48
Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS 634 Confocal Microscopy: Techniques and Application Module Purdue University Department of Basic Medical Sciences, School of Veterinary Medicine & Department of Biomedical Engineering, Schools of Engineering J.Paul Robinson, Ph.D. Professor of Immunopharmacology & Biomedical Engineering Director, Purdue University Cytometry Laboratories These slides are intended for use in a lecture series. Copies of the graphics are distributed and students encouraged to take their notes on Week 3 Different types of scanning 3D construction & Various Applications

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt

BME 695Y / BMS 634 Confocal Microscopy: Techniques and Application Module

Purdue University Department of Basic Medical Sciences, School of Veterinary Medicine

& Department of Biomedical Engineering, Schools of Engineering

J.Paul Robinson, Ph.D.Professor of Immunopharmacology & Biomedical Engineering

Director, Purdue University Cytometry Laboratories

These slides are intended for use in a lecture series. Copies of the graphics are distributed and students encouraged to take their notes on these graphics. The intent is to have the student NOT try to reproduce

the figures, but to LISTEN and UNDERSTAND the material.

Week 3Different types of scanning

3D construction & Various Applications

Page 2: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 2 t:/classes/BMS602B/lecture 4 602_B.ppt

Lecture summary

1. Line scanning confocal microscopy

2. Slit formation

3. Light sources, advantages and disadvantages

4. 4D confocal imaging

5. Applications of Confocal Microscopy

Page 3: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 3 t:/classes/BMS602B/lecture 4 602_B.ppt

DVC Linescanner

Emission Filters

CCD Camera

Laser

Fiber Optic LinkComputer

ocular Scanhead

Page 4: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 4 t:/classes/BMS602B/lecture 4 602_B.ppt

DVC 250 Line Scanner

Ocular

Specimen

Laser

“galvanometer”descanning mirrors

Slit

FiltersLensLens

scanning mirror

Page 5: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 5 t:/classes/BMS602B/lecture 4 602_B.ppt

Stationary Slit Apertures

• Illuminated line must be scanned over specimen

• Emitted light must be descanned

• Light passing through slit must be rescanned to reconstruct a 2D image on the retina

Page 6: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 6 t:/classes/BMS602B/lecture 4 602_B.ppt

Scanning

• The scanning is performed by oscillating mirrors

• Rate of oscillation is 25-30 Hz

Page 7: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 7 t:/classes/BMS602B/lecture 4 602_B.ppt

Mirrors

• DVC uses mirrors, not lenses

• Reduces chromatic aberration

Page 8: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 8 t:/classes/BMS602B/lecture 4 602_B.ppt

Slit

• The confocal slit is variable

• Smallest size is 20 um

• Images of excellent resolution can be collected using video cameras using small slit width

Page 9: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 9 t:/classes/BMS602B/lecture 4 602_B.ppt

Laser spot to line

Beam splitting lens

Laser in

Laser out

Page 10: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 10 t:/classes/BMS602B/lecture 4 602_B.ppt

How the laser scans

Scan width can be adjusted

Page 11: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 11 t:/classes/BMS602B/lecture 4 602_B.ppt

Light Sources - Lasers

• Argon Ar 488-514 nm

• Krypton-Ar Kr-Ar 488 - 568 - 647 nm

• Helium-Neon He-Ne 633

Page 12: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 12 t:/classes/BMS602B/lecture 4 602_B.ppt

Light Sources

• Kr-Ar lasers most common (488, 568, 647 nm)

• Ar - large (100-200 mW)

• Coupled to head with single mode optical fiber (these preserve coherence)

• Fibers usually have 60% efficiency

• Light is spread over specimen not at point so 25 mW laser produces 3-5 mW at specimen

Page 13: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 13 t:/classes/BMS602B/lecture 4 602_B.ppt

Main Advantages• Can follow very rapid events• Up to 30 frames per second• Best when searching over large specimens for specific

features• For thick specimens provides an intermediate image

between fluorescence microscopy and point scanners• Systems are small• Can be easily changed from upright to inverted scopes• Very low level light imaging

Page 14: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 14 t:/classes/BMS602B/lecture 4 602_B.ppt

Disadvantages• Need higher power lasers because point is spread

over line

• Can bleach specimens significantly

• Much high precision in slit manufacture (increase in $)

• Must use camera to detect signal

• Harder to use UV

• Cost is significant relative to point scanners

Page 15: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 15 t:/classes/BMS602B/lecture 4 602_B.ppt

