17
Protein Stabilization and Delivery: A Case Study with Invasion Plasmid Antigen D Nicole Montoya Institute of Sustainable Engineering Department of Chemical and Petroleum Engineering University of Kansas, Lawrence

Protein Stabilization and Delivery: A Case ... - gea.ku.edu

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Protein Stabilization and Delivery: A Case Study with Invasion Plasmid Antigen D

Nicole Montoya

Institute of Sustainable Engineering

Department of Chemical and Petroleum Engineering

University of Kansas, Lawrence

Page 2: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Vaccine Cold Chain

• Transporting and storing vaccines at 2-8ºC from

manufacturing to delivery site

• 50% vaccine wastage in the past 15 years

• Main problems:

• Inadequate cold chain capacity

• Lack of functioning cold chain equipment

• Poor temperature monitoring and

maintenance systems

WHO/UNICEF Achieving immunization targets with the comprehensive effective vaccine management (EVM) framework.

Page 3: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Ultimate Goal

Desorbing

Agent

Mem

bra

ne

Mem

bra

ne

Silica Immobilized Vaccine

Mem

bra

ne

Mem

bra

ne

Silica + Desorbing Agent

Desorbing agent is pushed

through membrane

Free Vaccine

Vaccine diffuses through

membrane Vaccine is now ready for

administration

To develop and manufacture a syringe-like device that transports and

stores silica immobilized vaccine

Page 4: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Background

Shigellosis & IpaD

• Shigellosis is a gastrointestinal disease (1 million deaths annually)

• Invasion Plasmid Antigen D (IpaD): antigen protein → target protein for stabilization

Mesoporous Silica & IpaD

Page 5: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Physicochemical Characterization (BET)

Silica GelAverage Pore Diameter

(nm)

Accessible Pore Volume

(cm3/g)

Accessible Surface Area

(m2/g)

Sample 1 (S1) 3.9 ± 1.5 0.07 ± 0.01 67.4 ± 3.3

Sample 2 (S2) 8.1 ± 1.5 0.30 ± 0.01 125.6 ± 3.3

Sample 3 (S3) 15.0 ± 1.5 1.28 ± 0.01 333.2 ± 3.3

Sample 4 (S4) 17.7 ± 1.5 1.41 ± 0.01 319.3 ± 3.3

Sample 5 (S5) 24.2 ± 1.5 2.18 ± 0.01 370.7 ± 3.3

Sample 6 (S6) 30.2 ± 1.5 3.78 ± 0.01 300.0 ± 3.3

Sample 7 (S7) 36.3 ± 1.5 2.87 ± 0.01 286.1 ± 3.3

Langmuir 2020, XXXX, XXX, XXX-XXX Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

Page 6: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Materials and Methods

Adsorption Washing Heating DesorptionCircularDichroism

• 30 mg silica gel + 0.7 mL IpaD at 1.5 mg/mL

• Mix for 20 hours

• Measure supernatant protein concentration

• Wash silica to remove unbound proteins

• Heat silica-IpaD complex at 95C for 2 hours

• Remove proteins from silica with 0.7 mL of 10% LDAO

• CD analysis on IpaD to evaluate secondary structure

LDAO Structure:

Page 7: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Effect of silica pore diameter on IpaD adsorption

Key Results:

• Percent IpaD adsorption increases

as pore volume increases

• Silicas with pore diameter > 15 nm

adsorb more than 90% IpaD

Pore Diameter (nm)

0 10 20 30 40

Perc

ent

Ipa

D A

dso

rbed

0

20

40

60

80

100

S4

S1

S2

S3

S6 S7S5

Langmuir 2020, 36, 14276-14287 Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

Page 8: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Adsorption Isotherm Silica Gel S3

Langmuir Model Equation:

𝐶𝐼𝑝𝑎𝐷,𝑎𝑑𝑠 =𝐾𝐶𝑚𝐶𝐼𝑝𝑎𝐷,𝑓𝑟𝑒𝑒

1+𝐾𝐶𝐼𝑝𝑎𝐷,𝑓𝑟𝑒𝑒

Linearized Form:𝐶𝐼𝑝𝑎𝐷,𝑎𝑑𝑠

𝐶𝐼𝑝𝑎𝐷,𝑓𝑟𝑒𝑒=

1

𝐾𝐶𝑚+

𝐶𝐼𝑝𝑎𝐷,𝑓𝑟𝑒𝑒

𝐶𝑚

• Cm: maximum monolayer coverage

• K= kads/kdes

Free IpaD Concentration (mg/mL)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Adso

rbed I

pa

D (

mg

/g)

0

50

100

150

200

Langmuir 2020, 36, 14276-14287 Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

Page 9: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Adsorption Isotherm Silica Gel S3

Cm=181 mg/g

K=21

Free IpaD Concentration (mg/mL)

0.0 0.2 0.4 0.6 0.8 1.0

Fre

e/A

dso

rbed I

pa

D C

once

ntr

ati

on (

g/m

L)

0.000

0.002

0.004

0.006

0.008

Langmuir 2020, 36, 14276-14287 Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

