23
Printed Electronics and Additive Microelectronic Packaging For RF/Microwave Applications Prof. Craig Armiento University of Massachusetts Lowell Raytheon UMass Lowell Research Institute (RURI) Printed Electronics Research Collaborative (PERC) iMAPS Northeast Workshop, May, 2, 2017 1

Printed Electronics and Additive Microelectronic Packaging ... presentations/F/F5.pdfPrinted Electronics and Additive Microelectronic Packaging For RF/Microwave Applications Prof

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

PrintedElectronicsandAdditiveMicroelectronicPackagingForRF/MicrowaveApplications

Prof.CraigArmientoUniversityofMassachusettsLowell

RaytheonUMassLowellResearchInstitute(RURI)PrintedElectronicsResearchCollaborative(PERC)

iMAPS NortheastWorkshop,May,2,20171

Outline

• ChallengesforPrintedElectronicsforRF/MicrowaveApplications

• PrintedElectronicsResearchthroughCorporate-AcademicPartnerships• Raytheon-UMassLowellResearchInstitute(RURI)• PrintedElectronicsResearchCollaborative(PERC)

• UniversityofMassachusettsLowell- FacilityandCapabilities

• SampleProjects• PrintedFrequencySelectiveSurfaces(FSS)• Ferroelectricinkandprintedvaractors/phaseshifters• Additivemicroelectronicpackaging• 3Dantennaarrays• Printedconnectors

• ClosingThoughts

2

PrintedElectronicsandMicroelectronicPackaging• PrintedElectronicstechnologyworksinthedimensionalregimebetweenthesubmicron

geometriesofICsandthemuchlargerdimensionsofPCBs… whichisthescaleneededformicroelectronicpackaging

FeaturesizesICs<1micron packaging:10’sofmicrons PCBs:100’sofmicrons

• TheperformancerequirementsofRF/microwavesystemsrequirebestofbreedsemiconductoractiveICs

• PrintedRFtransistorsarenotreadyforprimetimeduetothelowmobilityofprintedsemiconductors• Microwavemodulesrequireavarietyofdifferentfunctionalitiesandrequiretheintegration

ofmanydifferentcircuitelements,interconnectsandconnectors

3

ApplicationsforPrintedRF/MicrowaveElectronics

• DefenseApplications• Lowcost,flexibleradarsystems

• Anythingthat’swireless (withanAntenna)• IoT

• 5GCellPhones• 30GHz,64elementantennaarrays

• MedicalDevices• Smartdrugdeliverysystems

4

PEChallengesinRF/MicrowaveApplicationsComplexCircuit/ModuleDesignElectromagneticsimulationratherthanconventionallumpedelementmodeling

IntegrationofActiveElectronicsNeedtointegratehighperformanceICsandprintedCPWinterconnects

HighFrequencyInterconnectsNeedcontrolledimpedanceinterconnects,reduceparasitics.Surfaceroughnessmatters

SubstrateandInkDevelopmentPlasticfilmsnotdevelopedforelectronicsproperties.Surfacefinish,dielectricpropertiesneedtobecontrolled

MaterialCharacterizationDielectricpropertiesneededathighfrequencies.Mechanical,thermalpropertiesofprintedmaterialsandinks

ThermalManagementNewsubstratematerialswillchallengethermalmanagement– particularlyinhighpowerapplications

ConnectorsIfthegoalistochangetheformfactor(e.g.,flexible)whyusestandardconnectors?

TunabilityReconfigurablecomponentstomaximizeperformancesuchasphased-arrayantennas

Coplanar Waveguide (CPW)

Printed metasurfaceantenna with SMA

connector5

RURI/PERCInitiative:What&Why• ResearchFocus:PrintedElectronics(PE)&AdditiveManufacturing(AM)

• FocusonwirelessandRF/microwaveapplications• Materials,processes,devices,characterization,integratedmodeling• 2Dand3D,flexible,conformableformfactors• InitialfocusonDoDapplicationsbutexpandingtocommercialapplications

