31
Probenahme und chemische Charakterisierung von ultrafeinen Partikeln Dominik van Pinxteren Leibniz-Institut für Troposphärenforschung (TROPOS), Abteilung Chemie der Atmosphäre (ACD), Leipzig

Probenahme und chemische Charakterisierung von …...Probenahme und chemische Charakterisierung von ultrafeinen Partikeln Dominik van Pinxteren Leibniz-Institut für Troposphärenforschung

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

  • Probenahme und chemische Charakterisierung

    von ultrafeinen Partikeln

    Dominik van Pinxteren

    Leibniz-Institut für Troposphärenforschung (TROPOS), Abteilung Chemie der Atmosphäre (ACD),

    Leipzig

  • Motivation

  • PM as a health risk: Global burden of disease study

    TOP 10

    www.healthdata.org/gbd

  • PM as a health risk: Global burden of disease study

    TOP 9

    → Fine and ultrafine particles pose a significant health riskeven in highly developed countries

  • Sampling methods

  • Sampling approaches for fine and ultrafine particles

    Offline approach:1. Sample particles on substrate2. Analyse composition in lab

    Online approach:Sample and analyse particles in one instrument

    Pro: comprehensive compositionCon: long sampling times (hours – days)

    Pro: short sampling times (sec – mins)Con: limited compositional information

  • Low pressure five-stage BERNER-impactor

    aero

    dynam

    ic p

    art

    icle

    dia

    mete

    r

    [µm

    ]STAGE 1 50-140 nm

    To the vacuum pump Sampling volume: 108 m³ in 24h

  • Sample collection: 5-stage Berner impactor

    Sample collection on aluminum foils:

    … which are chemically analysed.

  • Chemical analyses from impactor foils

    Inorganic ions with ICWSOC with TOC analyzer

    OC/EC with 2-step thermographic method

    Metalswith TXRF

    Alkanes, PAHs, Hopaneswith CPP-GC/MS

  • Size-resolved sampling of UFP

    Micro Orifice Uniform Deposit Impactor(MOUDI):

    Stage 1: 10 – 18 nm DpaerStage 2: 18 – 32 nm DpaerStage 3: 32 – 56 nm DpaerStage 4: 56 – 100 nm Dpaer

    Stages 5-13: 0.18 – 18 µm Dpaer

    Nano-MOUDI

    5-Stage Berner Impactor:

    Stage 1: 50 – 140 nm DpaerStage 2: 140 – 420 nm DpaerStage 3: 0.42 – 1.2 µm DpaerStage 4: 1.4 – 3.5 µm DpaerStage 5: 3.5 – 10 µm Dpaer

  • Impactor Sampling:

    Challenges

  • Challenges in size-resolved sampling of UFP

    nanoMOUDI gravimetric mass compared to expected mass based on numberconcentration measurement

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0.001 0.01 0.1 1

    Mobilitätsdurchmesser (µm)

    dM

    /dlo

    gD

    p (

    µg

    /m3)

    DMPS

    MOUDI

    a)

    0.0000001

    0.000001

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100

    0.001 0.01 0.1 1

    Mobilitätsdurchmesser (µm)d

    M/d

    log

    Dp

    g/m

    3)

    DMPS

    MOUDI

    b)

    → OK at first glance… …but it‘s not!

  • Challenges in size-resolved sampling of UFP

    214.7

    16.97.0

    0.840.52 0.36 0.37 0.29

    0.1

    1

    10

    100

    1000

    1 2 3 4 5 6 7 8

    Impaktorstufen

    Masse M

    OU

    DI / M

    asse D

    MP

    S

    Nano-MOUDI

    → Severe overestimation of UFP mass, possibly due to „bounce-off“→Reasonable agreement from approx. 60 nm upwards