IpaD Unit Cell Dimensions 10.07 nm by 11.2 nm

Unit Surface Area 112.8 nm2/protein

IpaD Molecular Weight 39 kDa

181 𝑚𝑔 𝐼𝑝𝑎𝐷

𝑔 𝑠𝑖𝑙𝑖𝑐𝑎𝑥𝑚𝑜𝑙 𝐼𝑝𝑎𝐷

3.9𝑥107𝑚𝑔𝑥6.02𝑥1023 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠

1 𝑚𝑜𝑙𝑥112.8 𝑛𝑚2

𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑥

(1 𝑚)2

(1𝑥109 𝑛𝑚)2=316 𝑚2 𝐼𝑝𝑎𝐷

𝑔 𝑠𝑖𝑙𝑖𝑐𝑎

Page 10: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Adsorption Isotherm Silica Gel S4 and S5

Silica Gel N2 Surface Area (m2/g) IpaD Surface Area (m2/g)

S3 333 ± 3.3 316 ± 8.9

S4 319 ± 3.3 317 ± 11.4

S5 371 ± 3.3 372 ± 20.2

Free IpaD Concentration (mg/mL)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fre

e Ip

aD

/Ad

sorb

ed I

paD

Con

cen

trati

on

(g/m

L)

0.000

0.002

0.004

0.006

0.008

0.010

Free IpaD Concentration (mg/mL)

0.0 0.2 0.4 0.6

Fre

e/A

dso

rbed

Ip

aD

Con

cen

trati

on

(g/m

L)

0.000

0.001

0.002

0.003

0.004

Silica Gel S4 Silica Gel S5

Page 11: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Silicas with Smaller Pore Size (<15 nm)

Free IpaD Concentration (mg/mL)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Ad

sorb

ed I

pa

D C

on

cen

tra

tio

n (

mg

/g)

0

50

100

150

200

Free IpaD Concentration (mg/mL)

1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44

Adso

rbed I

paD

Conce

ntr

ati

on (

mg/g

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Silica Sample Pore Diameter

S1 (black) 3.9 nm

S3 (red) 15 nm

• IpaD cannot fit inside the pores

and adsorption is negligible

Langmuir 2020, 36, 14276-14287 Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

Page 12: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Silicas with Larger Pore Size (>25 nm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Free IpaD Concentration (mg/mL)

Fre

e/A

dso

rbed I

paD

Conce

ntr

ati

on (

g/m

L)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.000

0.002

0.004

0.006

0.008

Free IpaD Concentration (mg/mL)

Fre

e/A

dso

rbed I

paD

Conce

ntr

ati

on (

g/m

L)

294𝑚𝑔 𝐼𝑝𝑎𝐷

𝑔 𝑠𝑖𝑙𝑖𝑐𝑎𝑥

𝑚𝑜𝑙 𝐼𝑝𝑎𝐷

3.9𝑥107𝑚𝑔𝑥6.02𝑥1023 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠

1𝑚𝑜𝑙𝑥630.0 𝑛𝑚3

𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑥

(1 𝑐𝑚)3

(1𝑥107 𝑛𝑚)3=

2.87 𝑐𝑚3 𝐼𝑝𝑎𝐷

𝑔 𝑠𝑖𝑙𝑖𝑐𝑎

Silica

Sample

N2 Accessible Surface

Area (m2/g)

IpaD Surface Area

m2/g

N2 Volume

(cm3/g)

IpaD Volume

(cm3/g)

SA6 300.0 ± 3.3 603.4 ± 43.5 3.78 ± 0.01 3.49 ± 0.23

SA7 286.1 ± 3.3 514.2 ± 46.8 2.87 ± 0.01 2.87 ± 0.26

• Hypothesis: Multilayer adsorption instead of monolayer adsorption

Langmuir 2020, 36, 14276-14287 Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

Page 13: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Types of Pore Interaction with IpaD

A. Pore size less than 15 nm: IpaD does not

fit into the pore

B. Pore size between 15-25 nm: monolayer

coverage, hydrogen bonds depicted by red

line

C. Pore size larger than 25 nm: multilayer

coverage, van der Waals forces

Langmuir 2020, 36, 14276-14287 Publication Date:October 23, 2020

https://doi.org/10.1021/acs.langmuir.0c02400

Page 14: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Circular Dichroism: Secondary Structure

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

190 200 210 220 230 240 250 260

Mo

lar

elli

pti

city

(

)

Wavelength (nm)

IpaD heated on silica

Native IpaD

Denatured IpaD

Key Results:

• Adsorbed IpaD after heat treatment

(and desorption) displays similar “W”

shaped CD signal as the native

unheated IpaD

• IpaD was heated to 95C for 150

minutes while attached to S4

Page 15: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Langmuir Publication

LANGMUIRpubs.acs.org/Langmuir

The ACS journal of fundamental interface science

December 1, 2020 Volume 36 Issue 47

Page 16: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Acknowledgements

• Dr. David Corbin

• Dr. Philip Gao

• Prof. Shiflett and Prof. Allgeier Research

Groups

• Dr. Ana Rita Morais

• Simon Velasquez Morales

• Kaylee Barr

• Rhianna Roth

• Eric Hartman

Visit our website: www.shiflettresearch.com

Page 17: Protein Stabilization and Delivery: A Case ... - gea.ku.edu

Thank you for you attention! Questions?