86
Farmacogenetica e malattie cardiovascolari Prof. Alberto Corsini Università degli Studi di Milano

Prof. Alberto Corsini Università degli Studi di Milano IUSS/29-4... · unrelated substrates • Species differences. Human: MDR1 Rodents: mdr1a (or mdr3) and mdr1b (or mdr1) •

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Farmacogenetica e malattiecardiovascolari

    Prof. Alberto CorsiniUniversità degli Studi di Milano

  • • Interazione tra farmaci

    • Presenza di una patologia concomitante

    • Genetica

    • Età del paziente

    • Polifarmacia

    Variabili interindividuali che influenzano la Variabili interindividuali che influenzano la risposta ai farmacirisposta ai farmaci

  • • Mendelian genetics– Autosomal Dominant Hypercholesterolemia

    • LDLR, APOB, PCSK9

    – Familial Thoracic Aortic Aneurysm and Dissection syndromes:• FBN1, TGFBR1, TGFBR2, ACTA2, MYH11, NOTCH

    • Genetic markers for CAD– Multiple genes contribute to small percentage of phenotype

    • Chromosome 9p21/ANRIL• KIF6

    • Pharmacogenetics– Controversial, but gathering speed

    • Clopidogrel • Warfarin sensitivity• Statin efficacy

    Recent Developments in CV Genetics

  • FARMACOGENETICA

    Scienza che studia il ruolo dell’ereditarietà nella risposta individuale al farmacoStudia i polimorfismi dei singoli geni coinvolti nel metabolismo di un farmacoAnalizza le differenze individuali in termini di risposta al farmaco

    Obiettivi finali di uno studio di farmacogenetica:

    1. Personalizzare la terapia del paziente in cura

    2. Aumentare l’efficacia del farmaco

    3. Ridurre la possibilità di comparsa di effetti collaterali

  • POLIMORFISMOPOLIMORFISMO

    Un POLIMORFISMOPOLIMORFISMO e’ una variazione della sequenza del DNA che avviene con una elevata frequenza (ogni 300-500 bp). In alcuni casi puo’ determinare una variabile FENOTIPICAFENOTIPICA (es. colore degli occhi)

  • Tempo(le frecce indicano somministrazioni ripetute)

    Metabolizzatori lenti (PM)

    Metabolizzatori veloci (EM, normali)

    Rilevanza di un metabolismo insolitamente lento di alcuni farmaci da parte del CYP450 o di altri enzimi

    L’andamento normale è riportato nel pannello superiore, dove i livelli plasmatici di farmaco si mantengono entro un certo intervallo quando viene assunta una particolare dose ripetuta

    Un metabolismo insolitamente lento (pannello inferiore) porta ad un aumento dei livelli plasmatici del farmaco

    Live

    lli p

    lasm

    atic

    i di f

    arm

    aco

  • Delezione del gene Singolo geneGeni duplicati o moltiplicati

    No enzima Enzima instabile Enzimanormale

    Alterata specificità di substrato

    Livelli più alti di enzima

    Nessun metabolismo

    Metabolismo ridotto

    Metabolismo normale

    Metabolismoaumentato

    Possibile formazionedi altri metaboliti

    mRNA-AAAA mRNA-AAAA mRNA-AAAA mRNA-AAAA

    CYP2D6,*4,*5CYP2C19,*2,*3

    CYP2D6,*4,*10 CYP2D6,*1CYP2C19,*1CYP2C9,*1

    CYP2D6,*17CYP2C9,*3

    CYP2D6,*2xN

    Principali meccanismi molecolari che possono causare un alterato metabolismo dei farmaci

  • Human polymorphic cytochrome P450 enzymes and the Human polymorphic cytochrome P450 enzymes and the global distribution of their major variant allelesglobal distribution of their major variant alleles

  • Pharmacogenetics of Phase I Drug MetabolismPharmacogenetics of Phase I Drug Metabolism

    N Engl J Med 2003; Vol 348(6), Febr 6:529-537

  • Ruolo dei trasportatori di membrana nel percorso farmacocinetico

    Giacomini KM, et al. Goodman and Gilman’s. The Pharmacological Basis of Therapeutics, 11/E, 2006

  • Le proteine di trasportoCaptazione: facilitano

    l’entrata di sostanze (farmaci) all’interno delle cellule.

