68
Pressure—Volume—Temperature Equation of State S.-H. Dan Shim (심상헌) Acknowledgement: NSF-CSEDI, NSF-FESD, NSF-EAR, NASA-NExSS, Keck

Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Pressure—Volume—Temperature Equation of State

S.-H. Dan Shim (심상헌)

Acknowledgement: NSF-CSEDI, NSF-FESD, NSF-EAR, NASA-NExSS, Keck

Page 2: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and
Page 3: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Equations relating state variables (pressure, temperature, volume, or energy).

Page 4: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

• Backgrounds

• Equations

• Limitations

• Applications

Page 5: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Ideal Gas Law

PV = nRT

Page 6: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Ideal Gas Law

PV = nRT• Volume increases with temperature

• Volume decreases with pressure

• Pressure increases with temperature

Page 7: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Stress (σ) and Strain (𝜖)

Page 8: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Bridgmanite in the Mantle

Page 9: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Strain in the Mantle

20-30%

Page 10: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

P—V—T EOS

Bridgmanite

Page 11: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Energy

Page 12: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

A Few Terms to Remember

• Isothermal

• Isobaric

• Isochoric

• Isentropic

• Adiabatic

Page 13: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Energy

Page 14: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Thermodynamic ParametersIsothermal bulk modulus

Page 15: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Thermodynamic ParametersIsothermal bulk modulus

Thermal expansion parameter

Page 16: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Thermodynamic ParametersIsothermal bulk modulus

Thermal expansion parameter

Grüneisen parameter

� = V✓ �P�U

V=

1

�CV

✓ �P�T

V

Page 17: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

P—V—T of EOS

Bridgmanite

• KT• α• γ

Page 18: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

P—V—T EOS

Page 19: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Shape of EOS

Page 20: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Shape of EOS

Ptotal

Page 21: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Shape of EOS

Pst Pth

Page 22: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Thermal Pressure

Ftot�� = Fst + F��b + Fe�ec

P(V, T) = Pst(V, T0) + �Pth(V, T)

Page 23: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Isothermal EOS

K = �dP

d lnV=

dP

d ln�

V = V0 exp�PK0

Assumes that K does not change with P, T

Page 24: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Murnaghan EOS

However, K increases nonlinearly with pressure

K = K0 + K 00P

K = �dP

d lnV=

dP

d ln�

� = �0

Ç1 +

K 00K0

P

å

Page 25: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Birch-Murnaghan EOS

F : Energy (U or F)f : Eulerian finite strain

F = � + bƒ + cƒ2 + dƒ3 + ...

V0V= (1 + 2ƒ )3/2

Birch (1978)

Page 26: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Second Order BM EOS

F = � + bƒ + cƒ2

P = 3K0ƒ (1 + 2ƒ )5/2 =3K02

ñ✓V0V

◆7/3�✓V0V

◆5/3ô

K = �VdP

dV=K02

ñ7✓V0V

◆7/3� 5✓V0V

◆5/3ô= K0(1 + 7ƒ )(1 + 2ƒ )5/2

Birch (1978)

Page 27: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Third Order BM EOS

F = � + bƒ + cƒ2 + dƒ3

P =3K02

ñ✓V0V

◆7/3�✓V0V

◆5/3ô®1 � �ñ✓V0

V

◆2/3� 1ô´

� =3

4(4 � K 00)

Birch (1978)

Page 28: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Truncation Problem

• Higher order terms can be large at high P

• 2nd order BM assumes K0´ = 4

• 3rd order BM assumes complex relation among K0, K0´, and K0´´

F = � + bƒ + cƒ2 + dƒ3 + ...V0V= (1 + 2ƒ )3/2

Page 29: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Helmholtz Free Energy

dF = �SdT � PdV

P = �✓ dFdV

T

Therefore, knowing the functional form of free energy with respect to volume change is important for EOS.

Page 30: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Vinet EOS

Vinet et al. (1989)

Page 31: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Vinet EOS

Vinet et al. (1989)

P =3K0(1 � �)

�2exp[�(1 � �)]

� = (V/V0)1/3 � =3

2(K 00 � 1)

Page 32: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Example: Isotherm Fitting

SiC, Nisr et al., in prep.

Page 33: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Parameters to Fit

V0, K0, K´0

Page 34: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Example: Isotherm Fitting

SiC, Nisr et al., in prep.