• Design,fabricateandcharacterizematerialsandprototypedevicesquickly• Acceleratesproductdesign,designerscantakemorerisk

• CorporatepartnershipsonsponsoredresearchprojectsrelatedtoAM/PE• DevelopthesupplychainforPrintedElectronics• Pursuecorporate,stateandfederalandfundingopportunities• Leverageuniversityinfrastructureandexpertise

• Plasticsengineering,nanomanufacturing• TalentAcquisition

• TrainthenextgenerationofengineersinAMandPE6

PEResearchThroughCorporate/AcademicPartnerships

• PrintedElectronicsResearchCollaborative(PERC)• PERChasraisedover$6.7Mincorporateandfederalfunds• Prepositionteamsforfederalfundingopportunities• 13companieshavejoinedPERC…morecoming

Changing the form factor and reducing cost for radar systems

Bringing the Supply Chain Together to Speed Innovation and Adoption7

• Raytheon-UMassLowellResearchInstitute(RURI)• Newco-locationmodelforuniversity-industrycollaboration• Raytheonemployeeshaveoffices,workwithUMLfaculty,students• ProjectssupportedfrominternalR&Dfunds• Significantpartnershipsinfederalfunding

DevelopingthePrintedElectronicsSupplyChainSystems

PhasedArrayAntennas

FrequencySelectiveSurfaces

SubsystemsAM-Based

PrintedCircuitBoards

PrintedTransistors

AntennasComponents MetamaterialBasedDevices

ThinICswithPrinted

Interconnects

ThermallyConductive

Inks

PrintableMaterials

ElectricallyConductive

InksDielectrics

CNTs&graphene

FlexiblelowlossSubstrates

Ferroelectricmaterials

ProcessingEquipment

Functionalinkprinters-2D

3Dstructuralprinters

Functionalinkprintersfor3D

objects

Optical&thermalsintering

Pick&Placediemountingonflexsubstrates

Modeling&DesignforAM

EMagDesign&simulation

Softwarefor2Dto3D

circuitlayout

ModelingToolIntegration;

Structural,EMag,thermal…

Materialsmodeling&engineering

FlexiblePhasedArrayRadar

PERC/RURI has been visited by over 90 companies and organizations 8

RapidPrototypingUsingPrintedElectronicsDesignandSimulation

MaterialDevelopment BST

2D/3DPrinting&Processes

RF/MicrowaveCharacterization

RURI/PERChascapabilitiesforallpartsofthedevelopment

cycle

Design iterations for additive processes measured in days not months 9

ExtensivePrintedElectronicsCapabilities• PrintingLab

• Optomec AerosolJet• nScrypt Micropen Dispenser

• 4-headandsinglehead• Sonoplot Picoliter Dispenser• Three3Dprinters• PhotonicCuring• KeyenceDigitalMicroscope• 4-pointprobe,profilometer

• ModelingLab• ANSYSMultiphysicsbundle

• MicrowaveTestLab• HPNetworkAnalyzers(20GHzand50GHz)• ThreeWaferProbers• Rhodes&SchwartzSpectrumAnalyzer,VNA

• AntennaCharacterizationLab• Anechoicchamber

• PackagingandSubsystemIntegration• RoboticArmforprintingon3Dobjects

8000sq.ft.- AccessControlsinplacebyfloor,labandofficeforITARProjects 10

4th Floor SaabEmergingTechnologies Building

ResearchProjects§ 2D & 3D Antenna Arrays§ Additive Packaging

– Wirebond replacement– Printed PCBs and via replacement

§ Integrated Printed Connectors§ Tunable Frequency Selective Surfaces§ Polymer-Based Composite Substrates§ Printed Varactors§ Ferroelectric Ink Development§ Printed Phase Shifters§ Hybrid Chip Integration§ Printed CNT Transistors§ Printing on 3D Objects PrintedX-BandVivaldiAntennaArray

PrintedChip Interconnects

PrintedMetasurfaceAntenna

FrequencySelectiveSurface 11

SampleResearchProjects

• Chip/componentintegrationathighfrequencies• Printedinterconnects,wirebond replacements

• Multi-physicsModeling• Integratingelectromagnetic,thermal, structuralmodels

• MaterialCharacterizationatHighFrequencies• Dielectrics,conductivematerials

• NewPrintableMaterialsandtunablemicrowavedevices• Ferroelectricink,printedvaractors,phaseshifters,phasedarrays

• Printed,IntegratedConnectors• Printedconnectorsintegratedwithprintedmodules/PCBs.