    • OATP (organic aniontransporting polypeptide)

    • OAT (organic aniontransporter)

    • PEPT (peptide transporter)

    Efflusso: esportano sostanze (farmaci) all’esterno delle cellule, anche contro un gradiente di concentrazione.

    • ABC (ATP bindingcassette):– ABCB (P-glicoproteina)– MDR1 (multidrug

    resistance protein 1)

    • BCRP (breast cancerresistance protein)

  • P-gp TISSUE DISTRIBUTION

    C. Marzolini et al., Clin. Pharmacol. Ther., 75: 13-33, 2004

  • P-glycoprotein

    • P-glycoprotein (170 kDa ATPase): Complex mechanism of drug transport.

    • At least 3 substrate binding sites• Two-stage process: (membrane partitioning (rate limiting) and P-gp interaction)

    • Found in many tissues and organisms

    • Structurally diverse and unrelated substrates

    • Species differences. Human: MDR1Rodents: mdr1a (or mdr3) and mdr1b (or mdr1)

    • Polymorphism and induction of P-gp

    So far no truly general and conclusive SAR available

    Need for different types of P-gp assays

  • HUMAN DRUG TRANSPORTERS

    Ho R.H. et al., Clin. Pharmacol. Ther. 78: 260-77, 2005

  • Additional points to consider: PolymorphismAdditional points to consider: Polymorphism

    • - C3435T: correlation with functional activity. C/C wildtype allelecorrelates with 2-fold higher activity [Hoffmeyer, PNAS, 2000]

    • - Interethnic differences (African population with high C/C frequencies)

    • But: Very limited impact:• - No association between C3435T SNP and cyclosporine PK

    (106 renal transplant patients [Anglicheau, Clin Pharm Ther, 2004])• - > 20 single nucleotide polymorphisms in MDR1

    Hypothesis:

    Compensatory protective mechanisms in P-gp deficient individuals

  • Marzolini et al., Clin. Pharmacol. & Ther., 2004; 75:13-33

    Genetic polymorphism of MDR1Genetic polymorphism of MDR1

  • N Engl J Med 2009;360.

  • AIMS

    • 2208 patients presenting with an acute myocardial infarctionin a nationwide French registry and receiving clopidogreltherapy

    • The relation of allelic variants of genes modulatingclopidogrel absorption (ABCB1), metabolic activation(CYP3A5 and CYP2C19), and biologic activity (P2RY12 and ITGB3) to the risk of death from any cause, nonfatalstroke, or myocardial infarction during 1 year of follow-up.

    Simon T et al. N Engl J Med 2009;360

  • Roles in ClopidogrelActivity of Proteinswith Known Genetic

    Polymorphisms

    Simon T et al. N Engl J Med 2009;360

  • Simon T et alN Engl J Med2009;360

  • Distribution of Cmax and AUC of clopidogrel and itsactive metabolite according to MDR1 C3435T genotype in

    PCI patients after clopidogrel

    Taubert D et al. Clin Pharmacol Ther 2006;80:486-501

  • Simon T et alN Engl J Med2009;360

  • Relationship between CYP2C19 Genetic Classification and Pharmacokinetic and Pharmacodynamic Responses

    of Clopidogrel in Healthy Subjects

    Mega JL et al. N Engl J Med 2009;360

  • Rates of Death from Any Cause, Nonfatal MyocardialInfarction, or Stroke, According to ABCB1Variant-Allele

    Polymorphisms

    Simon T et al N Engl J Med 2009;360

  • Rates of Death from Any Cause, Nonfatal MyocardialInfarction, or Stroke, According to CYP2C19 Variant-

    Allele Polymorphisms

    Simon T et al N Engl J Med 2009;360

  • N Engl J Med 2009;360

  • Aims

    The association between functional genetic variants in CYP genes, plasma concentrations of active drug metabolite, and platelet inhibition in response to clopidogrel in 162 subjects

