/Didattica/Fisica%20dello%20Stato%20Solido%20(Scienza%20ed%20Ingegneria%20dei%20Materiali)/7%20plasmons%20and%20surface%20plasmons.pdf

Page 45: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve
Page 46: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

46

Transverse electromagnetic wave in conducting (J=E) homogeneous non magnetic medium

iSi

( ( ),0,0) (0, ( ),0) (0

mpl

,0, )

: no and the current ( ( ),0,0s )e t case

i t i t

i t

nd

E E z e B B z e S E B S

E J J z e

w w

w

Consider the plane wave going upwards i.e. Poynting vector along z

iMaxwell equations: div 4 0 and div 0ndE B

( , , ) (0

1rot ( ) (

, ( ),0)

)

y z z y z x x z x y y x z

t z

rotE E E E E E E E z

iE z B

cE B

cz

w

( , , ) ( ( ),0

1 4rot

4( ) ( ) ( )

,0)y z z

z

y z x x z x y y x z

tB E Jc c

iB z E z

rotB B B B B B B B

J zc c

z

w

Page 47: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

47

rot ( ) ( )1

t zE Bc

iE z B z

c

w

1 4 4( ) ( )ot ( )r zt

iB E BJ

c ccz E z J z

c

w

22

2 2

4( ) ( )z

iE z E z J

c c

w w

Putting together the above inhomogeneus equations, namely,

One finds inhomogeneous wave equation

( ) ( ) ( )J z E z w

Assuming a transverse elecromagnetic wave in homogeneous local medium

2 22

2 2 2

4 4( ) ( ) 1 ( ) ( )z

i iE z E z J E z

c c c

w w w w

w

Page 48: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Maxwell equations in medium with constant dielectric constant:

yield waves with , refraction index, ,

and for non-magnetic media, assuming =1. Thus,

cc n n

n

22 thedielectric func

4, ( ) 1 ( )

( )tion

c ic

w w

w w

22

2

4( ) 1 ( ) ( )z

iE z E z

c

w w

w

50

Page 49: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Drude’s classical theory

v vrelaxation tim, e

d mm F

dt

( )F e E v B

In case of constant field, for times t>>

one finds : , mobilitye

v Em

0

0

In case of oscillating field :

v v

i t

i t

E E e

d mm eE e

dt

w

w

51

0

0 0

solved by v v

1( )v

i t

i t i t

is e

m i e eE e

w

w ww

0 00v .

1 1( )

eE Ee

m im i

ww

Page 50: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

0 00v .

1 1( )

eE Ee

m im i

ww

00This produces a current ( ) v v

1

i t i tEeJ t ne ne e ne e

m i

w w

w

22 2 2

00

22

Hence we get a conductivity

( ) 1 1 4( ) ,

( ) 1 1 4 4

4where where plasma frequency.

p

p p

J t ne ne ne

E t m i i m m

ne

m

w w

w w

w w

51

22

2

22 the Drude dielectric functi

e.m wave in cond Recall:

4( ) 1 ( ) ( )

4, wh

ucti

ere

ng mediu

on( ) 1 )

m

(( )

z

iE z E z

c

c ic

w w

w

w w

w w

Page 51: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Drude dielectric function

2

01 2

2 2 2 2

1 22 2 2 2

( )( ) 1 ( ) ( ) 1 ( ) ( )

1( )

( ) 1 , ( )1 (1 )

p

p p

i iii

w w w w w w w

w w w w

w w w w

w w w

w

w

Page 52: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

2 2

2 2

1 2

2 2

1

Low frequency region: 1, ( ) 1 , ( )

Typically 1, is large negative

p

p

p

w w w w w

w

w

2 2

1 22 3intermediate frequency region: 1 , ( ) 1 , ( )

large refractive index, metal reflects

p p

p

w ww w w w

w w

2 2

1 22 3high frequency region: , ( ) 1 1

is transpare

, ( ) 0

meta nl .t

p p

p

w ww w w w

w w

Page 53: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Maxwell equations imply 2

2

2k

c

w w

2 2

2

2

41 ,

p

p

ne

m

w w w

w

Simple metals have

propagating waves have

Summary on plasmons

3

12, 1 13.6

5.64 3.51

3.0 9.07

2.0 16.66

p

s

s p

s p

s p

Ry Ry eVr

Cs r eV

Au r eV

Al r eV

w

w

w

w

From Blaber et al., J.Chem.Phys (2009) experimental, with g=1/

Page 54: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

http://www.phy.cuhk.edu.hk/course/surfacesci/mod3/m3_s2.pdf

surface plasmon

Page 55: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Surface plasmon polaritons

are plasmon-photon modes

localized at an interface.