    Mean (± 1σ) deviations of nanoMOUDI vs. DMPS mass for 29 samples

  • Size-resolved UFP chemical

    composition

  • Street canyon samples comparison autumn vs. winter

    Leipzig, Eisenbahnstrasse, street canyon, 10-stage Berner impactor

    → low, but measureable concentrations of ions, OC/EC + organics

    Müller et al., 2012, doi: 10.1002/cite.201100208

  • Street canyon samples comparison weekday vs. weekend

    → Reasonable trends→ Absolute mass concentrations overestimated→ Absolute constituents concentrations might be correct

    → In the following: Berner impactor stage 1 (50-140 nm) as proxy for UFPs

    mass EC

  • Leipzig ‚Aerosol 2013 - 2015‘ study:

    Source apportionment of UFPs

  • Experimental approach

    • 2 Campaigns(summer+winter 2013-2015)

    • 4 Sampling sites in parallel

    • 24h samples with 5-stage Berner impactor during 21 sampling daysper season

    • Comprehensive chemicalcharacterisation

    • Different source apportionmentapproaches

    LMI: TrafficEIB: Traffic/Residential

    TRO: UrbanMEL: Regional

    van Pinxteren et al., 2016, doi: 10.1039/c5fd00228avan Pinxteren et al., Schriftenreihe LfULG, Heft 7/2016

  • PMF: Identified sources in all particle size ranges

    Source Size range Main constituents Marker compounds

    Traffic exhaustultrafinecoarse

    WISCHopanes,

  • Sources in ultrafine particles (0.05 – 0.14 µm)

    → Traffic at traffic sites: ca. 0.2 – 1 µg m-3, 20 – 70 % of stage 1 mass (means)→ Photochem. at urban sites in summer: ca. 0.2 – 0.6 µg m-3, 20 – 50 → Solid fuel combustion in winter: ca. 0.2 – 0.9 µg m-3, 20 – 70 %

    Impactor Stage 1

    Su West Su East Wi West Wi East All

    0.9

    30

    .93

    0.9

    30

    .93

    0.9

    30

    .93

    0.7

    50

    .75

    0.7

    50

    .75

    0.7

    50

    .75

    0.4

    20

    .42

    0.4

    20

    .42

    0.4

    20

    .42

    0.0

    92

    0.0

    92

    0.0

    92

    0.0

    92

    0.0

    92

    0.0

    92

    41

    13

    30

    13

    17

    37

    36

    22

    57

    14

    39

    17

    301

    .41

    .41

    .41

    .41

    .41

    .4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    0.7

    80

    .78

    0.7

    80

    .78

    0.7

    80

    .78

    0.3

    90

    .39

    0.3

    90

    .39

    0.3

    90

    .39

    21

    20

    44

    11

    15

    39

    28

    27

    10

    50

    30

    11

    50

    1.5

    1.5

    1.5

    1.5

    1.5

    1.5

    0.9

    0.9

    0.9

    0.9

    0.9

    0.9

    0.5

    70

    .57

    0.5

    70

    .57

    0.5

    70

    .57

    0.3

    60

    .36

    0.3

    60

    .36

    0.3

    60

    .36

    49

    28

    16

    29

    24

    29

    11

    10

    29

    12

    39

    21

    24

    37

    17

    0.9

    40

    .94

    0.9

    40

    .94

    0.9

    40

    .94

    1.3

    1.3

    1.3

    1.3

    1.3

    1.3

    1.1

    1.1

    1.1

    1.1

    1.1

    1.1

    0.9

    30

    .93

    0.9

    30

    .93

    0.9

    30

    .93

    31

    40

    28

    18

    34

    12

    23

    46

    19

    12

    38

    30

    19

    1.2

    1.2

    1.2

    1.2

    1.2

    1.2 1

    1

    1

    1

    1

    1

    0.6

    60

    .66

    0.6

    60

    .66

    0.6

    60

    .66

    0.3

    80

    .38

    0.3

    80

    .38

    0.3

    80

    .38

    34

    21

    15

    17

    21

    14

    19

    19

    21

    19

    13

    30

    28

    15

    26

    30

    22

    0

    25

    50

    75

    100

    0.05-0.14µm

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    Ma

    ss

    Fra

    ctio

    n%

    Sources

    Sea Salt

    urban Dust

    Spores

    Cooking

    Photochem.

