Problemas 2 5

Embed Size (px)

Citation preview

  • 8/12/2019 Problemas 2 5

    1/9

    Exercises 2.5 Solutions by Substitutions

    2. Letting y = ux we have

    (x+ ux) dx + x{ u dx + x du) = 0

    (1 + 2-u) dx + x du = 0

    dx du-- h --- x 1 + 2u

    = 0

    In |x| + - In |1 + 2u\ = c

    rr2 ( l + 2 | ) = C

    x 1 + 2x y = ci.

    3. Letting x = vy we liavc

    vy{v dy + y dv) + (y - 2vy) dy = 0

    vy2dv + y (y2 - 2v + l) dy = 0

    vdv + rfy = ()

    In

    In \v 1|

    x

    (u - l )2 y

    1

    y

    v - l

    1

    x / y - 1

    + In \y\ = c

    + ln y = c

    (x - y )In \x - y \ - y = c(x - y ).

    4. Letting x = vy wc have

    y(v dy + ydv) 2(vy + y) dy = 0

    y dv (t> + 2) dy = 0

    dv _ dy ^ 0

    v + 2 y

    In \v+ 2| In \y\ = c

    Inx

    + 2; - In \y| = c

    x + 2y = ciy

    65

  • 8/12/2019 Problemas 2 5

    2/9

    Exercises 2.5 Solutions by Substitutions

    5. Letting y = ux wc have

    (u?x2 + ux 2 j dx x 2(u dx -r x du) = 0

    u2dx x du = 0

    d x d u _9 u

    X v>

    In | . t | + = cu

    In Irrl + = cV

    yIn \x\ + x = cy.

    6. Letting y - ux and using partial fractions, we have

    ( u2x 2 + ux 2'} dx + x 2 (u dx + x du) = 0

    x2 (v? + 2it} dx + x 3du = 0

    dx du + 7

    - - -= 0x u(u+ 2)

    In |jc| + ^ In | w[ ^ In \u+ 2| = c

    ci

    X \x

    ,2_

    7. Letting y = ux wc have

    x ry = c\ (y+ 2x).

    (ux x) dx (ux+ x) (udx + x du) = 0

    (u2 + l) dx+ x(u + 1) du = 0

    dx u + 1 , + - s - du = 0

    x u2 + 1

    In jx| + ^ In (u2 + l) + t an-1 u = c

    ln x 2 + 1^ + 2 tan-1 - = c

    In fa;2 + y2) + 2 tan 1= c\ .' ' x

    66

  • 8/12/2019 Problemas 2 5

    3/9

    Exercises 2.5 Solutions by Substitutions

    (a; + 3ux) dx (3a- -+ux ) (u dx+ x du) = 0

    ('u2 l ) dx + x(u + 3) du = 0

    dx it+ 3- - - h 7- - - rz- - - r r du = 0X ( u l ) ( l l + l )

    In |.-r) + 2 In \u 1| In | u+ 1) = c

    x(u l ) 2

    Letting y = ux we have

    u4- 1= Cl

    (y - x f = c.i{y -+ x).

    Letting y = ux we have

    ux dx + (x+ \ fuX')(u dx+ x du) = 0

    (x 2 + ) du + x u^'2dx = 0

    1\ , dx(V 3 /2 + i U + * = 0V u) x

    2w- 1/2 + In \u\ + In |x| = c

    In \ y/x\ + In |xj = 2\ jx fy + c

    y (ln \y\ - c)2 = 4x.

    Letting y = ux we have

    (uz + \ jx2 (ux )2 ) da: x (udx + x du) du = 0

    \ /x2 u2x 2 dx x 2 du = 0

    x\ j1 u2 dx x2 du 0, (x > 0)

    dx du= 0

    X V l - t i 2

    In x sin- 1 u = c

    sin 1u = In x+ ci

  • 8/12/2019 Problemas 2 5

    4/9

    S il l ' = 111 X + C2X

    y . ,, N= sm(in x+ c'2 )

    y = xs in (In x + C2 ).

    See Problem 33 in this section for an analysis of the solution.

    11. Letting y ux we have

    (x 3 w3x 3) dx+ u2x (u dx+ x du) 0

    dx + u2x du = 0

    dx 9 ,h u du = 0

    x

    , , < 1 3In |x| + - u = co

    3.x3 In |x| + y3 = cix3.

    Using y (l) = 2 we find c\ = 8. T he solution of the initial- value problem is 3x:iIn |x| + y i 8x3.

    12. Letting y ux we have

    (x2 4- 2u?x 2)dx ux 2(udx-f xdu) = 0

    x2(l + u2)dx ux 3 du = 0

    dx u duX 1 + u2

    In |x[ ^ ln(l -f u2) = c

    Exercises 2.5 Solutions by Substitutions

    x 2= C l

    1 + u2

    X 4

    - ci(x 2 + y2).

    Using y (1) = 1 we find ci 1/2. T he solution of the initial- value problem is 2x4 = y2 + x 2.

