39
Process Diagnosis using Quantitative Mineralogy L. Kormos 1 , J. Oliveira 1 , D. Fragomeni 1 , E. Whiteman 1 , J. Carrión De la Cruz 2 1 Xstrata Process Support 2 Compañia Minera Antamina S.A. 42 nd Annual CMP Conference January 19-21, 2010

Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

Embed Size (px)

Citation preview

Page 1: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

Process Diagnosis using Quantitative Mineralogy

L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. Carrión De la Cruz2

1Xstrata Process Support 2Compañia Minera Antamina S.A.

42nd Annual CMP Conference January 19-21, 2010

Page 2: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

2

XPS Groups – Sudbury, Ontario

Process Control - Identify and deliver robust process control technology and engineering solutions to achieve ‘Operational Performance Excellence.’

Process Mineralogy - Design, implement and optimize mineral processing flowsheets bymatching the flowsheet to the mineralogy. Testwork, modeling and plant support to maximise operations efficiency.

Extractive Metallurgy – Provide specialized extractive metallurgy services (hydro-and pyrometallurgical). Flowsheet/project development using modeling and piloting, new process development and plant optimization.

Materials Technology – Improve the reliability of critical equipment through appropriate implementation of proven materials engineering practices at essential stages of design, procurement and operation.

“Adding Value… Reducing Risk…”

Page 3: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

3

Process Mineralogy

Process

Mineralogy

Sampling & Statistics

Mineral Processing Mineralogy

Page 4: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

4

Process Mineralogy

• Methodologies

• Representative Sampling

• Geometallurgical Unit Definition

• High Confidence Flotation

• Design of Experiments

• Mini Pilot Plant Campaigns

• Quantitative Mineralogy (QEMSCAN + EPMA)

Page 5: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

5

Case Studies

• Contamination of Copper Concentrates at Antamina

• Flowsheet Development at Nickel Rim South

Page 6: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

CASE STUDY 1:

ANTAMINA BORNITE ZONE

Page 7: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

7

Antamina Mine Location

ANTAMINA

YANACOCHA

PIERINA

TOQUEPALACUAJONE

TINTAYA

MARCONA

CERRO DE PASCO

CERRO VERDE

Page 8: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

8

Antamina Mine

• Open pit operation since May 2001

• Current Ownership: BHP-Billiton (33.75%), Xstrata (33.75%), Teck-Cominco (22.5%) and Mitsubishi (10%)

• 560 Mt Cu-Zn skarn deposit with minor Mo, As, Bi, Ag, Pb

• 8 ore types have been defined based on metal ratios

• Concentrator operates entirely by campaign

• Produces Cu, Zn, Mo and Pb-Bi-Ag concentrates

Page 9: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

9

Antamina Mine

• Bismuth and Arsenic contamination of Cu Concentrates gives rise to substantial penalties

• Mining of an ore type known as the Bornite Zone is particularly problematic for producing contaminated concentrates

Page 10: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

10

Objectives of Study

• Define bismuth and arsenic mineralogy in the Bornite Zone

• Species identification

• Element deportment

• Textures that may affect recovery to concentrates

• Provide information to geological and metallurgical teams who were required to develop a bismuth and arsenic rejection strategy

Page 11: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

11

0 500 1000

Meters

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

SENW

EndoskarnCu, Mo

Indeterminate SkarnCu,Zn,±Mo,±Bi

Brown and Green Exoskarn

Cu, Zn, Ag, Bi

Green ExoskarnZn,Cu,Ag,Bi,Pb

Marble± Zn, ± Pb, ± Ag, ± Bi

Wollastonite-Bornite ExoskarnCu, Zn, Ag, Bi

Heterolithic BrecciaCu, ± Zn

Quartz Monzonite Intrusive Mo, Cu

Hornfels± Zn, ± Pb, ± Ag, ± Bi

Zn,Pb,AgAg

Pb Zn, Bi

Zn,Pb,Ag,Bi

Schematic Lithology and Metal Zonation

Page 12: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

12

Bornite Ore 11%Chalcopyrite Ore 89%

(4200m bench)