Consider vacuum for z>0 with =1 and metal with w for z<0, wave propagating along x.

X

z

1

i

nothing depen

Look for solutions with:

( ( , ), ds on y0, ( , )) (0, ( , ),0)

0 0

x

i t i t

x z y

nd

iq

E E x z E x z e B B x z e

J

w w

iMaxwell equations inside solid: div 4 0 and div 0ndE B

( , , ) ( , ,0)

1

y z y z z x x z

y z x x z

x y y x y z z x x zrotE E E E E E E E E

i B E E

E

BrotE

c tw

(

( , , ) ( ,0, )

1 )

( )

y z y z z x x z x

z

y y x z y x

y

x y y z

y

x

rotB B B B B B B B B

D ErotH rotB

c t

B i E

B iqB i Ec t

w w

w w

2 2

21 1

( )

p p

i

w w w

ww w

E

Page 56: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Derivation of the wave equation for (0, ( , ),0) inside the solid:

equations say:

( ) ( )y z x x z z y x x y y z

i t

y

i B E E B i E B iqB i E

B B x z e

Maxwell

w

w w w w w

2

2

2 2

Differentiating the second ( ) ( )

and substituting in the first

, that is, ( ) ( )( )

z y x z y z x

z y

y x z y z y x z

B i E B i E

Bi B E B B i E

i

w w w w

w w w w ww w

22 2

2

2

2

22 2

E is eliminated using the third,

( ) ( ) ( )

and substituting we get a wave equation for :

( ) ( )

(changes from free case: and c

inside

(

:

z

x y

y z y

x

y z y x z

y

B

B iqB i E i

q

q B i E

B

Bc

cq

w

w w w w

w

))w

22 2

2outside ( ) (same with 1 instead of ) : y z yB q B

c

w

Page 57: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

0 localized e[ ( xcita) ( ) ] tionz z

yB B z e z eg g

2

2

0

0

, 0

, 0

z

x

z

ci B e z

Ec

i B e z

g

g

g

w

g

w

Next, we find the electric field, which is also localized:

evanescent wave solution: exponentially localized at surface

2 22 2 2

02 2

2 22 2 2

02 2

inside ( ) ( ) ( ) , ( )

outside ( ) ( ) ,

:

:

z

y z y y

z

y z y y

B q B B B z e qc c

B q B B B z e qc c

g

g

w w w g w

w w g

Substituting into ( )z y xB i Ew w

Page 58: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Continuity condition for electric field at z=0 dispersion law 2

2

0

0

2 22 2

, 0

continuity of

, 0

requires ( )( )

z

x

z

ci B e z

Ec

i B e z

c c

g

g

g

w

g

w

g gg g

w w w

This requires 0 that is, below .p w w

2 2

2 22 2

2 2

2 22 2 2

2 2

( ( )) establishes a link between q and ω through ( ) :

indeed, recall and ( ) .

( ) ( ) ( )

q qc c

q qc c

g w g w

w wg g w

w w w w

22

2

22

2

inside ( )

outside

:

:

qc

qc

wg w

wg

Page 59: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Polariton Dispersion law

2 2 2 2 2 2 2Expand ( ) ( ) ( ) 0c q c qw w w w

2 2 2 2 2 2 2So, ( ) ( 1)*something else. Indeed,c q c qw w

2 22 2 2

2 2Solve ( ) ( ) ( ) for .q q

c c

w w w w w

Remark: for =1 any must work (indeed, =cq). w w

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

( ) 0 can be rewritten ( (c q - )+c q )=0,

(just multiply to see)

so thecondi

( -

tion is: ( ) (c q - )+c q

1)

0.

c q c q

really

w w w w

w w

Page 60: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

2 2 2 2 4 4 41( ) [ 2 4 ]

2sp p pq c q c qw w w

the other sign is not acceptable because it gives

2

2that implies 1 0.

p

P

ww w w

w

2 2

2

2

2 2 2 2 2 4 2 2 2 2 2 2 2

2

1 1 wecan solve for ( ) :