    Sec. Aer.

    Biom. Comb.

    Coal Comb.

    Traffic

    Tr. Exhaust

    Approx. mean contributions to UFP mass at Leipzig-Mitte:50 % traffic20 % combustion20 % photochemistry10 % cooking

  • Source contributions in ultrafine, fine and coarse particles

    Su West Su East Wi West Wi East All

    0.9

    30

    .93

    0.9

    30

    .93

    0.9

    30

    .93

    0.7

    50

    .75

    0.7

    50

    .75

    0.7

    50

    .75

    0.4

    20

    .42

    0.4

    20

    .42

    0.4

    20

    .42

    0.0

    92

    0.0

    92

    0.0

    92

    0.0

    92

    0.0

    92

    0.0

    92

    41

    13

    30

    13

    17

    37

    36

    22

    57

    14

    39

    17

    30

    3.9

    3.9

    3.9

    3.9

    3.9

    3.9

    4.2

    4.2

    4.2

    4.2

    4.2

    4.2

    3.2

    3.2

    3.2

    3.2

    3.2

    3.2

    2.4

    2.4

    2.4

    2.4

    2.4

    2.4

    21

    37

    18

    25

    10

    39

    17

    34

    54

    24

    16

    51

    35 11

    2.7

    2.7

    2.7

    2.7

    2.7

    2.7

    2.7

    2.4

    2.4

    2.4

    2.4

    2.4

    2.4

    2.4

    2.1

    2.1

    2.1

    2.1

    2.1

    2.1

    2.1

    0.6

    30

    .63

    0.6

    30

    .63

    0.6

    30

    .63

    0.6

    3

    13

    34

    10

    12

    27

    24

    12

    17

    34

    19

    23

    41

    39

    34

    22

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    0.7

    80

    .78

    0.7

    80

    .78

    0.7

    80

    .78

    0.3

    90

    .39

    0.3

    90

    .39

    0.3

    90

    .39

    21

    20

    44

    11

    15

    39

    28

    27

    10

    50

    30

    11

    50

    4.9

    4.9

    4.9

    4.9

    4.9

    4.9

    5.2

    5.2

    5.2

    5.2

    5.2

    5.2

    4.1

    4.1

    4.1

    4.1

    4.1

    4.1

    2.4

    2.4

    2.4

    2.4

    2.4

    2.4

    21

    14

    33

    29

    16

    27

    47

    11

    20

    48

    17

    14

    57

    20

    2.1

    2.1

    2.1

    2.1

    2.1

    2.1

    2.1

    1.9

    1.9

    1.9

    1.9

    1.9

    1.9

    1.9

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    0.2

    40

    .24

    0.2

    40

    .24

    0.2

    40

    .24

    0.2

    4

    41

    11

    27

    33

    14

    32

    11

    24

    42 11

    75

    15

    1.5

    1.5

    1.5

    1.5

    1.5

    1.5

    0.9

    0.9

    0.9

    0.9

    0.9

    0.9

    0.5

    70

    .57

    0.5

    70

    .57

    0.5

    70

    .57

    0.3

    60

    .36

    0.3

    60

    .36

    0.3

    60

    .36

    49

    28

    16

    29

    24

    29

    11

    10

    29 12

    39

    21

    24

    37

    17

    7.6

    7.6

    7.6

    7.6

    7.6

    7.6 7

    7

    7

    7

    7

    7

    5.9

    5.9

    5.9

    5.9

    5.9

    5.9

    4.2

    4.2

    4.2

    4.2

    4.2

    4.2

    22

    61 58

    20 72

    83

    1.9

    1.9

    1.9

    1.9

    1.9

    1.9

    1.9

    1.1

    1.1

    1.1

    1.1

    1.1

    1.1

    1.1

    0.9

    40

    .94

    0.9

    40

    .94

    0.9

    40

    .94

    0.9

    4

    0.3

    30

    .33

    0.3

    30

    .33

    0.3

    30

    .33

    0.3

    3

    50

    29

    29

    13

    41

    22 11 10