Cu Ore Zonation

Page 13: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

13

Ore Characterisation Methodology

• A series of samples that spatially covers the deposit or zone

• A set of coarse particle composites

• A set of polished thin sections

• Use of quantitative mineralogy (QEMSCAN + EPMA) to map textures, define modal mineralogy, mineral compositions and element deportments

Page 14: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

14

Results - Bismuth

Three main bismuth bearing species identified

• Wittichenite (Cu3BiS3)

• Aikenite (PbCuBiS3)

• Bornite (Cu5FeS4)

Page 15: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

15

Bornite Texture

• Solid solution bismuth is present in all bornitesmeasured

•25% of samples showed a mottled texture - two bornite phases each with different levels of bismuth

500µm

Bornite 2Bornite 1

Page 16: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

16

Mineral Compositions - Bornite

Mineral Wt% Bismuth Number of Analyses

Bright Phase in Mottled Bornite 6.54 37

Dark Phase in Mottled Bornite 0.80 220

Normal Bornite 0.61 189

Bornite (wt% by EPMA)

Page 17: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

17

Bismuth Deportment

40.5%

8.3%0.8%

50.3%

88.4%

9.4%2.2%

Aikenite

Low Bismuth Bornite

High Bismuth Bornite

Wittichenite

Mottled Bornite Samples Normal Bornite Samples

Page 18: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

18

Rejection Strategy - Bismuth

• Probability of rejecting bismuth is low

• association with bornite

• fine grained wittichenite that occurs as disseminations in bornite

• Mottled bornite is a risk to even higher levels of contamination

• Locations of samples plotted to understand distribution

Page 19: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

19

Arsenic Mineralogy

• Arsenic mineralogy consists of Enargite and Tennantite

• As was not found in solid solution within any other sulphide minerals

Page 20: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

20

Arsenic Mineralogy

3.5 mm

Quartz

Bornite

Chalcopyrite

Calcite

Enargite/Tennantite Diopside

Garnet

Page 21: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

21

Rejection Strategy – Arsenic

• Possibility of rejecting arsenic is good

• Coarse veins (majority of enargite/tennantite) will result in liberated particles

• Thin rims on chalcopyrite or bornite (less common texture) will be more difficult to reject

Page 22: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

22

Conclusions – Antamina Case Study

Bismuth minerology indicates probability of rejecting bismuth from Cu concentrate is low

Mottled bornite presents a risk to saleability of the Cu Concentrate

Arsenic mineralogy indicates rejection is possible based on textures in ore

Management of Issue at Antamina:• Lab and Plant piloting show that rejection of As is possible

• Blending of high Bi and As ores with other Cu/Zn ores or concentrates to reduce impact on Cu concentrates

• Negotiation of favourable commercial terms

Page 23: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

CASE STUDY 2:

NICKEL RIM SOUTH

Page 24: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

24

Location

Mill

Smelter

60 km

Nickel Rim

South

Page 25: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

25

Nickel Rim South Mine

• Discovered in 2001

• 100% Xstrata Nickel ownership

• 9.6 Mt at 1.57% Ni, 2.85% Cu, 1.20g/t Pt, 1.35g/t Pd, 10.2g/t Ag, 0.46g/t Au

Page 26: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

26

Objective

• Flowsheet Design

• New concentrator

• Strathcona Mill

• Strathcona Mill retrofit

• Testwork developed over several years as exploration program progressed

Page 27: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

27

Methodology

• Define and characterise geometallurgicalunits

• Quantitative mineralogy

• High confidence flotation

• Mini Pilot Plant campaigns

Page 28: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

28

Geometallurgical Units

Upper Footwall Mineralization

Page 29: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

29

Comparison of Geomet Textures

Main Zone Footwall Fringe Zone

Pentlandite

Chalcopyrite

Bornite

Plagioclase

Epidote

Cpy average size: 348µm Cpy average size: 122µm

Page 30: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

30

Flotation Testing of Geomet Units

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 - 6

H2SO4, CuSO4, PIBX, DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 -6

H2SO4, CuSO4, PIBX,

DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 - 6

H2SO4, CuSO4, PIBX, DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 -6

H2SO4, CuSO4, PIBX,

DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 - 6

H2SO4, CuSO4, PIBX, DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 -6

H2SO4, CuSO4, PIBX,

DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 - 6

H2SO4, CuSO4, PIBX, DF250PIBX

Lime

PIBX, DF250

Rod Mill

Lime

PIBX

Charge

Pri. Rougher Sec. Rougher Scavs

Tailings

Conc 1 Conc 2 & 3 Conc 4 -6

H2SO4, CuSO4, PIBX,

DF250PIBX

Lime

PIBX, DF250

Rod Mill

Page 31: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

31

Flotation Testing of Geomet Units

Upper Footwall

Main Footwall

Fringe Footwall

Contact Sublayer

Contact FootwallBreccia

Low Sulphur PGM

Ni+Cu Rougher Grade vs Ni Recovery

5

10

15

20

25

30

35

0 20 40 60 80 100% Ni Recovery

% Ni + Cu Grade

Page 32: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

32

Impact of CMC on Sublayer Ores

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20

Flotation Time, min

Ni Recovery %

Footwall Breccia Sublayer Breccia Sublayer Breccia w CMC

Page 33: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

33

New Concentrator Concept

Flash

Rougher

155µm

to

283µm 53µm

to

155µm 38µm

Regrind

Page 34: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

34

Staged Grind Flowsheet –Improvements over Strathcona

5.5 5.1

15.5

10.5

22

16.9

23.7 23.6

0

5

10

15

20

25

Ni Cu Pt Pd

% Recovery Improvement

Fringe

Low Sulphur PGM

Page 35: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

35

Strathcona with Cu Pre-Float

Footwall Ore Contact Ore

Cu Pre-float Conc

Pri Ro Conc

Sec Ro Conc

Scav Conc

Scav Tails

P56 75µm P56 75µm

5.9

2.01.7

1.3

0

1

2

3

4

5

6

7

Ni Cu

% Recvoery

50/50

25/75

Page 36: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

36

Flowsheet Demonstration

• Each flowsheet option was demonstrated in the MPP

• Primarily from drill core samples

Page 37: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

37

Ni Rim South - Conclusions

3 retrofits recommended to Strathcona

• Cu Pre-float to minimise Ni and Cu losses

• Introduction of a CMC system to treat Sublayer ores

• Additional Cu/Ni separation capacity to allow for over 80% Cu recovery to Cu concentrate and allow for increased FW tonnages

• Metallurgical program assisted by quantitative mineralogy was completed 2 years prior to commercial mine production

Page 38: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

38

Conclusions

Quantitative mineralogy has been used sucessfully to aid in process diagnosis and optimisation of concentrator flowsheets.

The work is predicated upon:• Integration of geological information into design of program

• Representative sampling• High confidence flotation• Mini pilot plant testing• High quality mineralogical data

This approach produces reliable results and enhances the diagositic power of the data and strengthens predictive capabilities for each process

Page 39: Process Diagnosis using Quantitative Mineralogy - XPS · Process Diagnosis using Quantitative Mineralogy L. Kormos1, J. Oliveira1, D. Fragomeni1, E. Whiteman1, J. CarriónDe la Cruz2

39

XPS Groups

Process Control - Identify and deliver robust process control technology and engineering solutions to achieve ‘Operational Performance Excellence.’

Process Mineralogy - Design, implement and optimize mineral processing flowsheets bymatching the flowsheet to the mineralogy. Testwork, modeling and plant support to maximise operations efficiency.

Extractive Metallurgy – Provide specialized extractive metallurgy services (hydro-and pyrometallurgical). Flowsheet/project development using modeling and piloting, new process development and plant optimization.

Materials Technology – Improve the reliability of critical equipment through appropriate implementation of proven materials engineering practices at essential stages of design, procurement and operation.

“Adding Value… Reducing Risk…”