    The association between these genetic variants and cardiovascular outcomes in a separate cohort of 1477 patientswith acute coronary syndromes treated with clopidogrel

    Mega JL et al. N Engl J Med 2009;360

  • Genetic Effects on Pharmacokinetic and Pharmacodynamic Responses to Clopidogrel

    Mega JL et al. N Engl J Med 2009;360

  • Association between a Carrier of a CYP2C19 Reduced-Function Allele and the Primary Efficacy Outcome

    in Subjects Receiving Clopidogrel

    Mega JL et al. N Engl J Med 2009;360

  • Association between a Carrier of a CYP2C19 Reduced-Function Allele and the Stent Thrombosis

    in Subjects Receiving Clopidogrel

    Mega JL et al. N Engl J Med 2009;360

  • Efficacy and Safety Outcomes at 15 Months in Subjects Treated with Clopidogrel, According to

    Genotype Status

    Mega JL et al. N Engl J Med 2009;360

  • Warfarin PGx• Warfarin is commonly prescribed drug• Variants in CYP2C9 and VKORC1 account for high

    percentage of variability of warfarin response• FDA relabeled warfarin in Aug. 2007 to encourage

    pharmacogenetic testing• Utility still remains low

    – Controversial topic– Unanswered questions

  • Warfarin• Widely prescribed anticoagulant• 12th most commonly prescribed drug

    Wysowski, D. K. et al. Arch Intern Med 2007;167:1414-1419.

    0

    5000000

    10000000

    15000000

    20000000

    25000000

    30000000

    35000000

    Annual Number of

    Prescriptions

    1998 1999 2000 2001 2002 2003 2004

    Year

    Annual Number of Outpatient Warfarin Prescriptions, 1998-2004 45% increase from

    1998 to 2004

  • Warfarin• Challenges in regulating warfarin dosing• Prothrombin time (INR) must remain in narrow

    therapeutic range• Elevated INR: risk for major bleeding complications

    – Risk for serious bleeding increases with INR > 4.0– Most likely to occur within first few weeks of initiating

    treatment

    • Subtherapeutic INR: thrombotic complications

  • Sources of variability in Warfarin dosing

    VKORC1 25%

    CYP2C9 17%

    CYP4F2 2%

    Weight 9%

    Age 7%

    Other 28%

    Drugs 12%

  • Warfarin Pharmacology• Racemic mixture of R- and S-enantiomers

    – S-Warfarin approx. 7-10X as potent as R-– Majority of in vivo activity of warfarin resides in S-

    warfarin

    • Metabolized mainly through CYP2C9• Targets VKORC1 (Vitamin K epoxide reductase

    complex subunit 1)– Interferes with recycling of Vit K in the liver– Reduced activation of clotting factors

  • Pharmacokinetics Pharmacodynamics

    CYP2C9

    CYP2C19CYP3A4CYP1A1CYP1A2CYP2C8CYP2C9

    4-hydroxywarfarin

    6-hydroxywarfarin

    7-hydroxywarfarin

    8-hydroxywarfarin

    10-hydroxywarfarin

    VKOR

    (hepatocyte) (hepatocyte)

    S-WarfarinR-Warfarin

    6-hydroxywarfarin

    7-hydroxywarfarinVitamin K (oxidized)

    Inactive Vitamin K-dependent clotting

    factors

    Active Vitamin K-dependent clotting

    factors

    Vitamin K (reduced)

    S-WarfarinR-Warfarin

    inactive

    GGCX

    Elimination

  • Warfarin PGx• CYP2C9

    – CYP2C9*2 variant• Arg144Cys• 30% decrease in enzymatic activity

    – CYP2C9*3 variant• Ile359Leu• 70%-95% decreased enzymatic activity

    • VKORC1– Promoter SNP -1639G>A – 44% decrease in promoter activity

  • Allele Frequencies

    8%89%42%

    VKORC1-

    1639G>A6-10%8-13%Caucasian

    1-4%

  • AIMS

    • To developed and used an algorithm for estimating the appropriate warfarin dose that is based on both clinical and genetic data from a broad population base

    • Clinical and genetic data from 4043 patients were used tocreate a dose algorithm that was based on clinical variablesonly and an algorithm in which genetic information wasadded to the clinical variables

