6
Aravind Baskar | A0136344 | ME 6505 | October 20, 2015 Measurement of Bone growth on a Bioactive Implant ENGINEERING MATERIALS IN MEDICINE

Project Report - A0136344

Embed Size (px)

Citation preview

Aravind Baskar | A0136344 | ME 6505 | October 20, 2015

Measurement of

Bone growth on a

Bioactive Implant

ENGINEERING MATERIALS IN MEDICINE

ME 6505 - Engineering Materials in Medicine

P a g e 1 | 5

PROJECT DESCRIPTION:

In this assignment, the group is asked to study histological slides of bioactive implants into which bone has grown, and

the group is required to assess how much bone integration has occurred, using standard measurement techniques.

PERCENTAGE OF BONE INGROWTH

Quadrant Line HBI AZBI Average Quadrant Line HBC AZBI Average

1 1 1 1

2 1 2 2

3 1 3 1

4 1 4 2

5 0 5 1

6 1 6 1

7 1 7 0

1 0 1 2

2 3 2 1

3 1 3 0

4 0 4 1

5 2 5 1

6 0 6 0

7 2 7 4

1 0 1 2

2 2 2 2

3 3 3 3

4 1 4 1

5 3 5 5

6 1 6 1

7 4 7 2

1 1 1 4

2 1 2 2

3 1 3 5

4 0 4 4

5 1 5 2

6 3 6 3

7 1 7 0

21%

III 33% III 38%

Percentage of bone ingrowth

Micrograph - I Micrograph - II

I 14%

21%

I 19%

32%

II

IV 19% IV 48%

19% II

ME 6505 - Engineering Materials in Medicine

P a g e 2 | 5

COVERAGE OF BONE ON IMPLANT SURFACES

RESULTS & DISCUSSION:

From the literature study it is understood that Si-HA has a better bone apposition rate than HA. From the results obtained

it is inferred that the graphs I & III belong to HA and graphs II & IV belong to Si-HA. Percentage of change of Si-HA from

HA in bone ingrowth is about 11% and in bone coverage it is 31%. Therefore, over time, a Si-HA implant will have

significantly better as well as faster bonding with the human system than a HA implant. Ref. text is as follows: “The

quantitative histomorphometry results indicate that the percentage of bone ingrowth for Silicon-substituted hydroxyapatite

(Si-HA) was significantly greater than that for phase pure hydroxyapatite (HA). In addition, the percentage of bone/implant

Quadrant Line HBC H IS ZBC Average Quadrant Line HBC H IS ZBC Average

1 1 9 1 6 1

2 2 8 2 3 0

3 2 2 3 2 1

4 2 6 4 3 0

5 1 3 5 5 0

6 2 1 6 5 1

1 4 3 1 1 0

2 6 1 2 3 0

3 3 4 3 3 0

4 5 1 4 1 0

5 2 3 5 4 1

6 3 2 6 4 0

1 3 1 1 2 0

2 3 2 2 3 1

3 2 1 3 3 1

4 5 2 4 1 3

5 3 3 5 1 0

6 3 2 6 0 1

1 2 3 1 6 1

2 2 2 2 6 0

3 5 2 3 4 0

4 4 3 4 4 2

5 6 0 5 4 1

6 3 3 6 2 2

COVERAGE OF BONE ON IMPLANT SURFACES

I

II

III

IV

52%

26%

62%

63%

63%

Micrograph - IV

I

II

III

IV

Micrograph - III

89%

83%

94%

63%

81%

ME 6505 - Engineering Materials in Medicine

P a g e 3 | 5

coverage was significantly greater for Si-HA when compared to hydroxyapatite (HA) (Patel N, et al. J Mater Sci Mater Med

2002;13:1199 –1206)”. “It is suggested that an increase in the density of triple junctions in Si-HA is the mechanism by which Si

increases the solubility of HA and the subsequent rate at which bone apposes to Si-HA ceramics (Alexandra E. Porter, Serena

M. Best, William Bonfield.).” Solution methodology is detailed as below:

Fig. (a) Details – Weibel Grid

ME 6505 - Engineering Materials in Medicine

P a g e 4 | 5

Fig. (b) Details – Merz Grid

ME 6505 - Engineering Materials in Medicine

P a g e 5 | 5

REFERENCES:

(a) Patel, N., Best, S.M. & Bonfield, W. 2002, "A comparative study on the in vivo behavior of hydroxyapatite and silicon

substituted hydroxyapatite granules", Journal of Materials Science: Materials in Medicine [H.W. Wilson - AST], vol. 13,

no. 12, pp. 1199.

(b) Porter, A.E., Buckland, T., Hing, K., Best, S.M. & Bonfield, W. 2006, "The structure of the bond between bone and porous

silicon-substituted hydroxyapatite bioceramic implants", Journal of biomedical materials research. Part A,vol. 78, no. 1,

pp. 25-33.