    53

    38

    58

    0.9

    40

    .94

    0.9

    40

    .94

    0.9

    40

    .94

    1.3

    1.3

    1.3

    1.3

    1.3

    1.3

    1.1

    1.1

    1.1

    1.1

    1.1

    1.1

    0.9

    30

    .93

    0.9

    30

    .93

    0.9

    30

    .93

    31

    40

    28

    18

    34

    12

    23

    46

    19

    12

    38

    30

    19

    23

    23

    23

    23

    23

    23

    24

    24

    24

    24

    24

    24

    20

    20

    20

    20

    20

    20

    18

    18

    18

    18

    18

    18

    32

    47 10

    39

    33

    31

    52

    44

    33

    13

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.3

    1.3

    1.3

    1.3

    1.3

    1.3

    1.3

    0.9

    20

    .92

    0.9

    20

    .92

    0.9

    20

    .92

    0.9

    2

    0.5

    10

    .51

    0.5

    10

    .51

    0.5

    10

    .51

    0.5

    1

    22

    22

    34

    14

    21

    28

    25

    18

    31

    44

    18

    46

    38

    1.2

    1.2

    1.2

    1.2

    1.2

    1.2 1

    1

    1

    1

    1

    1

    0.6

    60

    .66

    0.6

    60

    .66

    0.6

    60

    .66

    0.3

    80

    .38

    0.3

    80

    .38

    0.3

    80

    .38

    34

    21

    15

    17

    21

    14

    19

    19

    21

    19

    13

    30

    28

    15

    26

    30

    22

    9.4

    9.4

    9.4

    9.4

    9.4

    9.4

    9.8

    9.8

    9.8

    9.8

    9.8

    9.8

    8.1

    8.1

    8.1

    8.1

    8.1

    8.1

    6.5

    6.5

    6.5

    6.5

    6.5

    6.5

    13

    14

    50 10

    18

    39 10

    19

    14

    57

    13

    22

    51

    16

    2

    2

    2

    2

    2

    2

    2

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    1.6

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    1.4

    0.4

    10

    .41

    0.4

    10

    .41

    0.4

    10

    .41

    0.4

    1

    10

    40

    22

    28

    10

    13

    27

    10

    16 11

    18

    34

    20

    18

    24

    27

    0

    25

    50

    75

    100

    0

    25

    50

    75

    100

    0

    25

    50

    75

    100

    0.05-0.14µm

    0.42-1.2µm

    3.5-10µm

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    LM

    I

    EIB

    TR

    O

    ME

    L

    Ma

    ss

    Fra

    ctio

    n%

    Sources

    Sea Salt

    urban Dust

    Spores

    Cooking

    Photochem.

    Sec. Aer.

    Biom. Comb.

    Coal Comb.

    Traffic

    Tr. Exhaust

    → Very different source contributions in different particle size ranges

    UFP

    Fine

    Coarse

  • UFP source contributions

    from airports?

  • UFP from jet engines

    Fushimi et al., 2019: nanoMOUDI sampling @ Narita International, Japan (doi: 10.5194/acp-19-6389-2019)

    Chemical analysis with TD-GC/MS identifies strong contribution of jetlubrication oils to aircraft exhaust UFPs

    UFP size range

  • Summary

  • Zusammenfassung

    • UFP Probenahme ist problematisch, v.a. für Partikel < 70 nm

    • UFP Gesamtmasse wird von kohlenstoffhaltigem Material dominiert

    • Hohe Anteile toxischer Bestandteile wie PAK (polyzyklische aromatische Kohlenwasserstoffe) und Metalle

    • Hauptquellen:• Verkehr (Abgas und Nicht-Abgas)• Feststoffverbrennung (Winter)• Photochemie (Sommer)