    N Engl J Med, 360: 753-764, 2009

  • Demographic and clinical characteristics of the derivation and validation cohorts

    N Engl J Med, 360: 753-764, 2009

  • N Engl J Med, 360: 753-764, 2009

  • Comparison of warfarin doses predicted according to

    the clinical and the pharmacogneics algorithm

    N Engl J Med, 360: 753-764, 2009

  • N Engl J Med, 360: 753-764, 2009

  • Conclusions

    • The use of a pharmacogenetic algorithm forestimating the appropriate initial dose of warfarinproduces recommendations that are significantlycloser to the required stable therapeutic dose thanthose derived from a clinical algorithm or a fixed-dose approach

  • Warfarin PGx: Summary

    • Some studies suggest that warfarin PGx testing is beneficial– Reduced time to stable INR– Reduced adverse events

    • Large multi-center studies currently underway– Clinical outcomes– Validated dosing algorithms

    • New technology allowing for more rapid results• Genetic variants explain 40-45% of variability in response to

    warfarin– Important to realize the impact of the compound effects of

    • polymorphisms in CYP2C9 AND VKORC1• Drug-drug interactions, co-morbidities, age, BMI

  • Structural Formulas of HMG-CoA and of Statins

    ES Istvan, J Deisenhofer Science 2001; 292: 1160-1164

  • Regulation of Cholesterol Metabolismin the Liver Cell

    Modified from D. Rader Nat Med 2001, 7: 1282-1284

  • Individual LDL-C % Response to Atorvastatin 10mg/day

    Pedro-Botet J et al. Atherosclerosis 158 (2001) 183-193

  • Inter-individual variability in response to statins

    poor compliancebackground diet

    dose and uptitration of drugconcomitant drug therapy

    Extrinsic factors(extraneous influences)

    Intrinsic factors(genetically-determined)

    LDL-receptor gene mutationsapo-B-100 gene mutations

    CYP/transporter polymorphism apoE polymorphismCETP polymorphism

    rate of cholesterol biosynthesisrate of cholesterol absorption

  • Kajinami K et al. Atherosclerosis 2004, 177:219-234

    Candidate Genes Involved in the Pharmacogenetics of Statins Responsiveness

  • Pharmacological effects of genetic variations associated with statin therapy

    Schmitz et al, Curr opin Lipidol 18:164-173. 2007

    Lipid metabolism

  • Inter-individual variability in response to statins

    poor compliancebackground diet

    dose and uptitration of drugconcomitant drug therapy

    Extrinsic factors(extraneous influences)

    Intrinsic factors(genetically-determined)

    LDL-receptor gene mutationsapo-B-100 gene mutations

    CYP/transporter polymorphism apoE polymorphismCETP polymorphism

    rate of cholesterol biosynthesisrate of cholesterol absorption

  • Responsiveness to fluvastatin in patients with molecularly defined heterozygous familial

    hypercholesterolemia

    Patients characteristic according to the five genetic groups

    Leitersdorf E. et al, Circulation, 1993;87[suppl. III]:III-35–III-44

  • Leitersdorf E. et al, Circulation, 1993;87[suppl. III]:III-35–III-44

    Responsiveness to fluvastatin in patients with molecularly defined heterozygous familial

    hypercholesterolemia LDL and HDL response in the five genetic groups

  • p46a ZL PD PF PW BP MMMP PAt PE PVp43 PAI PG PC

    A

    B

    C

    InheritanceInheritance of the of the mutation mutation in the codon for aa 3500 of in the codon for aa 3500 of apoapo B geneB gene

    Corsini A et al.1991. Eur J Clin Invest 21: 389-397

  • FamilialFamilial defectivedefective ApoApo BB--100: 100: reducedreducedresponseresponse toto HMGHMG--CoA reductase CoA reductase inhibitorinhibitor