( )

(

w

1 )(c q - )+c q 0

ith Dr de

2

u

0.

p p

p

p p

qi

c q c q

w w w w

ww w

ww w w w w

w

2 2 2 2 2Polariton dispersion: ( ) (c q - )+c q 0; w w

Explicit Polariton Dispersion law-Drude dielectric function

2 2 2 2 4 4 41However ( ) [ 2 4 ]

2

gives a photon-like non-localized mode

sp p pq c q c qw w w

Page 61: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

2 2 2 4 4 41[ 2 4 ]

2 2

p

p pc q c qw

w w

2 2 2 4 4 41[ 2 4 ]

2p pc q c qw w

p

cq

w

p

cqw

w

6 1 8 1/ 1 10 10pcq for q cm cma

w

( )

p

qw

w

There are also localized phonon modes at interfaces.

surface plasmon branch

photon branch

Page 62: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

62

h

New equilibrium position for Harmonic oscillator

Plasmon oscillator shift by uniform field E

E

-3 -2 -1 1 2 3

2

4

6

8

Page 63: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

63

h

New radial equilibrium position for Harmonic oscillator

Plasmon oscillator shift by inner charge

The potential is still harmonic, but minimum is shifted (x=radial coordinate)

22

0( ) ( ) ( )V x V x m x Ow

†1H g d d

ddgddH 0wFinal-state:

Page 64: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

64

Phonon and Plasmon Satellites in Core Spectra- Lundqvist model

Boson mode with frequency 0w before photoemission

0 0H d dw† , 1d d

Initial state: i vac

excited states:

!

n

d

dn vac

n

2 2

0

1( )

2V x M xwHarmonic oscillator

Sudden change of H due to photoionization

Page 65: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

65

2 2

0

1( )

2V x M xwPhonon oscillators:

x=0 equilibrium bond length. After ionization, bond length changes

-3 -2 -1 1 2 3

2

4

6

8

Sudden change of H due to photoionization

Page 66: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

66

ddgddH 0wFinal-state:

† † *,

Parameter to be determined

s d s dg g

g

shifted bosons

† †, , 1s s d d

2

0

| | n

n

L i H i i n Ew w w

Spectrum =Density of states

0 unshifted vacuum (prevails before core-hole)di

To compute L we use a canonical transformation to new boson coordinates.

Page 67: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

67

)())((~ *

0 ggggw ssgssH

Canonical transformation is time-independent

New H is just the old one in terms of s operators:

ddgddH 0wFinal-state:

† † *,

Parameter to be determined

s d s dg g

g

shifted bosons

Page 68: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

68

† * † *

0( )( ) ( )H s s g s sw g g g g

Canonical transformation is time-independent

New H is just the old one in terms of s operators:

Hamiltonian in diagonal form

2†

0

0

.g

H s sww

ddgddH 0wFinal-state:

0if we choose 0gw g

†,no linear terms in s s

0

gg

w

† * † † * *

0 0 0 0( ) ( )H s s s s g s s gw w g w g g g w g g

Page 69: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

69

Relaxation shift to higher KE 2

0

.g

Ew

D

Remark: 2° order approximati

2

on

0

0 .g

H d d g d d Eww

D

Ground state of

2†

0

0

gH s sw

w s vacuum 0s

0 0H d dw† , 1d d

Initial state: 0di

† † *,s d s dg g shift

instead, the shifted boson vacuum is su

0 0 0 0 co

ch tha

herent state for

t

s s ss d dg

Hamiltonian in diagonal form 2

0

0

.g

H s sww

0

gg

w

Page 70: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

70

0

10 n shifted bosons

!

n

s

s n s n

n sn

H n E n E E nw

D

Solution of Lundqvist model

Franck-Condon factors 2

si n

n shifted plasmons d vacuum

0 unshifted vacuumdi

2

0

| |s n

n

L i H i i n Ew w w

Density of states

Page 71: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

71

2

si n

0 0d sLet C† †

0 0

0 1 0 0 0 0d s d s d s

g gs d C

w w

† †

0

0

1 10 0 0 0 ( ) 0

! !

1

!

snn

d s d s d s

n

gn s d

n n

gC

n

w

w

2

2 2

0 0 0

1C determined by | 0 | 1

!s s

n

d s

n n

gn C

n w

Calculation of

Page 72: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

72

2

0

2 ,

w

gaeC

aNormalization fixes C

2

0

gE

wD Shift of the threshold, like

in second-order

0

0 !

na

n

aL e E n

nw w w

D

1

1 1 0

Poisson distribution!