12

MaterialCharacterization:DielectricConstantvs.Frequency

Films:Free-spacecharacterization3Dprintedapparatusdesignedforholdingpolymerfilms.LensesprintedforfocusingmicrowaveexcitationforS-parametermeasurements

DielectricinkcharacterizationPrintedconcentriccapacitorsdevelopedtoextractdielectricproperties.Easysamplepreparationandsuitableforlowviscositymaterials.

Developednewcharacterizationtechniquesformeasuringthedielectricconstantandlosstangentofnovelcompositepolymersubstratesandinksoverawiderangeoffrequencies.

Solids:WaveguideMethod:DielectricblocksinsertedPLAblocksandsampleinsidetheflange(c)Waveguidemeasurementsetup

5 10 15 20 25 30Frequency (GHz)

0

1

2

3

4

Co

mp

lex P

erm

itti

vit

y '"/ '

13

• TunabilityisimportantinmanyRF/Microwavesystems– e.g.tunablefrequencyselectivesurfaces(FSS)andphaseshiftersforphasedarrayapplications

• Aprintablevariablecapacitor(varactor)fabricatedatlowtemperaturesisneeded• Ferroelectricmaterialsarehightemperatureceramicmaterials• Aprintableferroelectricinkhasbeendeveloped-processedat<200oC

Results§ DielectricconstantcanbevariedwithBSTparticle

size,compositionandloading

§ Highdielectricconstantscanbeachieved(55)

§ Lowlosstangent(~0.0005)measured

§ 10%tunabilityofdielectricconstantupto10GHz-3 -2 -1 0 1 2 3

0

5

10

15

20

25

30Cylindrical varactor

Tuning Field Strength (V/µm)

τ C (%

)

0.5 GHz1 GHz2.5 GHz5 GHz

Tunability

2 4 6 8 10 12 14 16 18 2025

30

35

40

45

50

55

60

Frequency (GHz)

BS

T/C

OC

Die

lect

ric

Co

nst

ant,

εr

Cylindrical Varactors

S3-80% HBS100S4-80% HBS200S5-80% HBS800

BariumStrontiumTitanate(BST)nanoparticlesinPolymerBa0.5Sr0.5TiO3 particles(<100nm)Topas®cyclicolefincopolymer(COC5013)polymer

NewMaterialDevelopment:FerroelectricInk

14

Application:TunableFrequencySelectiveSurface(FSS)

RigidPCB-basedFSSwithsurfacemountedvaractor diodesbetweenelements.Thisapproachislaborintensiveandnotscalabletolargeareas

Afrequency-selectivesurface (FSS)isanelectromagneticfilter. It’sfrequencyofoperationisdeterminedbythevalueofcouplingcapacitancebetweenelements.Thefrequencyresponsecanbemadetunable byusingvaractors (variablecapacitors)betweencircuitelements.

Surface mount varactor

Flexible,tunableFSSprintedonKapton withprintedvaractorsbetweenelements

Printed varactor15

7 8 9 10 11 12 13-25

-20

-15

-10

-5

0

Frequency (GHz)

|S1

1| (d

B)

Measured:εr=1Measured:εr=6Simulated:εr=1Simulated:εr=6

PrintedPhasedArrayAntennas• Modelledarraybeamsteering• Printantennasandphaseshiftersonflexiblesubstrate• Phaseshiftersenabledthroughuseofferroelectricink• AdjustphaseshiftbyapplyingDCbiasacrossprintedphaseshifter• Microstrip LeftHandTransmissionLine(LHTL)withRadialStub(virtualgrounds)

PrintedPhaseShifter

Modelled array beam steering Array design including Phase Shifters Printed Phased Array on Kapton

NovelFerroelectricInkEnablesanAll-PrintedPhasedArray 16

Additive Packaging: Printed Chip Interconnects• Additively write conductive interconnects between transmission

lines and microchips to replace ribbon and wire bonds.• Issues with inductance of wire & ribbon bonds.• Uncontrolled impedance.• Problems fitting large bonding tool in small areas to form bonds in microwave devices.

