Project Scheduling Probabilistic PERT. PERT Probability Approach to Project Scheduling Activity completion times are seldom known with cetainty. PERTPERT

  • Published on

  • View

  • Download

Embed Size (px)


  • Slide 1

Project Scheduling Probabilistic PERT Slide 2 PERT Probability Approach to Project Scheduling Activity completion times are seldom known with cetainty. PERTPERT is a technique that treats activity completion times as random variables. Three Time Estimate approachCompletion time estimates can be estimated using the Three Time Estimate approach. In this approach, three time estimates are required for each activity: Results from statistical studies Subjective best estimates a = an optimistic time to perform the activity P(Finish < a)b) Standard Probability Questions 1.What is the probability the project will be finished within 194 days? P(X < 194) 2.Give an interval within which we are 95% sure of completing the project. X values, x L, the lower confidnce limit, and x U, the upper confidnce limit, such that P(X x U ) =.025 3.What is the probability the project will be completed within 180 days? P(X < 180) 4.What is the probability the project will take longer than 210 days. P(X > 210) 5.By what time are we 99% sure of completing the project? X value such that P(X < x) =.99 Slide 10 Excel Solutions NORMDIST(194, 194, 9.255, TRUE) NORMINV(.025, 194, 9.255) NORMINV(.975, 194, 9.255) NORMDIST(180, 194, 9.255, TRUE) 1 - NORMDIST(210, 194, 9.255, TRUE) NORMINV(.99, 194, 9.255) Slide 11 Using the PERT-CPM Template for Probabilistic Models Instead of calculating and by hand, the Excel template may be used. Instead of entering data in the and columns, input the estimates for a, m, and b into columns C, D, and E. The template does all the required calculations After the problem has been solved, probability analyses may be performed. Slide 12 Enter a, m, b instead of Call Solver Click Solve Go to PERT OUTPUT worksheet Slide 13 Call Solver Click Solve Slide 14 To get a cumulative probability, enter a number here Slide 15 P(Project is completed in less than 180 days) Slide 16 Cost Analysis Using the Expected Value Approach Spending extra money, in general should decrease project duration. But is this operation cost effective? The expected value criterion can be used as a guide for answering this question. Slide 17 Suppose an analysis of the competition indicated: If the project is completed within 180 days, this would yields an additional profit of $1 million. If the project is completed in 180 days to 200 days, this would yield an additional profit of $400,000. Cost Analyses Using Probabilities Slide 18 Completion time reduction can be achieved by additional training. Two possible activities are being considered. Sales personnel training: (Activity H) Cost $200,000; New time estimates are a = 19, m= 21, and b = 23 days. Technical staff training: (Activity F) Cost $250,000; New time estimates are a = 12, m = 14, and b = 16. Which, if either option, should be pursued? KLONE COMPUTERS - Cost analysis using probabilities Slide 19 Sales personnel training (Activity H) is not a critical activity. Thus any reduction in Activity H will not affect the critical path and hence the distribution of the project completion time. Analysis of Additional Sales Personnel Training This option should not be pursued at any cost. Slide 20 Analysis of Additional Technical Staff Training Technical Staff Training (Activity F) is on the critical path so this option should be analyzed. One of three things will happen: The project will finish within 180 days: Klonepalm will net an additional $1 million The project will finish in the period from 180 to 200 days Klonepalm will net an additional $400,000 The project will take longer than 200 days Klonepalm will not make any additional profit. Slide 21 The Expected Value Approach Find the P(X 200) under the scenarios that No additional staff training is done Additional staff is done For each scenario find the expected profit: Subtract the two expected values. If the difference is less than the cost of the training, do not perform the additional training. Caution: Caution: These are expected values (long run average values). But this approach serves as a good indicator for the decision maker to consider. Expected Additional Profit 1000000(P(X 200)) Slide 22 The Calculations The PERT-CPM template can be used to calculate the probabilities. No Additional Training Additional Training = 194 = 9.255 = 189 = 9.0185.065192 P(X < 180) P(180200).258410 X $1000000 $ 0 $ 65,192 $270,559 X $400000 X $0 Total = $335,751 $159,152 $ 0 $291,824.159152.729561.111287 Total = $450,976 Net increase = $450,976-$335,751 = $115,225 This is less than the $250,000 required for training. Do not perform the additional training! Slide 23 Review 3-Time Estimate Approach for PERT Each activity has a Beta distribution Calculation of Mean of each activity Calculation Variance and Standard Deviation for each activity Assumptions for using PERT approach Distribution of Project CompletionTime Normal Mean = Sum of means on critical path Variance = Sum of variances on critical path Using the PERT-CPM template Using PERT in cost analyses