    → Die chemische Zusammensetzung kann zur Identifizierung von UFP-Quellen verwendet werden

    55.0%30.0%

    15.0%

    40.0%

    5.0%

    45.0%

    10.0%

    80.0%

    15.0%2.5%2.5%

    20.0%

    30.0%40.0%

    5.0%5.0%

    Summer West Summer East

    Winter West Winter East

    Source categoryTrafficCoal.Comb.Biomass.Comb.SecondaryCooking

    LMI UFP CompositionUFP Zusammensetzung in Leipzig-Mitte

  • Vielen Dank für ihre Aufmerksamkeit

  • Annex

  • Source Apportionment in Leipzig:

    Lenschow Approach

  • Source apportionment approaches I: Lenschow

    Lenschow et al., 2001: PM as superposition of sources in different regions

    Traffic increment = c(LMI, EIB) - c(TRO)

    Urban background increment = c(TRO) - c(MEL)

    Regional background = c(MEL)

    LMI, EIB

    TRO

    MEL

  • Summer Winter All

    1.11.11.1 2.82.82.8 4.54.54.5 3.73.73.7 2.42.42.4

    19

    21

    60

    78

    20

    58

    24

    18

    33

    41

    26

    37

    549.3

    1.41.41.4 5.35.35.3 5.45.45.4 2.62.62.6 2.32.32.3

    42

    25

    33

    649.3

    26

    56

    19

    25

    25

    39

    35

    22

    53

    26

    1.21.21.2 3.83.83.8 5.15.15.1 3.43.43.4 2.42.42.4

    26

    25

    49

    718.8

    20

    54

    25

    21

    29

    41

    30

    30

    54

    15

    1.61.61.6 4.44.44.4 7.77.77.7 3.73.73.7 2.32.32.3

    20

    16

    64

    638.4

    28

    64 13

    23

    29

    23

    47

    10

    31

    58

    1.11.11.1 8.18.18.1 26 26 26 5 5 5 1.41.41.4

    87

    17

    75

    22

    70 11

    19

    47

    24

    29

    31

    36

    32

    1.41.41.4 5.75.75.7 15 15 15 4.34.34.3 1.91.91.9

    40

    16

    44

    71

    25

    729.4

    19

    40

    21

    39

    16

    31

    53

    1.31.31.3 3.53.53.5 5.95.95.9 3.73.73.7 2.42.42.4

    19

    19

    62

    705.8

    25

    62

    18

    21

    32

    33

    36

    25

    44

    31

    1.21.21.2 6.86.86.8 16 16 16 3.93.93.9 1.81.81.8

    64

    21 15

    715.5

    24

    68 12

    20

    41

    29

    31

    26

    46

    28

    1.31.31.3 4.74.74.7 10 10 10 3.93.93.9 2.22.22.2

    33

    20

    46

    71 6

    23

    67 13

    19

    35

    30

    35

    24

    44

    32

    0

    25

    50

    75

    100

    0

    25

    50

    75

    100

    0

    25

    50

    75

    100

    West

    East

    All

    0.05-0.14µm

    0.14-0.42µm

    0.42-1.2µm

    1.2-3.5µm

    3.5-10µm

    0.05-0.14µm

    0.14-0.42µm

    0.42-1.2µm

    1.2-3.5µm

    3.5-10µm

    0.05-0.14µm

    0.14-0.42µm

    0.42-1.2µm

    1.2-3.5µm

    3.5-10µm

    ma

    ss

    fra

    ctio

    n%

    Increment

    Traffic

    Urban

    Regional

    Local vs. regional PM mass contributions at LMI site

    LMI site Typical regional (transported) contributions:- 30% for ultrafines- 70% for accumulation mode

    particles- 30% for coarse particles

    Mean UFP source contributions:50 % traffic20 % urban background30 % regional background

    → 70 % reduction potential bylocal mitigation measures

    van Pinxteren et al., 2016, doi: 10.1039/c5fd00228a