    Patient (n) Initial LDLcholesterol

    mg/dl

    Percent decrease inLDL cholesterol

    P.V. 274 15

    *FH (48) 298 35

    SIMVASTATIN (20 mg/die) FOR 4 WEEKS

    * Typical response to simvastatin treatment of heterozygous

    Corsini A et al, Lancet 1991, Vol 337, Feb 2:305

  • Inter-individual variability in response to statins

    poor compliancebackground diet

    dose and uptitration of drugconcomitant drug therapy

    Extrinsic factors(extraneous influences)

    Intrinsic factors(genetically-determined)

    LDL-receptor gene mutationsapo-B-100 gene mutations

    apoE polymorphismCETP polymorphism

    CYP3A4 polymorphism

    rate of cholesterol biosynthesisrate of cholesterol absorption

  • Determinants of Variable Response to Statin Treatment in Patients With Refractory Familial

    Hypercholesterolemia

    Frans H O’Neill et al, Arterioscler Thromb Vasc Biol 2001;21:832-837

  • Frans H O’Neill et al, Arterioscler Thromb Vasc Biol 2001;21:832-837

    LDL-C reductions of subjects according to the different mutations detected

  • Frans H O’Neill et al, Arterioscler Thromb Vasc Biol 2001;21:832-837

    Plasma MVA and 7-α-OHC in Good and Poor Responders After Each of the 4 Treatment

    Regimens of the Srudy MVA, µmol/L 7-α-OHC, µmol/L

    Good responders (n=11)

    Placebo 34.4±6.1 87.4±69.9 A10 22.3±7.4 72.4±39.9

    BAS 58.1±22.9 217.2±259.6

    A10+BAS 29.0±14.2 159.7±177.2

    Poor responders (n=8)

    Placebo 26.3±6.1 87.4±52.4

    A10 22.3±5.4 112.3±97.3

    BAS 54.7±13.5 497.7±376.9

    A10+BAS 25.0±8.8 169.7±192.2 Because the values were not normally distributed, the values given are the geometric

    mean±approximate SDs

  • Frans H O’Neill et al, Arterioscler Thromb Vasc Biol 2001;21:832-837

    Reduction in LDL-C after 1 month of atorvastatin (10 mg/d) according to apoE phenotype

  • Poor responders to statins have a low basal rate of cholesterol synthesis due to an

    increase in cholesterol absorption, possibly mediated by apolipoprotein E4

    Frans H O’Neill et al, Arterioscler Thromb Vasc Biol 2001;21:832-837

  • Inter-individual variability in response to statins

    poor compliancebackground diet

    dose and uptitration of drugconcomitant drug therapy

    Extrinsic factors(extraneous influences)

    Intrinsic factors(genetically-determined)

    LDL-receptor gene mutationsapo-B-100 gene mutations

    CYP/transporter polymorphismapoE polymorphismCETP polymorphism

    rate of cholesterol biosynthesisrate of cholesterol absorption

  • Tissue localization and role of transport proteins in drug disposition

    A. Ayrton et al., Xenobiotica 2001;31:469-497

  • Richard B. Kim, Clin Pharnacol Ther 2004;75:381-385

    Uptake and Efflux Transporters Expressed

    on Human Hepatocytes

  • Summary of the major human liver sinusoidal canalicular membrane transporters involved in transport of therapeutic drugs

    A. Ayrton et al., Xenobiotica 2001;31:469-497

    Atorvastatin, simvastatin, lovastatin, pravastatin, ezetimibe, cyclosporine,taxol, vinblastine, doxorubicin, digoxin,talinolol, loperamide, erythromycin

    CABCB1MDR1

    pravastatin, atorvastatin,methotrexate,cefodizime ezetimibeirinotecan, conjugates of drugs

    CABCC2MRP2

    Anticancer agents, anionic conjugates with glutathione, sulfate or glucuronideCerivastatin, pitavastatin, fluvastatin, pravastatin, rosuvastatin

    L

    L

    ABCC1

    ABCP

    MRP1

    BCRP

    S, sinusoidal; C, canalicular; L, lateral membranes.

    fexofenadine, UK-191,005SSLC21A9OATP-B

    BSP, rosuvastatinSSLC21A8OATP-8

    Fluvastatin, pravastatin, cimetidineS?SLC22A8OAT3

    atorvastatin, cerivastatin, simvastatin, rosuvastatin, pravastatin, pitavastatinfluvastatin, gemfibrozil, lovastatin, ezetimibe, BSP, eicosanoids, coniugated steroids, cyclosporine