Image collection

• CCD Camera (usually cooled)

• Faster - cooled and intensified camera

Page 16: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 16 t:/classes/BMS602B/lecture 4 602_B.ppt

4D confocal microscopy

• Time vs 3D sections

• Used when evaluating kinetic changes in tissue or cells

• Requires fast 3D sectioning

• Difficult to evaluate

Page 17: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 17 t:/classes/BMS602B/lecture 4 602_B.ppt

4D Imaging

Time1 2 3 4 5

Time

Flu

ores

cenc

e

Page 18: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 18 t:/classes/BMS602B/lecture 4 602_B.ppt

4D Imaging

Time1 2 3 4 5

Page 19: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 19 t:/classes/BMS602B/lecture 4 602_B.ppt

4D Imaging

Time1 2 3 4 5

This could also be achieved using an X-Z scan on a point scanner.

Page 20: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 20 t:/classes/BMS602B/lecture 4 602_B.ppt

Software

• Image analysis– Universal Imaging “Metamorph”– Image Pro-Plus– NIH Image

• Fluorescence Ratioing “Metafluor”

Page 21: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 21 t:/classes/BMS602B/lecture 4 602_B.ppt

Methods for visualization• Hidden object removal

– Easiest methods is to reconstruct from back to front

• Local Projections– Reference height above threshold

– Local maximum intensity

– Height at maximum intensity + Local Kalman Av.

– Height at first intensity + Offset Local Ht. Intensity

• Artificial lighting

• Artificial lighting reflection

Page 22: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 22 t:/classes/BMS602B/lecture 4 602_B.ppt

Software available• SGI - VoxelView

• MAC - NIH Image

• PC– Optimus– Microvoxel– Lasersharp – Confocal Assistant

Page 23: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 23 t:/classes/BMS602B/lecture 4 602_B.ppt

Differential Interference Contrast(DIC) (Nomarski)

Visible lightdetector

Specimen

Objective

1st Wollaston Prism

Polarizer

DIC Condenser

2nd Wollaston Prism

AnalyzerLight path

Page 24: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 24 t:/classes/BMS602B/lecture 4 602_B.ppt

Confocal Microscopy in the Research Laboratory

• Applications

• Live Cell studies

• Time Lapse videos

• Exotic applications

Page 25: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 25 t:/classes/BMS602B/lecture 4 602_B.ppt

Cellular Function– Esterase Activity– Oxidation Reactions– Intracellular pH– Intracellular Calcium– Phagocytosis & Internalization– Apoptosis– Membrane Potential– Cell-cell Communication (Gap Junctions)

Applications

Page 26: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 26 t:/classes/BMS602B/lecture 4 602_B.ppt

ApplicationsProbe Ratioing

– Calcium Flux (Indo-1, Fluo-3) – pH indicators (BCECF, SNARF)

Molecule-probe Excitation EmissionCalcium - Indo-1 351 nm 405, >460 nmMagnesium - Mag-Indo-1 351 nm 405, >460 nmCalcium-Fluo-3 488 nm 525 nmCalcium - Fura-2 363 nm >500 nmCalcium - Calcium Green 488 nm 515 nmPhospholipase A

- Acyl Pyrene 351 nm 405, >460 nm

Page 27: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 27 t:/classes/BMS602B/lecture 4 602_B.ppt

Exotic Applications

• Release of “Caged” compounds

• FRAP (UV line)

• Lipid Peroxidation (Paranaric Acid)

• Membrane Fluidity (DPH)

Page 28: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 28 t:/classes/BMS602B/lecture 4 602_B.ppt

“Caged” Photoactivatable Probes

• Ca++: Nitr-5

• Ca++ - buffering: Diazo-2

• IP3

• cAMP

• cGMP

• ATP

• ATP--S

Examples

Nitrophenyl blocking groups e.g. nitrophenyl ethyl ester undergoes photolysis upon exposure to UV light at 340-350 nm

Page 29: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 29 t:/classes/BMS602B/lecture 4 602_B.ppt

Applications

Organelle Structure & Function– Mitochondria (Rhodamine 123)– Golgi (C6-NBD-Ceramide)– Actin (NBD-Phaloidin)– Lipid (DPH)– Endoplasmic Reticulum

Page 30: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 30 t:/classes/BMS602B/lecture 4 602_B.ppt