    13. Letting y = ux we have

    (x + uxeu) dx xe (u dx + x du) = 0

    dx xeu du = 0

    dxz z _ eu du = 0x

    68

  • 8/12/2019 Problemas 2 5

    5/9

    Exercises 2.5 Solutions by Substitutions

    In |a*| eu = c

    In \x\ - eyf x = c.

    Using y (l) = 0 wc find c= 1. The solution of the initial- value problem is In |.x[ = ey,lx 1.

    Letting x = vy we have

    y(v dy+ y dv) + vy(In vy In y 1) dy = 0

    y dv + vIn v dy 0

    dv dy+ = 0

    vIn v yIn | In I'l.'H+ In | y| = c

    yIn = ci.

    Using y (l) e we find ci = e. T he solution of the initial- value problem is yInX\

    = e.y

    r- / 1 1 -o o . dw 3 3 . , oFrom y H y y and w = y we obtain |-w . A n integrating factor is x so that

    x ' x ' dx x x

    x3w = x 3 + c or t/3 = 1 + cx~A.

    (IZUFrom y' y exy2 and w = y~ l we obtain I-w = ex. A n integrating factor is ex so that

    dxf:xw ~ Ie 2x + c. or y~ l = \ ex + ce~x.

    From y' + y = x y4 and w = we obtain 3u> = 3x. A n integr ating factor is e~ix so thatdxe~'ixw = xe~ ix + + c or ;ty_a = x + ^ -i- cejx .

    From y y = y2 and w - y~ l we obtain ^ + 1+ w = 1. A n integr ating factor is

    1 f*xex so that xexw = xex + exH- cor y-1 = 1 + + e~x.

    x x

    / 1 1 o , _i , . dto 1 1rrom y - y = - y and w = y wc obtain + w = A n integrating factor is t so that

    1 t-tw In i -|- c or y~ l - Inf + Wr iting this in the form - = hit + c. we see that the solution

    t t y

    can also be expressed in the form e^y = cit.

    / 2 2t a , _> . . dw 2t 21From y + 3 (1+ ^ */= 3 (1 + t2)y ai W = V W 0 am ~dt ~ l + f i W = T T f5 mtcgratmg

    -| ^* X factor is 80 that 1 ^ 2 = + c or y~* = 1+ c (l + t2).

    69

  • 8/12/2019 Problemas 2 5

    6/9

    Exercises 2.5 Solutions by Substitutions

    / 2 3 4 . _o , . dw 6 9 . . . . . .21. Prom y -- y = and w = y we obta in hw = ^ . A n integr ating factor is x so tha:

    x x * ' dx x x z

    x 6w = x5+ cor y~ 3 = x_1 + cx~b. If y(1) = ^ then c= ^ and y~ 3 = f x-1 + ^x - 6.

    dtxi. 3 322. From i f + y = y~1//2 and w = y3/2 we obtain + - w = - . A n integrating factor is e3x-/2 so tha:

    fix z zeix l 2w (?x>2 + c or y3/2 = 1 + ce~iX/'2. If y(0) = 4 then c = 7 and ,(/}/2 = 1 + 7e~^xt2.

    23. Let u = x - f' + l so that du/dx = 1 + dy/dx. T hen ^ 1 = u2 or -xdu = dx. Tlni-dx 1 + t r

    ta n-5 u = x + c or u = tan(x + c), and x + y+ 1 = t.an(x + c) or y tan(x + c) x 1.

    24. Let u ~ x+ y so that du/dx = 1 + dy/dx. Then ~ 1 = - - --

    or u du = dx. T hus Aw,2 = x + .dx uor u2 = 2x + ci. and (x+ y )2 = 2x+ c j.

    25. Let u = x + y so that du/dx = 1 + dy/dx. Then ^ 1 = tan2u or cos2 udu = dx. Thu?\JfJU

    ^ + | s in2u = x + cor 2+ sin2u = 4x + ei, and 2(x + y)+ sin2(x + y) : 4x+ ci or 2y+ sin2(x+ y) =

    2x + ci.

    26. Let u x + y so that du/dx = 1 + dy/dx. T hen 1 = sin uo r--

    du = dx. Multiplyingctcc 1 sm *?/1 sin

    bv (1 sin if)/(1 sin u) we have - - - ~ du = dx or (sec2u secu taiiu)du = dx. Thu-cos^ u

    tan usec u = x + cor tan(x + y) sec(x + y) = x + c.

    27. Let u = y 2.x + 3 so that du/dx = dy/dx 2 . T hen ^ + 2 = 2 + v / or ~ t=du = dx. Thu-ax y w

    2-y/w= x + c and 2^/y 2x + 3 = x + c.

    Let u = y x + 5 so that du/dx =

    e~u = x + c and ey~x+5 = x + c.

    du28. Let u = y x + 5 so that du/dx = dy/dx 1. T hen - I- 1 = 1 + eu or e~udu = dx. Thi;.-

    dx

    ctu 129. Let u = x + y so that du/dx = 1 + dy/dx. Then - -- 1 cos u a n d - - - - :-- du. = dx. Now

    fix 1+ cos u

    1 1 cos u 1 COS u O---------------------------------------- = CSC u CSC ucot u1 + cos u 1 cos2u sin2u

    so we have f(csc2u- c.sc ucot u)du = / dxand cot w+ csc u= x + c . Thus cot(x+y)+ csc(x+ y) - |

    x + c. Setting x = 0 and y = tt/4 we obtain c = a/ 2 1 . The solution is

    csc(x + y) - cot(x + y) = X+ V2 1.