• This requires a multiphysics approach:• Dielectric ink used to print the interconnects on top of must be able to function electrically, thermally and

structurally to maintain the integrity of the components surrounding the material

17

IntegratedDesignToolsforPrintedInterconnects

ElectromagneticModels(HFSS)•Frequencysweepsof deviceperformance•Optimizechoiceofmaterials•ImportantresultsincludeSparametersandvisualizationofEandHfields

SteadyStateThermal•ResultsfromHFSSareappliedtoconducttemperatureanalysis•Thermalconductivityandothermaterialpropertiesofmaterialsareusedtogenerate‘heatmap’ofdevice,showingtemperatureandheatfluximages

StaticStructural•Stresscausedbythermalexpansion•Thermalexpansioncoefficient,Young’smodulusandothermaterialpropertiesusedtoshowwherethemoststressisappliedtodevice under heated conditions

Designtoolsshouldenableintegrationofelectromagnetic,thermalandstructuralmodels

18

19

MeasuredRibbonBondsvsPrintedInterconnectsThefrequencyresponseofmodelledandmeasuredribbonbondscomparedwithprintedinterconnects.RibbonbondInterconnectsbetweenacoplanarwaveguide(CPW)onaluminaandGaAsmicrochip.

• Verygoodcorrelationofmicrowavemeasurementsbetweenprintedandribbonbondinterconnects

• Simulatedresultsingoodagreementwithmeasuredresults.

PrintedInterconnectsshowpromisingperformanceuptoX-Band

Additive PCBs and Connectors• ConnectorsandsmallPCBscanbeprintedinahybridsystem(thermoplasticsandconductivetraces).Connectorsemployprintedmechanicalfeaturestoalignconductivetraces.

• PCBscanbeprintedwithintegratedconnectors

20

3DAdditiveRFSystems:LowCostX-BandAntennaArrays

VivaldiAntennaArray

LNAelectronics

• Focusonlowcostapproachesforbroadbandantennas• VivaldiantennadesignatX-Band• ThermoplasticsprintingtocreatephysicalscaffoldingforVivaldiantennaarray• Developingchipattachandprintedinterconnectonthermoplastics

Printedconductivetraceon3D-printedsurface

Surfacesnotflatenoughforfineconductivetraces

21

FinalThoughts• PrintedElectronicsformicrowaveapplicationsisinthe“WildWest”phase

• Incoherentsupplychain• Lackofstandards,materials,models,SW• Developmentofprintedsubsystemsinthemicrowavedomainintroduces

additionalchallengesineveryphase(design,materials,printing&characterization)

• WillneedtodevelopthesupplychainforPEtechnologysimilartoICmanufacturersinthe60’s&70’s

• Partnershipsbetweencompanies,government(stateandfederal)anduniversitiescanacceleratethebuildoutoftheecosystemforprintedelectronics

RURIandPERCbringindustry,academiaandsupplychaintogethertoaccelerateinnovationandadoptionofprintedelectronicsformicrowaveapplications.

22

PEFormFactorsandPrintingTechnology

Flex-HybridsystemsaddactivecomponentsAerosoljetprinters

2.5D

Flexible,conformablePlasticorpapersubstrates

Micropen Dispensers

2D

Multipletypesofprintingsystemsmayberequireddependingontheformfactor,printedfeaturessizes,andthematerialsrequiredtobuildthedevice/system Printelectronicsonexisting3Dstructures

MicropenwithsurfacemappingORRoboticarm

Printing3D

Print3DstructureswithelectronicsMultipleprinters(3D+aerosol)OR

Hybrid(multihead)system

Printingon3D

23