( 1)! !

na

n

n na a

n

n n n

aP e

n

a an nP e e a

n n

Page 73: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

73

0

0

0

0

2 2

0 0 020 0 0

( ) 1 Normalization OK!

( )!

0!

The center-of-mass of spectrum is the same as for g=0

Satellit

na

n

na

n

na

n

ad L e d E n

n

ad L e d E n

n

a g ge E n E n

n

w w w w w

ww w ww w w

w w ww w

D

D

D D

es balance relaxation shift exactly.

0

0

Properties of !

na

n

aDOS L e E n

nw w w

D

Page 74: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

74

-4 -2 2 4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

.3a

-2 -1 1 2 3 4 5

0.05

0.1

0.15

0.2 3.0a

-2 -1 1 2 3 4 5

0.02

0.04

0.06

0.08

0.1

0.12

.1a

-10 -5 5 10

0.01

0.02

0.03

0.04

0.05

.6a

10 w( ) 0.05,L with broadeningw

Page 75: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

75

w

w w w

ww

w ww

w w

D

D

D

0 0 0

2

0

0

(

00

)

0 0

( ) ( )2

using ,

(

, and

)

!

! !

i t iHt

n ni Et in t ia t in ta a

na

t

n n

n

C

dL t L e i e i

gE a

a aL t e

aL e E

n

n

e e

n

e en

w w is the Fourier transform of ( ) iHtL i H i L t i e i

w

w

w

w

0

00

( )

0

( 1)

( ) ( 1)

exponential at exponent

( )

L(t)=e

where

i t

i t

ia

iHt C t

t a e

C t ia t a e

L t i e i e

Page 76: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

76

Strongly coupled slow modes (e.g. phonons) a>>1

w w 2 2

0 00, finiteg a

22 2

2221

( ) limit2

g tgiHte e L e gaussian

g

w

w

The relaxation energy diverges in the Gaussian limit, which is a serious overestimate;

however the Gaussian line shape is often a good approximation

for phonon broadened core levels in solids and the width provides a sensible

measure of the electron-phonon interaction, although the Gaussian should be convolved with a Lorentzian (producing a so called Voigt profile) to account for the core hole lifetime.

2

22

0 0

0

1lim

! 2

na g

an

ae a n e

n g

w

w w w

Page 77: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

From angular resolved spectra one can find the band structure E(k)

The photon momentum is small The photoelectron keeps its momentum

Page 78: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

Time- and Angle-Resolved Two-Photon Photoemission (TR&AR 2PPE).

Review article: T. Fauster et al., Progr. Surf. Sci. 82, 224 (2007)

A pump photon h1 excites an electron

After a delay of the order of hundreds of femtoseconds (1 femtosecond = 10-15 second) a probe photon h2 takes the electron out.

The pump pulse creates a non-equilibrium distribution of electrons

in the sample and the resulting relaxation dynamics in the

intermediate state (e.g. population decay or carrier localization) are

monitored by the time-delayed probe pulse.

The kinetic energy of the photoelectrons is detected as a function of

their emission angle.

http://www.fhi-berlin.mpg.de/pc/PCres_methods.html

Page 80: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve
Page 81: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve
Page 82: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve
Page 83: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

83

BREMSSTRAHLUNG ISOCROMAT SPECTROSCOPY (bis)

Vacuum level

Fermi level

Free

electrons

Ene

rgy

kk

,

band

Core levels

monochromatic

electron beam

Photons

Inverse Photoemission

83

Photomultiplier

Electron gun

Page 84: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

84

empty states

monochromatic

electron beam

k

J

h

photon detector

BREMSSTRAHLUNG ISOCROMAT SPECTROSCOPY (bis)

84

When the incoming electron energy corresponds to a resonant state , there is an enhanced pobability that the electron is captured end emits a photon

Page 85: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

85 85

Page 86: Presentazione standard di PowerPointpeople.roma2.infn.it/~cini/ts2016/ts2016-13.pdf · Hence, ikD=4 e2 ( -k.v) Σ Σ w We can explain qualitatively the universal mean-free-path curve

86 Image resonance: electron (almost) bound to metal by image potential

86