    30. Let u = 3x + 2yso that du/dx= 3+ 2dy/dx. T hen ^ = 3+ - = ~r~ and ^ du d.iy ' J l dx u + 2 u+ 2 5u+ 6

    Now bv long divisionu + 2 1 4

    ^ +5u+ 6 5 25u + 30

    70

  • 8/12/2019 Problemas 2 5

    7/9

    Exercises 2.5 Solutions by Substitutions

    + ~ ^ ) du = dx2bu + 30,

    ~o we have

    Idand ^ In | 25?i + 30| = x+ c. T hus

    1 4~(3x + 2y) -f- In | 75x + 50y + 30| = x + c.D 2 d

    Setting x = 1 and y = 1 we obtain c = ^ In 95. T he solution is

    1 4 4-(3a: + 2y)+ I n \ 7ox + 50y + 30| = x+ In 95o 25 2o

    Jl'5y 5x+ 2 In |75.x + 50y + 30) = 2 In 95.

    We wr ite the differential equation M(x , y)dx+ N(x , y)dy = 0 as dy/dx f (x , y) where

    f u v) =/l ,W N(x. y) '

    The function f i x , y)must necessarily be homogeneous of degree 0 when M and N are homogeneousjf degree a. Since M is homogeneous of degree a, M(tx 7ty) = taM(x ,y), and letting t = 1/x we

    have

    M ( l ,y /x ) = M(x, y) or M (x,y) = x aM (1,y /x ).

    Thus

    i y = f ( T = r f *M { l ,y /x ) M ( l , y /x ) fy \

    dx x a N ( l ,y /x ) N ( l ,y /x ) \ x )

    Rewrite (5:r2 2y2)dx x y dy = 0 as

    ^ = 5*2- 25,*dx

    and divide by xy, so that

    We then identify

    dy x ^y- r = 5 - - 2 - .

    dx y x

    X / \ x - )XJ

    (a) By inspection y = x and y = x are solutions of the differential equation and not members of

    the family y ~ xsin (In a; + 02)-

    (b) Letting x = 5 and y = 0 in sin- 1(y/x) = In x+ 0 2 we get sin- 10 = In 5 + c or c = In 5. T hensin- 1(y/x) = In xIn 5 = ln(,x/5). Because the range of the arcsine function is [7r /2, tt/2] we

  • 8/12/2019 Problemas 2 5

    8/9

    Exercises 2.5 Solutions by Substitutions

    must have7T x -k

    < ln - < 2 ~ 5 ~ 2

    e-7r/2 < - < e*-/25

    5e_ ^/2 < a: < 5ew/2.

    The interval of definition of the solution is approximately

    [1.04,24.05].

    34. As x *oc. 0 and y *2x + 3. Now write (1 -I- ce6* )/( l ce6x) as (e~bx+ c)/(e~ 6x

    Then, as x>oo, (?~fxT >0 and y>2x 3.

    35. (a) The substitutions y yi + u and

    dy _ clyi | du

    dx dx dx

    lead to

    + y- = P + Q(tli + u) + R(yi + u)2dx dx

    = P + Qy\ -j- Ry'i + Qu+ 2y\ Ru+ R u2

    or

    ~ ~ { Q + 2yi R )u = R u2.dx

    This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

    div h (Q+ 2y\ R)tv R dx

    bv the substitution w = u

    (b) Identify P(x) = - 4/x 2, Q{x) = - 1/x , and R(x) = 1. Then ~ - f - + - )w = - 1. .- j

    - ldw

    dx

    \x + cx~3

    1 4

    x x ,- l 2

    . T hus, y ~ h u.x

    integrating factor is a3 so that x^w = | x4+ e or u =

    36. Wr ite the differential equation in the form x(y'/y) In x+ Inymid let u lny. Then du/dx = y' j

    and the differential equation becomes x(du/dx) = ln x -j- u or du/dx u/x = (lnx )/x . which j

    first- order and linear. A n integr ating factor is e~ J dx/a: = 1/x. so that (using integration by par:-

    d_

    dx

    lnx uu ! = 7T and - =

    x J r / x

    1 lnx

    x x+ c.

    The solution is

    Iny = 1 In x -r cx or y =X

    37. Wr ite the differential equation as

    - - v = 32vdx x

    72

  • 8/12/2019 Problemas 2 5

    9/9

    Exercises 2.5 Solutions by Substitutions

    ; ::d let u = v2 or v = u1^. Thendv _ 1 _ xj 2 du

    dx 2 d x '

    .-.lid substituting into the differ ential equation, wc have1 i / o dlli 1 i / o - 1 / 9 d