Applications

• Conjugated Antibodies

• DNA/RNA

• Organelle Structure

• Cytochemical Identification

• Probe Ratioing

Page 31: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 31 t:/classes/BMS602B/lecture 4 602_B.ppt

Flow Cytometry of Apoptotic Cells

G0-G1

SG2-M

Fluorescence Intensity

# of

Eve

nts

PI - Fluorescence

# E

vent

s Normal G0/G1 cells

Apoptotic cells

Page 32: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 32 t:/classes/BMS602B/lecture 4 602_B.ppt

Flow Cytometry of Bacteria: YoYo-1 stained mixture of 70% ethanol fixed E.coli cells and B.subtilis (BG) spores.

mixture

BG E.coli

BG

E.coli

Sca

tter

Sca

tter

Fluorescence

Simultaneous In Situ Visualization of Seven Distinct Bacterial GenotypesConfocal laser scanning image of an activated sludge sample after in situ hybridization with 3 labeled probes. Seven distinct, viable populations can be visualized without cultivation.Amann et al.1996. J. of Bacteriology 178:3496-3500.

Page 33: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 33 t:/classes/BMS602B/lecture 4 602_B.ppt

GN-4 Cell LineCanine Prostate Cancer

Conjugated Linoleic Acid 200 µM 24 hours

10 µM

Hoechst 33342 / PI Hoechst 33342 / PI

Page 34: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 34 t:/classes/BMS602B/lecture 4 602_B.ppt

Flow-karyotyping of DNA integral fluorescence (FPA) of DAPI-stained pea chromosomes. Inside pictures show sorted chromosomes from regions R1 (I+II) and R2 (VI+III and I), DAPI-stained; from regions R3 (III+IV) and R4 (V+VII) after PRINS labeling for rDNA (chromosomes IV and VII with secondary constriction are labeled)

A-B): metaphases of Feulgen-stained pea (Pisum sativum L.) root tip chromosomes (green ex), Standard and reconstructed karyotype L-84, respectively. C) and D): flow-karyotyping histograms of DAPI-stained chromosome suspensions for the Standard and L-84, respectively. Capital letters indicates chromosome specific peaks, as assigned after sorting

Page 35: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 36 t:/classes/BMS602B/lecture 4 602_B.ppt

Step 1: Cell Culture

Step 2: Cell Wash

Lab-Tek

1 2

3 4

5 6

7 8

top view

side view

170 M coverslip

Step 3: Transfer to Lab-Tek plates

confocal microscopeoil immersionobjective

37o heated stage

stimulant/inhibitor added

Step 4: Addition of DCFH-DA, Indo-1, or HE

Below: the culture dishes for live cell imaging using a confocal microscope and high NA objectives.

Live cell studies

Page 36: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 37 t:/classes/BMS602B/lecture 4 602_B.ppt

Confocal System

Culture SystemPhotos taken in Purdue University Cytometry Labs

Photo taken from Nikon promotion material

Page 37: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 38 t:/classes/BMS602B/lecture 4 602_B.ppt

Example of DIC and Fluorescnece

Human cheek epithelial cells (from JPR!) stained with Hoechst 33342 - wet prep, 20 x objective, 3 x zoom (Bio-Rad 1024 MRC)

Giardia (DIC image) (no fluorescence) (photo taken from a 35 mm slide and scanned - cells were live when photographed)

Page 38: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 39 t:/classes/BMS602B/lecture 4 602_B.ppt

Fluorescence Microscope image of Hoechst stained cells (plus DIC)Image collected with a 470T Optronics cooled camera

Page 39: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 40 t:/classes/BMS602B/lecture 4 602_B.ppt

• Use for DNA content and cell viability– 33342 for viability

• Less needed to stain for DNA content than for viability– decrease nonspecific fluorescence

• Low laser power decreases CVs

Measurement of DNA

G0-G1

SG2-M

Fluorescence Intensity

# of

Eve

nts

Page 40: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 41 t:/classes/BMS602B/lecture 4 602_B.ppt

PI - Cell ViabilityHow the assay works:• PI cannot normally cross the cell membrane

• If the PI penetrates the cell membrane, it is assumed to be damaged

• Cells that are brightly fluorescent with the PI are damaged or dead

PIPI

PIPI

PIPI

PIPI

PIPI

PIPI

PIPI

PIPIPIPI

PIPI

PI

PIPI

PIPI

PIPI

Viable Cell Damaged Cell

Page 41: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 42 t:/classes/BMS602B/lecture 4 602_B.ppt