Page 35: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Example: Isotherm Fitting

SiC, Nisr et al., in prep.

Strong correlation between K0 and K0´

Page 36: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Caution

Fei et al. (2007)

Page 37: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Caution

Do not mix equations and fitting results

Fei et al. (2007)

Page 38: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and
Page 39: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Shape of EOS

Pst Pth

Page 40: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Thermodynamic ParametersIsothermal bulk modulus

Thermal expansion parameter

�KT (V, T) =✓ �P�T

V=✓��Pth

�T

V

Page 41: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Thermodynamic Approach

�Pth = Pth(V, T) � Pth(V, T0) =Z T

T0[�KT ]VdT

Page 42: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Lattice Dynamic Approach

�Pth =1

V

X

���E� ⇡

�(V)

V�Eth[�(V), T]

Debye temperature

Eth =9nR

�3

Z �

0

�3

exp� � 1d�Debye model

Page 43: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Parameters to Fit

V0, K0, K´0γ0, q, θ0

Page 44: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Example: P-V-T Fitting

SiC, Nisr et al., in prep.

Page 45: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Derivation of Thermodynamic Parameters

• Many useful parameters can be derived from Birch-Murnaghan-Debye and Vinet-Debye EOS.

• See Jackson and Rigden (1996, PEPI) for detail

• For example, K, α, (∂Κ/∂T)V, (∂Κ/∂T)S at any given pressure and temperature

Page 46: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and
Page 47: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Lower Mantle Minerals

K0 (GPa) γ0 q θ0 (K)

Bridgmanite 250-260 1.3-1.7 1.2-1.7 1000

Ferropericlase 160-165 1.4 1.3 673

CaSiO3 Pv 220-250 2 0.6 1000

Fiquet et al (2000), Shim and Duffy (2000), Shim et al. (2000), Stixrude et al. (2011)

• Density and elasticity of pyrolite agree reasonably well with those of PREM.

• Density of MORB is 2-3% higher than pyrolite throughout the lower mantle.

Page 48: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Pressure Scale

Shim et al. 2001

660

Page 49: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Pressure Scale: Post-Spinel

Ye et al. 2014

Page 50: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Pressure Scale: Post-Perovskite

Shim 2008

Page 51: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

So What is Problem?

• Stress conditions

• Temperature conditions

• Extreme thermal contribution — electronic contribution in metal pressure standards

Page 52: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

P(Au) — P(Pt) — P(MgO)PA

u - P

MgO

(GPa

)

PMgO (GPa)

Au/Pt (F07_BM) vs MgO (S01_BM)

Ye et al. (2016) in prep.

Page 53: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Bridgmanite

VIIIMg2+VISi4+O3

Fe2+Fe3+Al3+

Page 54: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Bridgmanite

Lundin et al. 2008

Fe2+

Page 55: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Bridgmanite

Catalli et al. 2011

Fe3+Al3+

Page 56: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Ferropericlase

Fei et al. 2007

Page 57: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Ferropericlase

Wentzcovitch (2009)

Page 58: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Stishovite: Effect of Water

• δ—AlOOH• Phase H (Nishi et al. 2014)• δ—H (Ohtani et al. 2014)• SiO2 (Spektor et al. 2011)

�G = �U + P�V � T�S

Page 59: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Stishovite: Effect of Water

Nisr et al., in prep.

Page 60: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Nexus for Exoplanet System Science

http://www.nexss.io

Page 61: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Seager (2007)

IronSilicateWater

Hydrogen

Mass-Radius Relations

Page 62: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Earth-Like Exoplanets

Pepe et al. (2013) Nature

Page 63: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Elemental Abundances

Bond et al. (2010)

Page 64: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Carbide Planets

Nisr et al., in prep.

Page 65: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Further Readings

• Jackson and Rigden (1996) PEPI

• Anderson (2000) GJI

• Shim and Duffy (2000) AmMin

Page 66: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and

Future

• Better description of thermal part

• Better description of electronic contribution

• New experimental techniques

• Demand from exoplanet field

• Database with community agreement (?)

Page 67: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and
Page 68: Pressure—Volume—Temperature Equation of State · 2016. 7. 5. · Derivation of Thermodynamic Parameters. •Many useful parameters can be derived from Birch-Murnaghan-Debye and