    SSLC21A6OATP-C/2/1B1

    fexofenadine, rosuvastatin, UK-191,005SSLC21A3OATP-A

    Known drug substratesSubcellular location

    Gene family name

    Common name of transporter

  • Yes

    +nanana+na+na

    Yes

    ++++na+-

    na

    Yes

    ++na+++++

    Yes

    +nanananana+na

    Yes

    ++na+++-na

    Yes

    ++na+++-

    na

    Yes

    +nana+na+++

    Transporter

    OATP1B1OATP1B3OATP1A2OATP2B1OAT3BCRPMDR1MRP2

    Enzymatic pathways involved in the pharmacokinetics of Statins

    SimvaRosuvaPravaLovaFluva XL

    FluvaAtorvaStatins

    Corsini A, Bellosta S. Exp Rev Clin Pharmacol 2008; 1 (1): 105-113

  • G Schmitz Clin Chem Lab Med 2003, 41:581-589

    Statin Metabolism and Elimination

  • Richard B. Kim, Clin Pharnacol Ther 2004;75:381-385

    Single-nucleotide polymorphisms in OATP-C (SLCO1B1)

  • PHARMACOKINETIC CONSEQUENCES OF REDUCED OATP1B1 ACTYIVITY FOR PRAVASTATIN

    Kivistö KT and Niemi M. Pharmaceut Res, 24: 239-247, 2007

  • Polymorphisms of OATP-C (SLC21A6) and OATP3 (SLC22A8) genes: Consequences for

    pravastatin pharmacokinetics

    Yohei Nishizato et al., Clin Pharmacol Ther 2003;73:554-65

  • Mikko Niemi et al., Pharmacogenetics 2004;Vol14 (7):429-440

    Pravastatin Pharmacokinetics after a single 40mg oral in relation to the OATP-C single nucleotide polymorphisms and the haplotypes

  • PLASMA PRAVASTATIN CONCENTRATION-TIME AND LIPID RESPONSE IN SUBJECTS WITH A SLCO1B1 VARIANT AFTER 40 MG PRAVASTATIN

    Kivistö KT and NiemiM. Pharmaceut Res,

    24: 239-247, 2007

  • A NOVEL VARIANT ALLELE OFOATP-C (SLCO1B1) FOUND IN A JAPANESE PATIENT WITH PRAVASTATIN-INDUCED

    MYOPATHY

    K. Morimoto et al., Drug Metab. Pharmacokinet., 19 (6): 453-5, 2004

  • The SEARCH Collaborative Group, N Engl J Med, 359: 789-799, 2008

  • ODDS RATIOS FOR MYOPATHY ASSOCIATED WITH THE SLCO1B1 GENOTYPE AMONG SUBGROUPS OF PATIENTS TAKING 80 mg OF

    SIMVASTATIN DAILY

    The SEARCH Collaborative Group, N Engl J Med, 359: 789-799, 2008

  • ESTIMATED CUMULATIVE RISK OF MYOPATHY ASSOCIATED WITH TAKING 80 mg OF SIMVASTATIN ACCORDING TO SLCO1B1 GENOTYPE

    The SEARCH Collaborative Group, N Engl J Med, 359: 789-799, 2008

  • In vivo studies of the association between statin elimination and SLCO1B1 polymorphism

    The SEARCH Collaborative Group, N Engl J Med, 359: 789-799, 2008

  • Conclusions

    Altogether, the pharmacogenetic must be considered in our efforts to understand the pharmacological properties of cardiovascular drugs and in our selection of intervention strategies to lower CVD risk

  • FARMACOGENOMICA

    Scienza che studia l’intero genoma individualeIdentifica i profili genetici individuali di ogni singolo paziente

    Obiettivi finali di uno studio di farmacogenomica:

    1. Identificare nuovi geni bersaglio per terapie innovative

    2. Prevedere la risposta ai principi attivi somministrati

    3. Personalizzare la terapia del paziente in cura