Flow-karyotyping of DNA integral fluorescence (FPA) of DAPI-stained pea chromosomes. Inside pictures show sorted chromosomes from regions R1 (I+II) and R2 (VI+III and I), DAPI-stained; from regions R3 (III+IV) and R4 (V+VII) after PRINS labeling for rDNA (chromosomes IV and VII with secondary constriction are labeled)

A-B): metaphases of Feulgen-stained pea (Pisum sativum L.) root tip chromosomes (green ex), Standard and reconstructed karyotype L-84, respectively. C) and D): flow-karyotyping histograms of DAPI-stained chromosome suspensions for the Standard and L-84, respectively. Capital letters indicates chromosome specific peaks, as assigned after sorting

Page 42: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 43 t:/classes/BMS602B/lecture 4 602_B.ppt

Confocal Microscope Facility at the School of Biological Sciences which is located within the

University of Manchester.

These image shows twenty optical sections projected onto one plane after collection. The images are of the human retina stained with VonWillebrands factor (A) and Collagen IV (B). Capturing was carried out using a x16 lens under oil immersion. This study was part of aninvestigation into the diabetic retina funded by The Guide Dogs for the Blind.

Page 43: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 44 t:/classes/BMS602B/lecture 4 602_B.ppt

Examples from Bio-Rad web site

Paramecium labeled with an anti-tubulin-antibody showing thousands of cilia and internal microtubular structures. Image Courtesy of Ann Fleury, Michel Laurent & Andre Adoutte, Laboratoire de Biologie Cellulaire, Université, Paris-Sud, Cedex France.

Whole mount of Zebra Fish larva stained with Acridine Orange, Evans Blue and Eosin. Image Courtesy of Dr. W.B. Amos, Laboratory of Molecular Biology, MRC Cambridge U.K.

Page 44: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 45 t:/classes/BMS602B/lecture 4 602_B.ppt

Examples from Bio-Rad Web site

Projection of 25 optical sections of a triple-labeled rat lslet of Langerhans, acquired with a krypton/argon laser. Image courtesy of T. Clark Brelje, Martin W. Wessendorf and Robert L. Sorenseon, Dept. of Cell Biology and Neuroanatomy, University of Minnesota Medical School.

This image shows a maximum brightness projection of Golgi stained neurons.

Page 45: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 46 t:/classes/BMS602B/lecture 4 602_B.ppt

Confocal Microscope Facility at the School of Biological Sciences which located within the

University of Manchester.

The above images show a hair folicle (C) and a sebacious gland (D) located on the human scalp. The samples were stained with eosin andcaptured using the slow scan setting of the confocal. Eosin acts as an embossing stain and so the slow scan function is used to collect as muchstructural information as possible. ReferencesForeman D, Bagley S, Moore J, Ireland G, Mcleod D, Boulton M3D analysis of retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy, Br.J.Opthalmol.80:246-52

Page 46: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 47 t:/classes/BMS602B/lecture 4 602_B.ppt

SINTEF Unimed NIS Norway

The above image shows a x-z section through a metallic lacquer. From this image we see the metallic particles lying about 30 microns below the lacquer surface.

The above image shows a x-y section in the same metallic lacquer as the image on the left.

http://www.oslo.sintef.no/ecy/7210/confocal/micro_gallery.html

Page 47: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 48 t:/classes/BMS602B/lecture 4 602_B.ppt

http://www.vaytek.com/

Material from Vaytek Web site

The image on the left shows an axial (top) and a lateral view of a single hamster ovary cell. The image was reconstructed from optical sections of actin-stained specimen (confocal fluorescence), using VayTek's VoxBlast software.

Image courtesy of Doctors Ian S. Harper, Yuping Yuan, and Shaun Jackson of Monash University, Australia. (see Journal of Biological Chemistry 274:36241-36251, 1999)

Page 48: Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 1 t:/classes/BMS602B/lecture 4 602_B.ppt BME 695Y / BMS

Purdue University Cytometry Laboratories © 1995-2004 J.Paul Robinson - Purdue University Slide 49 t:/classes/BMS602B/lecture 4 602_B.ppt

Summary

•Linescanning allows faster imaging•Usually requires a CCD camera•4D imaging•Application of fixed cell imaging•Introduction to live cell imaging